Chemistry Unbound Article Selected as ACS Editors’ Choice

In the Fall of 2017, Emory’s Department of Chemistry overhauled its undergraduate curriculum to introduce a more interdisciplinary approach to teaching chemistry. The new course structure, named Chemistry Unbound, was designed to weave concepts of traditional chemistry disciplines together, giving students a more comprehensive foundation of the field.

This curriculum reform was described in “Chemistry Unbound: Designing a New Four-Year Undergraduate Curriculum”, written with contributions from Tracy L. McGill, Leah C. Williams, Douglas R. Mulford, Simon B. Blakey, Robert J. Harris, James T. Kindt, David G. Lynn, Patricia A. Marsteller, Frank E. McDonald, and Nichole L. Powell. The article, which was recently published in the Journal of Chemical Education, has been selected by the ACS as “Editors’ Choice”. This recognition highlights the value of the publication as a significant contribution to the global scientific community.

We are so proud of the success of Chemistry Unbound! Congratulations who everyone who contributed to such a wonderful accomplishment!

Click [here] to read the article!

Meet Leah Williams, HHMI Curriculum, Development Postdoc

Leah Williams. Photo provided by Leah Williams.
Leah Williams. Photo provided by Leah Williams.

Leah Williams came to Emory last summer at the same time that students, staff, and faculty were moving into the new Atwood Addition. Her arrival in the midst of that process seems fitting—as an HHMI Curriculum Development Postdoc, Leah is a part of the team working to re-envision the undergraduate chemistry curriculum at Emory.

The curriculum itself is designed, in part, to suit the unique teaching opportunities presented by the new addition. “Everything that we’re working on has been designed with the ATOMIC (Advancing the Teaching Of Matter through Innovation and Collaboration) room in mind,” says Leah. “A lot of the materials we’re creating are meant to be done in groups, they’re meant to be interactive. Taking advantage of that space, taking advantage of the round tables, the Learning Catalytics system (since we have screens everywhere), the dry erase boards and tables so they can share all their information.”

Before coming to Emory, Leah received her PhD in chemical education from Michigan State University. Her research focused on evidence-based methods for teaching students about the relationship between structure and properties. “It’s one of the bigger ideas of chemistry that the structure of a compound, of a substance determines the properties that you experience on the macroscopic level. It’s hard [for students] because it’s a very big jump from structure to properties and there is a lot you need to know in-between. “

At MSU, she assisted her advisor, Dr. Melanie M. Cooper, with the implementation of a revised general chemistry course called CLUE:  Chemistry, Life, the Universe, and Everything. The changes were modeled on revisions made to general chemistry coursework at Clemson University. Leah actually began her PhD at Clemson, moving to MSU with her advisor when the opportunity arose to bring the curriculum revisions undertaken at Clemson to a new school.

Her experiences at MSU and Clemson inform Leah’s work at Emory. “Leah brings a wealth of expertise to our reform efforts,” says Tracy McGill. “Her experience with the NSF-sponsored CLUE curriculum, assessment, and design of learning activities has been invaluable to the Emory Chemistry department.  She just finished her first year in the ATOMIC room and her insights about student learning have informed the changes we have already made in planning for the fall of 2016.  It is a great pleasure to work with a colleague with such dedication and enthusiasm to our department and especially our students.”

Leah notes that the curriculum development underway at Emory has a key difference from her previous experiences. “It was just gen chem,” she explains, speaking of Clemson and MSU. “Here, we’re working on the whole curriculum. There are very few schools that have attempted this.”

That process presents unique challenges. For one thing, there aren’t many examples to draw on. For departments hoping to complete evidence-based curriculum overhauls in the future, Emory’s story will be part of the evidence—what works and what doesn’t.

The curriculum redesign started with a focus on big ideas—the themes tying together different courses throughout a student’s career. The approach allowed everyone to think big, but it was hard to zoom in on the details of individual courses. “Now,” says Leah, “we’ve flipped our approach and we’re working the other way.” The team is focusing on individual lessons and learning approaches, building the curriculum piece by piece. “Our goal is to give people a more concrete idea of what the courses are actually about. I think before it was very abstract and it’s hard to get people on board when they can’t envision themselves teaching that class because they’re not sure what’s in that class. Now, we’re working on more detail, but that takes time.”

Although the process is ongoing, undergraduate chemistry students are already seeing the influence of the curriculum redesign in the classroom as members of the faculty test activities from the under-development curriculum in the classroom. Leah worked with instructor Michael Reddish to test a version of the advanced physical chemistry lab designed to help students produce publishable research results. This Fall, the curriculum team will pilot an activity on potential energy and attractive forces that will have students in the ATOMIC room up on their feet: “The students struggle a lot understanding how potential energy is related to the attractive and repulsive forces between charged particles. So, we developed an activity where they’re going to run around and they’re going to have charges…this person is going to be a plus charge and this person will be a minus and we’re going to talk about what happens when they come together or they are further apart.”

The curriculum redesign centers on this kind of active engagement. Leah says that college students are “at the point where they can understand more complex ideas, deeper chemistry concepts, and they’re at that transition where they’re starting to take more responsibility for their own education and willing to put in the work to learn the hard stuff.” When she moves on from Emory, Leah hopes to continue teaching at the college level. “I like that transition, setting them off for harder chemistry studies as they go on.”

Further Reading

Cooper, Melanie M., Leah M. Corley, and Sonia M. Underwood. “An investigation of college chemistry students’ understanding of structure–property relationships.” Journal of Research in Science Teaching 50.6 (2013): 699-721.

Cooper, Melanie M., Leah C. Williams, and Sonia M. Underwood. “Student understanding of intermolecular forces: A multimodal study.” Journal of Chemical Education 92.8 (2015): 1288-1298.

Williams, Leah C., et al. “Are noncovalent interactions an achilles heel in chemistry education? A comparison of instructional approaches.” Journal of Chemical Education 92.12 (2015): 1979-1987.