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Abstract 

Malaria is a disease affecting hundreds of millions of people every year, in about 

100 countries. While P. falciparum and P. vivax are the more common species of the 

parasite causing malaria in humans, there has been a rise in severe and fatal cases 

diagnosed in recent years as P. knowlesi  zoonotic infections. To better understand the 

effects of the infection as well as host-pathogen interactions, metabolomics is used to 

evaluate the biological processes changed in the host in the course of the infection. In this 

study, we are analyzing patient clinical and metabolomics data generated from plasma 

samples obtained from cases of human P. knowlesi malaria in Malaysia. We aim to 

identify the metabolites that change when there is an infection, and possibly detect 

metabolites and their corresponding pathways that relate to disease severity.  

 

Introduction 

Every year there are millions of cases of malaria, and according to the World 

Malaria Report published by the World Health Organization (WHO), there were 212 

million new cases of malaria in 2015. The disease is caused by different species of the 

Plasmodium parasite. While there is a large focus on P. falciparum and P. vivax, which 

according to the WHO are the greatest threat, three other species still represent a public 

health concern. The species P. knowlesi, often found in macaques, was originally 

believed to rarely infect humans. However, a study by Singh et al. in 2004 [1] identified 

this P. knowlesi malaria as a significant zoonotic disease in Malaysia, and Cox-Singh et 



al. then reported its widespread prevalence in the country [2]. These studies also helped 

P. knowlesi to gain recognition as the 5th human malaria parasite species. The property of 

being in both macaques, a great model organism, and humans make it ideal for study. 

While for the most part malaria caused by P. knowlesi can be treated without 

complication, a retrospective study found that 39% of P. knowlesi cases were severe, and 

of these, 27% were fatal [3]. It is therefore of great importance to gain an improved 

understanding of what distinguishes cases that are severe from those that are not.  

Through advancements in biological technologies we can now get a deeper 

understanding of what is happening within the body.  One of these advancements is in the 

field of metabolomics. Metabolomics uses mass spectrometry to generate the unique 

chemical fingerprints of metabolites found within a sample. This information helps to 

identify and characterize ongoing biological processes and understand how they change 

under different conditions. Surowiec et al. found that metabolite signature profiling could 

aid in malaria diagnostics and prognostics [4]. A study by our group, Gardinassi et al., 

previously demonstrated a relationship between parasitemia levels and certain metabolite 

abundance [5]. Here, by using metabolomics, this study hopes to distinguish what 

metabolites are involved in P. knowlesi infection of humans, and which if any 

metabolites have a relationship with disease severity. This study will investigate the 
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importance of normalizing metabolomics data, and then explore the differences between 

healthy and infected individuals. Finally, this study aims to use metabolomics to find 

metabolic changes in relation to disease severity (Fig. 1).   

Methods 
 
Samples  

Samples were collected by Professor Balbir Singh and his group based at the 

Malaria Research Centre at the Universiti Malaysia Sarawak in Kuching, Sarawak, 

Malaysia. Patients were recruited from the district hospital in Kapit and surrounding 

clinics where they often presented with symptoms. As Prof. Balbir Singh’s team is based 

in Kuching, they needed to travel on a regular basis to Kapit to obtain samples.  

All patients diagnosed with malaria (detectable parasites by blood smear) were 

treated according to the standard of care for Malaysia.  All infected patients in the study 

were hospitalized until they were smear-negative in at least two consecutive peripheral 

blood smears, with public health follow up after release.  To provide appropriate negative 

controls for this study, samples from age and gender-matched individuals were taken 

from healthy participants from the area surrounding Kapit and within Kapit. Consent for 

all individuals was obtained according to a local ethical board approved protocols, and a 

thumbprint used as a signature for participants who were illiterate. 

 Plasma samples were stripped of identifying patient information and were 

shipped on dry ice to Emory University.  Emory University’s Institutional Review Board 

(IRB) reviewed protocols, local approvals, and consent forms for this study and approved 

an IRB exemption based on the de-identification of samples and data.  Plasma from a 

total of 143 infected patients and 111 uninfected patients were analyzed in this study. 



