Research from the Dunham Lab Wins Cozzarelli Prize

Congratulations to Dr. Christine Dunham and colleagues on their recent publication in Proceedings of the National Academy of Sciences. This manuscript has won the journal’s Cozzarelli Prize, which recognizes one outstanding contribution each year to each of the six disciplines of the National Academy of Sciences and celebrates “scientific excellence and originality”.

The manuscript entitled “Mechanism of tRNA-mediated +1 ribosomal frameshifting” discusses ribosomal frameshifting, a perturbation of the protein assembly process. With an enhanced understanding of this process, we can begin to understand more about how proteins are synthesized as well as how some antibiotics can hijack this process and re-engineer it for new applications.

To read more about this, click [here]!

January Research Round-Up

Congratulations to our amazing research teams here in the Department of Chemistry for their publications this month!

Bowman Group

Yu, Q., & Bowman, J. M. (2019). Classical, Thermostatted Ring Polymer, and Quantum VSCF/VCI Calculations of IR Spectra of H7O3+ and H9O4+ (Eigen) and Comparison With ExperimentThe Journal of Physical Chemistry A.

Davies Group

Wilkerson‐Hill, S. M., & Davies, H. M. (2018). Rhodium (II) Tetracarboxylate‐Catalyzed Enantioselective C–H Functionalization ReactionsRhodium Catalysis in Organic Synthesis: Methods and Reactions.

Heaven Group

Han, J., Sanderson, C. R., Hokr, B., Ballmann, C. W., Clark, A. B., & Heaven, M. C. (2019, January). Optically pumped rare gas lasers. In XXII International Symposium on High Power Laser Systems and Applications(Vol. 11042, p. 1104202). International Society for Optics and Photonics.

Mikheyev, P. A., Han, J., & Heaven, M. C. (2019, January). Lasing in optically pumped Ar: He mixture excited in a dielectric barrier discharge. In XXII International Symposium on High Power Laser Systems and Applications(Vol. 11042, p. 1104206). International Society for Optics and Photonics.

Heemstra Group

Heemstra, J., Jahnke, F., & Peterson, A. (2018). S. Patent Application No. 15/739,828.

Knutson, S. D., & Heemstra, J. M. (2019). Selective enrichment of A-to-I edited transcripts from cellular RNA using Endonuclease VbioRxiv, 522029.

Kindt Group

Guo, Z., Wu, P., & Kindt, J. T. (2019). Ordering of colloidal hard spheres under gravity: From monolayer to multilayerSoft matter.

Lama, N., Weeks, E., Dong, Y., Wu, P., & Kindt, J. (2019). Crystals and Liquids in Monolayers of Heavy particlesBulletin of the American Physical Society.

Lian Group

Li, Q., & Lian, T. (2019). Ultrafast Charge Separation in Two-Dimensional CsPbBr3 Perovskite NanoplateletsThe journal of physical chemistry letters.

December Research Round-Up

Congratulations to our amazing research teams here in the Department of Chemistry for their publications this month!

Bowman Group

Babikov, D., Benoit, D., Bowman, J., Burd, T., Clary, D., Donovan, R., … & Kirrander, A. (2018). Quantum dynamics of isolated molecules: general discussionFaraday discussions.

Ban, L., Bowman, J., Bradforth, S., Chambaud, G., Dracinsky, M., Fischer, I., … & McCoy, A. B. (2018). Molecules in confinement in liquid solvents: general discussionFaraday discussions.

Qu, C., & Bowman, J. M. (2018). Assessing the Importance of the H2 (H2O) 2 3-Body Interaction on the Vibrational Frequency Shift of H2 in the sII Clathrate Hydrate and Comparison with ExperimentThe Journal of Physical Chemistry A.

Davies Group

Fu, J., Ren, Z., Bacsa, J., Musaev, D. G., & Davies, H. M. (2018). Desymmetrization of cyclohexanes by site-and stereoselective C–H functionalizationNature564(7736), 395.

Dyer Group

Zhao, J., Su, H., Vansuch, G. E., Liu, Z., Salaita, K., & Dyer, R. B. (2018). Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase TransitionACS nano.

Heaven Group

Kaledin, L. A., Kaledin, A. L., & Heaven, M. C. (2019). The electronic structure of thorium monoxide: Ligand field assignment of states in the range 0–5 eVJournal of computational chemistry40(2), 430-446.

