Dr. Widicus Weaver: Outer Space and Outreach

Scientific outreach events give us the opportunity to disseminate our ideas, share our scientific discoveries, present collaboration opportunities, or even inspire the next generation of scientists. On Wednesday, November 8th, Dr. Widicus Weaver shared her passion for astrochemistry, biology, and space with a room full of enthusiastic second graders at Westchester Elementary School. She discussed topics ranging from star formation to molecules in space, drawing from her research on pre-biotic astrochemistry. The children even had the chance to look through hand-held spectroscopes!

Outreach events like this one allow scientists the unique chance to bring awareness to the scientific endeavors taking place here at Emory and provides those in the community the chance to learn a new topic from a true expert. The children who attended Dr. Widicus Weaver’s seminar got an exclusive look into the amazing science happening far beyond our planet.  Some photos from the event are shown below.

Welcome, Morgan McCabe!

Morgan McCabe has joined the Department of Chemistry staff as Lead Research Specialist. She will be working with labs–from design to implementation–across the undergraduate curriculum.

“I am excited to work with the TAs and professors and help ensure their labs are working smoothly. I hope to be a resource for both TAs and professors and make their lives a little easier when conducting the labs,” says Morgan.

Morgan is new to the Department of Chemistry staff, but not to the Department of Chemistry. She gradauted this Spring with an M.S. in chemistry from the Widicus Weaver Group.

“My thesis research was in the areas of astrochemistry and millimeter-wave spectroscopy. I worked in a lab setting to find the rotational spectrum of a few molecules of astrochemical interest including aminomethanol and the methoxy and hydroxymethyl radicals,” says Morgan. For those of us who aren’t astrochemists, Morgan explains the significance of rotational spectrum:  “Since a rotational spectrum acts like a fingerprint for a molecule getting lab data of these molecules can help us determine if the molecule is present in chemically active star-forming regions.

Morgan’s interest in chemistry makes her a perfect fit to drive undergraduate engagement in the lab. Her own college experience in the lab is what led her on a path towards the chemistry degree and graduate school. “I enjoyed chemistry when I was in high school but I became truly passionate about it in my freshman year of college, when I did a research project with Steve Shipman looking at the rotational spectra of CFCs (chlorofluorocarbons). I enjoyed the puzzle-like nature of chemistry, especially spectroscopy, and I have been hooked since.”

Morgan’s new office is Atwood 380C inside the chemistry Main Office suite. She can be reached at mnmccab [at] emory [dot] edu.

 

Congratulations, Dr. Luyao Zou!

Luyao Zou
Luyao Zou

Luyao Zou successfully defended his thesis, “Astrochemistry in star-forming regions: laboratory millimeter-submillimeter spectroscopy and broadband astronomical line surveys” on Thursday, March 9th, 2017. Luyao’s thesis committed was led by Susanna Widicus Weaver with Michael C. Heaven and Joel Bowman as additional members. Luyao will be returning to China to take a position as operation coordinator in science communication. Congratulations, Luyao!

Previously:

PhD Candidate Luyao Zou Develops LaTeX Template for Dissertations

Congratulations, Graduate Student Award Winners!

First Person: PDS Training at the World’s Largest Radio Telescope

Graduate Student Spotlight: Brian Hays (Widicus Weaver Group) Wins ACS Astrochemistry Dissertation Award

Brian Hays. Photo provided by Brian Hays.
Brian Hays. Photo provided by Brian Hays.

Brian Hays (Widicus Weaver Group) is honest when asked what it was like to write his dissertation. “The dissertation writing process was grueling,” he says. “I rewrote it several times and stayed up all night for many nights.” Developing the dissertation project was also a challenge. “There were a lot of challenges to getting the PhD, many of them experimental. Usually they involved something that had never been experienced before in the lab, and we would have to learn a new skill and apply it immediately to research.”

That hard work paid off. Brian successfully defended his thesis in April 2015 and in May 2016 he was announced as the winner of the American Chemical Society’s Astrochemistry Dissertation Award for 2016. The award is intended to promote the emerging discipline of Astrochemistry within the PHYS Division of the ACS by recognizing an outstanding recent Ph.D. thesis submitted by an Astrochemistry Subdivision member. Brian will receive a $500 award and will give an invited presentation at the August 2016 ACS Meeting in Philadelphia.

Speaking to Brian, it’s clear that hard work and challenges on the road to the dissertation were met with a spirit of discovery and determination. “It was always very exciting to dive into something new [ . . . ] I was looking forward to building an experiment from scratch.” “Something new” for Brian included the development of novel spectroscopic methods that increased scanning speed by almost 100 times, leading to faster results.  Mentoring support from advisor Susanna Widicus Weaver also made the journey towards the PhD easier. “Susanna was the person at Emory who most helped me towards getting the PhD,” says Brian. “Her mentoring and support is very important to me.”

Photo shows fluorescence from an excimer laser intersecting with molecular source inside a vacuum chamber with infrared beam path coming underneath in the Widicus Weaver Lab. Photo provided by Brian Hays.
Photo shows fluorescence from an excimer laser intersecting with molecular source inside a vacuum chamber with infrared beam path coming underneath in the Widicus Weaver Lab. Photo provided by Brian Hays.

The award-winning research that resulted is “primarily concerned with making and examining unstable molecules that may lead to prebiotic molecules in space.” The research relies on spectroscopic techniques that allow scientists to compare the results of an experiment to astronomical observations of star forming regions. “[We] see if we can make a molecule in the lab and detect it in space,” explains Brian. These techniques allow scientists to make informed observations about far-away regions of space from within the confines of the lab. For Brian, that didn’t completely rule out travel to places far, far away. He took advantage of Professional Development Support funds from the Laney Graduate School to perform astronomical observations in Hawaii.

Currently, Brian is a postdoctoral fellow at Purdue in the lab of Tim Zwier working on chirped pulse microwave spectroscopy. As in the PhD, Brian is seeking new capacities for existing tools “building up [Zwier’s] current instrument towards including mass spectrometry and towards new double resonance techniques.” Their next project will look at processes related to Titan’s atmosphere using these new techniques.

A theme of Brian’s dissertation and postdoctoral work seems to be the excitement he finds in new experiences, techniques, and questions. What does he find most exciting about what’s new and next for the field of astrochemistry? “I am most excited about the proliferation of rotational spectroscopy to more experiments in physical chemistry. This allows for a very high resolution picture of molecules that is state dependent and can be applied in a wide variety of experiments now, including those of astrophysical interest.”