Metabolomics of Plasmodium knowlesi malaria patients in Malaysia
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Abstract

Malaria is a disease affecting hundreds of millions of people every year, in about
100 countries. While P. falciparum and P. vivax are the more common species of the
parasite causing malaria in humans, there has been a rise in severe and fatal cases
diagnosed in recent years as P. knowlesi zoonotic infections. To better understand the
effects of the infection as well as host-pathogen interactions, metabolomics is used to
evaluate the biological processes changed in the host in the course of the infection. In this
study, we are analyzing patient clinical and metabolomics data generated from plasma
samples obtained from cases of human P. knowlesi malaria in Malaysia. We aim to
identify the metabolites that change when there is an infection, and possibly detect

metabolites and their corresponding pathways that relate to disease severity.

Introduction

Every year there are millions of cases of malaria, and according to the World
Malaria Report published by the World Health Organization (WHO), there were 212
million new cases of malaria in 2015. The disease is caused by different species of the
Plasmodium parasite. While there is a large focus on P. falciparum and P. vivax, which
according to the WHO are the greatest threat, three other species still represent a public
health concern. The species P. knowlesi, often found in macaques, was originally
believed to rarely infect humans. However, a study by Singh et al. in 2004 [1] identified

this P. knowlesi malaria as a significant zoonotic disease in Malaysia, and Cox-Singh et



al. then reported its widespread prevalence in the country [2]. These studies also helped
P. knowlesi to gain recognition as the 5" human malaria parasite species. The property of
being in both macaques, a great model organism, and humans make it ideal for study.
While for the most part malaria caused by P. knowlesi can be treated without
complication, a retrospective study found that 39% of P. knowlesi cases were severe, and
of these, 27% were fatal [3]. It is therefore of great importance to gain an improved
understanding of what distinguishes cases that are severe from those that are not.
Through advancements in biological technologies we can now get a deeper
understanding of what is happening within the body. One of these advancements is in the
field of metabolomics. Metabolomics uses mass spectrometry to generate the unique
chemical fingerprints of metabolites found within a sample. This information helps to
identify and characterize ongoing biological processes and understand how they change
under different conditions. Surowiec et al. found that metabolite signature profiling could
aid in malaria diagnostics and prognostics [4]. A study by our group, Gardinassi et al.,
previously demonstrated a relationship between parasitemia levels and certain metabolite
abundance [5]. Here, by using metabolomics, this study hopes to distinguish what
metabolites are involved in P. knowlesi infection of humans, and which if any
metabolites have a relationship with disease severity. This study will investigate the
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importance of normalizing metabolomics data, and then explore the differences between
healthy and infected individuals. Finally, this study aims to use metabolomics to find
metabolic changes in relation to disease severity (Fig. 1).

Methods

Samples

Samples were collected by Professor Balbir Singh and his group based at the
Malaria Research Centre at the Universiti Malaysia Sarawak in Kuching, Sarawak,
Malaysia. Patients were recruited from the district hospital in Kapit and surrounding
clinics where they often presented with symptoms. As Prof. Balbir Singh’s team is based
in Kuching, they needed to travel on a regular basis to Kapit to obtain samples.

All patients diagnosed with malaria (detectable parasites by blood smear) were
treated according to the standard of care for Malaysia. All infected patients in the study
were hospitalized until they were smear-negative in at least two consecutive peripheral
blood smears, with public health follow up after release. To provide appropriate negative
controls for this study, samples from age and gender-matched individuals were taken
from healthy participants from the area surrounding Kapit and within Kapit. Consent for
all individuals was obtained according to a local ethical board approved protocols, and a
thumbprint used as a signature for participants who were illiterate.

Plasma samples were stripped of identifying patient information and were
shipped on dry ice to Emory University. Emory University’s Institutional Review Board
(IRB) reviewed protocols, local approvals, and consent forms for this study and approved
an IRB exemption based on the de-identification of samples and data. Plasma from a

total of 143 infected patients and 111 uninfected patients were analyzed in this study.