Kindt Group

Zhang, X., Arce, J. G., & Kindt, J. T. (2018). Derivation of micelle size-dependent free energies of aggregation for octyl phosphocholine from molecular dynamics simulationFluid Phase Equilibria.

Lynn Group

McGill, T. L., Williams, L. C., Mulford, D. R., Blakey, S. B., Harris, R. J., Kindt, J. T., … & Powell, N. L. (2018). Chemistry Unbound: Designing a New Four-Year Undergraduate CurriculumJournal of Chemical Education.

Musaev Group

Fu, J., Ren, Z., Bacsa, J., Musaev, D. G., & Davies, H. M. (2018). Desymmetrization of cyclohexanes by site-and stereoselective C–H functionalizationNature564(7736), 395.

Salaita Group

Zhao, J., Su, H., Vansuch, G. E., Liu, Z., Salaita, K., & Dyer, R. B. (2018). Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase TransitionACS nano.

Chemistry Unbound Article Selected as ACS Editors’ Choice

In the Fall of 2017, Emory’s Department of Chemistry overhauled its undergraduate curriculum to introduce a more interdisciplinary approach to teaching chemistry. The new course structure, named Chemistry Unbound, was designed to weave concepts of traditional chemistry disciplines together, giving students a more comprehensive foundation of the field.

This curriculum reform was described in “Chemistry Unbound: Designing a New Four-Year Undergraduate Curriculum”, written with contributions from Tracy L. McGill, Leah C. Williams, Douglas R. Mulford, Simon B. Blakey, Robert J. Harris, James T. Kindt, David G. Lynn, Patricia A. Marsteller, Frank E. McDonald, and Nichole L. Powell. The article, which was recently published in the Journal of Chemical Education, has been selected by the ACS as “Editors’ Choice”. This recognition highlights the value of the publication as a significant contribution to the global scientific community.

We are so proud of the success of Chemistry Unbound! Congratulations who everyone who contributed to such a wonderful accomplishment!

Click [here] to read the article!

Research from the Bowman Group Featured on Cover of the Journal of Physical Chemistry

Congratulations to the Bowman lab for their recent publication, “Tag-Free and Isotopomer-Selective Vibrational Spectroscopy of the Cryogenically Cooled H9O4+ Cation with Two-Color, IR–IR Double-Resonance Photoexcitation: Isolating the Spectral Signature of a Single OH Group in the Hydronium Ion Core”.

Their article was featured on the cover of The Journal of Physical Chemistry.

November Research Round-Up

Congratulations to our amazing research teams here in the Department of Chemistry for their publications this month!

Bowman Group:

Chen, Q., & Bowman, J. M. (2018). Quantum approaches to vibrational dynamics and spectroscopy: is ease of interpretation sacrificed as rigor increases?Physical Chemistry Chemical Physics.

Yang, B., Zhang, P., Chen, Q., Stancil, P., Bowman, J. M., Naduvalath, B., & Forrey, R. C. (2018). Inelastic Vibrational Dynamics of CS in Collision with H2 Using a Full-dimensional Potential Energy SurfacePhysical Chemistry Chemical Physics.

Dunham Group:

Hong, S., Sunita, S., Maehigashi, T., Hoffer, E. D., Dunkle, J. A., & Dunham, C. M. (2018). Mechanism of tRNA-mediated+ 1 ribosomal frameshiftingProceedings of the National Academy of Sciences115(44), 11226-11231.

Rivera, S., Young, P. G., Hoffer, E. D., Vansuch, G. E., Metzler, C. L., Dunham, C. M., & Weinert, E. E. (2018). Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled SensorsInorganic chemistry.

Hoffer, E. D., Maehigashi, T., Fredrick, K., & Dunham, C. M. (2018). Ribosomal ambiguity (ram) mutations promote the open (off) to closed (on) transition and thereby increase miscodingNucleic Acids Research.

Hill Group:

Sullivan, K. P., Wieliczko, M., Kim, M., Yin, Q., Collins-Wildman, D. L., Mehta, A. K., … & Hill, C. L. (2018). Speciation and Dynamics in the [Co4V2W18O68] 10-/Co (II) aq/CoOx Catalytic Water Oxidation SystemACS Catalysis.

Kaledin, A. L., Troya, D., Karwacki, C. J., Balboa, A., Gordon, W. O., Morris, J. R., … & Musaev, D. G. (2018). Key Mechanistic Details of Paraoxon Decomposition by Polyoxometalates: Critical Role of Para-Nitro SubstitutionChemical Physics.

Lian Group:

Clark, M. L., Ge, A., Videla, P. E., Rudshteyn, B., Miller, C. J., Song, J., … & Kubiak, C. P. (2018). CO2 Reduction Catalysts on Gold Electrode Surfaces Influenced by Large Electric FieldsJournal of the American Chemical Society.

Lutz Group:

Williams, E., Jung, S. M., Coffman, J. L., & Lutz, S. (2018). Pore engineering for enhanced mass transport in encapsulin nano-compartmentsACS synthetic biology.

Musaev Group:

Kaledin, A. L., Troya, D., Karwacki, C. J., Balboa, A., Gordon, W. O., Morris, J. R., … & Musaev, D. G. (2018). Key Mechanistic Details of Paraoxon Decomposition by Polyoxometalates: Critical Role of Para-Nitro Substitution. Chemical Physics.

Salaita Group:

Hong, J., Ge, C., Jothikumar, P., Yuan, Z., Liu, B., Bai, K., … & Palin, A. (2018). A TCR mechanotransduction signaling loop induces negative selection in the thymusNature Immunology, 1.

Weinert Group

Rivera, S., Young, P. G., Hoffer, E. D., Vansuch, G. E., Metzler, C. L., Dunham, C. M., & Weinert, E. E. (2018). Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled SensorsInorganic chemistry.

Fontaine, B. M., Duggal, Y., & Weinert, E. E. (2018). Exploring the Links Between Nucleotide Signaling and Quorum Sensing Pathways in Regulating Bacterial VirulenceACS infectious diseases.

Wuest Group:

Kontos, R. C., Schallenhammer, S. A., Bentley, B. S., Morrison, K. R., Feliciano, J. A., Tasca, J. A., … & Minbiole, K. P. (2018). An Investigation Into Rigidity‐Activity Relationships in bisQAC Amphiphilic AntisepticsChemMedChem.

Shapiro, J. A., Varga, J. J., Parsonage, D., Walton, W., Redinbo, M. R., Ross, L. J., … & Goldberg, J. B. (2018). Identification of Specific and Non‐specific Inhibitors of Bacillus anthracis Type III Pantothenate Kinase (PanK)ChemMedChem.

Kilgore, M. B., Morrison, K. R., Wuest, W. M., & Chandler, J. D. (2018). Influence of pH on the reactions of heme peroxidase-derived oxidants with R19SFree Radical Biology and Medicine128, S101-S102.

October Research Round-Up

Congratulations to our amazing research teams here in the Department of Chemistry for their publications this month!

Bowman Group:

Nandi, A., Qu, C., & Bowman, J. M. (2018). Diffusion Monte Carlo Calculations of Zero‐Point Energies of Methanol and Deuterated Methanol. Journal of computational chemistry.

Davies Group:

Davies, H. M., Itami, K., & Stoltz, B. M. (2018). New directions in natural product synthesisChemical Society Reviews.

Evangelista Group:

Huang, Y., Xu, Z., Jin, S., Li, C., Warncke, K., Evangelista, F. A., … & Egap, E. (2018). Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure and Excited State DynamicsChemistry of Materials.

Heaven Group

Torbin, A., Pershin, A., Zagidullin, M., Heaven, M., Mebel, A., & Azyazov, V. (2018). Ozone recovery in the presence of CO and N2O. In MATEC Web of Conferences(Vol. 209, p. 00016). EDP Sciences.

Tolstov, G. I., Zagidullin, M. V., Khvatov, N. A., Medvedkov, I. A., Mebel, A. M., Heaven, M. C., & Azyazov, V. N. (2018). Measurements of rate constants of O2 (b) quenching by CH4, NO, N2O at temperatures 300-800 K. In MATEC Web of Conferences(Vol. 209, p. 00006). EDP Sciences.

Heaven, M. C. (2018, October). Optically pumped rare gas lasers (Conference Presentation). In High-Power Lasers: Technology and Systems, Platforms, and Effects II(Vol. 10798, p. 1079806). International Society for Optics and Photonics.

Heemstra Group

Wilson, C. J., Bommarius, A. S., Champion, J. A., Chernoff, Y. O., Lynn, D. G., Paravastu, A. K., … & Heemstra, J. M. (2018). Biomolecular Assemblies: Moving from Observation to Predictive DesignChemical reviews.

Morris, F. D., Peterson, E. M., Heemstra, J. M., & Harris, J. M. (2018). Single-Molecule Kinetic Investigation of Cocaine-Dependent Split-Aptamer AssemblyAnalytical chemistry.