Untargeted Metabolomics

With the assistance of the Emory Clinical Biomarkers Laboratory, directed by
Drs. Dean P. Jones, Shuzhao Li, and Karan Uppal, plasma samples were run on by mass
spectrometry and data was processed for untargeted metabolomics analysis. This work
was completed by Ms. ViLinh Tran and Dr. Luiz Gardinassi. The measurement of
metabolites within the plasma samples was done using liquid chromatography-mass
spectrometry (LC-MS) and high-resolution metabolomics (HRM) workflows. In brief,
the samples are analyzed on a High Field QExactive machine in triplicate, and the data
generated undergoes peak detecting noise removal and alignment, done using the
programs apLCMS and xcms with xMSanalyzer. This creates a data table with mass-to-
charge ratio (m/z), retention time and intensity for each m/z across all samples. This table
was then adjusted for batch-effect correction using the program ComBat.
Statistical Analysis

In the present study, ComBat-corrected data from the hilic column (positive
mode) was used for all analyses. This results table included the intensity data for each
unique metabolite feature in each sample. The ComBat-corrected file had to be cleaned
and prepped for analysis. Using the metadata for the experiment, a class labels file had to
be generated. This class labels file provides a mapping of all sample barcodes to their
designated comparison group for analysis. Preparation of this file also involved removing
all non-sample values and information guides from the Combat corrected file and
renaming all the samples to have the correct barcode in the same format as the class

labels file (Appendix 1).



Next, both the cleaned results table and the class labels file was run through
xmsPANDA (R package courtesy of Dr. Uppal and used in [6]), a program designed for
performing statistical analyses of HRM data. When comparing the effect of
normalization, the values for the percent maximum missing both the group and overall
were set to NA as opposed to 0.8 and 0.5 respectively. For all comparisons performed in
this study, the false discovery rate (FDR) for the normalized run was 0.2 (Appendix 2).

Next the data was run through mummichog v1.0.5 [7]. This was to predict the
pathways affected by the metabolites. This software combines pathway analysis and
metabolite identification, this allows for a fuller picture, as opposed to finding the
significant metabolites independently and then using the smaller dataset to find
significant pathways. To perform this analysis, another table had to be created using a
specific output from xmsPANDA (limma sorted values). The test statistic used for this
analysis was the max fold change.

To annotate the m/z features found, xMSannotator was used[8]. It provided
annotations from two databases, Human Metabolome Database (HMDB) and LIPID
MAPS. Another script was created to find and match all annotations found for a specific
m/z and all pathways. This took two part due to the fact there could be multiple
annotations for a single feature (Appendix 3-4). The resulting table contains the m/z in
limma significant order with annotations from both databases, including the database ID,
the name, the match score, the match category and the adduct and any of the pathways

found through mummichog that used that metabolite (Appendix 1).

Results



A)

Raw intensity

First the data were run with and without normalization. Without normalization, the

differences in the metabolites between uninfected and infected is not readily identifiable.

Intensity distribution across samples after preprocessing
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Figure 2. Intensity distribution across samples after processing. A) is the intensity distribution of the
unnormalized data. The reported intensities are simply the raw intensities recorded B) is the intensity distribution

for the normalized data. Th

All we can compare is the raw intensity of the metabolite data across samples,

introducing a high degree of noise in the data. With the normalized data, we have an

improved ability to compare two different groups (Fig. 2).



After performing normalization, we compared the plasma metabolome of healthy and
malaria-infected populations globally. Here in the global principal components analysis
(PCA), we can see while there is an overlap between uninfected and infected, there is a
separate cluster of infected cases that cluster away from the group in the bottom right of
the plot (green dots, Fig. 3).

After running a limma analysis comparison the two groups, we found 924 significant
features, which can be seen on Figure 4a in a hierarchical clustering analysis. When the
PCA is run with just significant features a stronger distinction between the clusters can be

seen (Fig. 4b)
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After running pathway analysis and removing pathways with less the 3 metabolites there

were 13 significant pathways found
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with 3 or more metabolites and their corresponding p values

purine), and sugars (e.g. hexose).

Discussion

Several insights can be gleaned from the analyses in the present study. First, when
studying metabolomics, it is important to normalize your data. This is necessary to reduce
noise that may be preventing you from seeing any sort of results. This noise exists
because biology and human life, in addition to laboratory processes steps, is rarely
perfect and there are many situational factors that need to be controlled for.
Both in the global PCA, HCA, and the PCA with significant features there is a clear
difference in healthy and infected individuals. Some of the important metabolites and
pathways affected are different amino acids, like leucine and arginine, biliverdin,
glycerophosphocholine, and different LysoPCs These are similar to those found in the

literature[9][5][6]. The Gupta et al. study similarly found significant enrichment of heme



metabolites as we find hemolysis related metabolites, like biliverdin, indicating blood cell
lysis and possibly a malaria specific response. Like the Uppal et al. study, we found
changes in levels of glycerophosphocholines which relate to more general infection and
immune pathways, but could be used to target a more general response. One thing of note
in the global analysis is that not all the patients infected clustered out. What made these

patients different, could it be disease severity? The next part of this study hopes to look at

this.
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