Hill Group

Kaledin, A. L., Hill, C. L., Lian, T., & Musaev, D. G. (2018). A bulk adjusted linear combination of atomic orbitals (BA‐LCAO) approach for nanoparticlesJournal of computational chemistry.

Ke Group

Wang, P., & Ke, Y. (2018). Attack on the Cell Membrane: The Pointy Ends of DNA Nanostructures Lead the Way.

Wang, D., Song, J., Wang, P., Pan, V., Zhang, Y., Cui, D., & Ke, Y. (2018). Design and operation of reconfigurable two-dimensional DNA molecular arraysNature protocols, 1.

Kindt Group

Patel, L. A., & Kindt, J. T. (2018). Simulations of NaCl Aggregation from Solution: Solvent Determines Topography of Free Energy LandscapeJournal of computational chemistry.

Guo, Z., & Kindt, J. T. (2018). Partitioning of Size-mismatched Impurities to Grain Boundaries in 2-d Solid Hard Sphere MonolayersLangmuir.

Lian Group

Kaledin, A. L., Hill, C. L., Lian, T., & Musaev, D. G. (2018). A bulk adjusted linear combination of atomic orbitals (BA‐LCAO) approach for nanoparticlesJournal of computational chemistry.

Huang, Y., Xu, Z., Jin, S., Li, C., Warncke, K., Evangelista, F. A., … & Egap, E. (2018). Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure and Excited State DynamicsChemistry of Materials.

Lynn Group

Wilson, C. J., Bommarius, A. S., Champion, J. A., Chernoff, Y. O., Lynn, D. G., Paravastu, A. K., … & Heemstra, J. M. (2018). Biomolecular Assemblies: Moving from Observation to Predictive DesignChemical reviews.

Musaev Group

Kaledin, A. L., Hill, C. L., Lian, T., & Musaev, D. G. (2018). A bulk adjusted linear combination of atomic orbitals (BA‐LCAO) approach for nanoparticles. Journal of computational chemistry.

Haines, B. E., Nelson, B. M., Grandner, J. M., Kim, J., Houk, K. N., Movassaghi, M., & Musaev, D. G. (2018). Mechanism of Permanganate-Promoted Dihydroxylation of Complex Diketopiperazines: Critical Roles of Counter-cation and Ion-PairingJournal of the American Chemical Society.

Wuest Group

Ernouf, G., Wilt, I., Zahim, S., & Wuest, W. M. (2018). Epoxy isonitriles, a unique class of antibiotics–Synthesis of their metabolites and biological investigationsChemBioChem.

 

New Catalyst Developed by CCHF

Side view of the new catalyst. Graphic image by Kuangbiao Liao via escienceommons.

Chemists have developed another catalyst that can selectively activate a carbon-hydrogen bond, part of an ongoing strategy to revolutionize the field of organic synthesis and open up new chemical space.

The journal Nature is publishing the work by chemists at Emory University, following on their development of a similar catalyst last year. Both of the catalysts are able to selectively functionalize the unreactive carbon-hydrogen (C-H) bonds of an alkane without using a directing group, while also maintaining virtually full control of site selectivity and the three-dimensional shape of the molecules produced.

Read the full story by Carol Clark on the Emory esciencecommons blog!

Dunham Group Publication in Nature Chemical Biology

Graduate student Ha An Nguyen of the Dunham Group recently published a News and Views article for the journal Nature Chemical Biology entitled, “Genome Mining: Digging the Tunnel for Chemical Space” based on a July article published in the same journal, “Klebsazolicin Inhibits 70S Ribosome by Obstructing the Peptide Exit Tunnel”.

In her review, Ha An summarizes the major findings of the Metelev et al. paper and emphasizes the value of genome mining in the discovery of new antimicrobials. “We previously thought we had beaten bacterial infections with ‘miracle drugs’ but if you look at the numbers from the CDC, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections in the United States alone,” Ha An says. “Techniques such as genome mining used in this paper can help sift through tons of sequencing data and can lead us to places we would have never thought of to look.”

Beyond its scientific contributions to the field, this manuscript held particular value to Ha An. “As a novice scientist, this paper on klebsazolicin provides a nice story of a scientific study that walks through the project from conception in silico and into the laboratory for mechanistic and structural investigation,” she says. “It also let me dip my toes into making figures of ribosomes structures, which I am hoping to do a lot of during my time in the Dunham lab to tease out the details of bacterial translation with atomic-level resolution.”