Untargeted Metabolomics  

With the assistance of the Emory Clinical Biomarkers Laboratory, directed by 

Drs. Dean P. Jones, Shuzhao Li, and Karan Uppal, plasma samples were run on by mass 

spectrometry and data was processed for untargeted metabolomics analysis. This work 

was completed by Ms. ViLinh Tran and Dr. Luiz Gardinassi. The measurement of 

metabolites within the plasma samples was done using liquid chromatography-mass 

spectrometry (LC-MS) and high-resolution metabolomics (HRM) workflows.  In brief, 

the samples are analyzed on a High Field QExactive machine in triplicate, and the data 

generated undergoes peak detecting noise removal and alignment, done using the 

programs apLCMS and xcms with xMSanalyzer. This creates a data table with mass-to-

charge ratio (m/z), retention time and intensity for each m/z across all samples. This table 

was then adjusted for batch-effect correction using the program ComBat.  

Statistical Analysis  

In the present study, ComBat-corrected data from the hilic column (positive 

mode) was used for all analyses. This results table included the intensity data for each 

unique metabolite feature in each sample. The ComBat-corrected file had to be cleaned 

and prepped for analysis. Using the metadata for the experiment, a class labels file had to 

be generated. This class labels file provides a mapping of all sample barcodes to their 

designated comparison group for analysis. Preparation of this file also involved removing 

all non-sample values and information guides from the Combat corrected file and 

renaming all the samples to have the correct barcode in the same format as the class 

labels file (Appendix 1). 



Next, both the cleaned results table and the class labels file was run through 

xmsPANDA (R package courtesy of Dr. Uppal and used in [6]), a program designed for 

performing statistical analyses of HRM data. When comparing the effect of 

normalization, the values for the percent maximum missing both the group and overall 

were set to NA as opposed to 0.8 and 0.5 respectively. For all comparisons performed in 

this study, the false discovery rate (FDR) for the normalized run was 0.2 (Appendix 2). 

Next the data was run through mummichog v1.0.5 [7]. This was to predict the 

pathways affected by the metabolites. This software combines pathway analysis and 

metabolite identification, this allows for a fuller picture, as opposed to finding the 

significant metabolites independently and then using the smaller dataset to find 

significant pathways. To perform this analysis, another table had to be created using a 

specific output from xmsPANDA (limma sorted values). The test statistic used for this 

analysis was the max fold change.  

To annotate the m/z features found, xMSannotator was used[8]. It provided 

annotations from two databases, Human Metabolome Database (HMDB) and LIPID 

MAPS. Another script was created to find and match all annotations found for a specific 

m/z and all pathways. This took two part due to the fact there could be multiple 

annotations for a single feature (Appendix 3-4). The resulting table contains the m/z in 

limma significant order with annotations from both databases, including the database ID, 

the name, the match score, the match category and the adduct and any of the pathways 

found through mummichog that used that metabolite (Appendix 1). 

 

Results  



First the data were run with and without normalization. Without normalization, the 

differences in the metabolites between uninfected and infected is not readily identifiable. 

All we can compare is the raw intensity of the metabolite data across samples, 

introducing a high degree of noise in the data. With the normalized data, we have an 

improved ability to compare two different groups (Fig. 2). 

Figure	2.	Intensity	distribution	across	samples	after	processing.	A)	is	the	intensity	distribution	of	the	
unnormalized	data.	The	reported	intensities	are	simply	the	raw	intensities	recorded	B)	is	the	intensity	distribution	
for	the	normalized	data.	Th

e	reported	intensities	are	now	comparable 

Fig.2 Intensity distribution across samples after processing. (A) is the intensity distribution 
of the unnormalized data. The reported intensities are simply the raw intensities recorded 
(B) is the intensity distribution for the normalized data The reported intensities are now 
comparable

A)	 B)	



Figure	4.	Specialized	analysis	of	significant	features.	A)	hierarchical	clustering	analysis	B)	PCA	using	only	the	significant	features 

After performing normalization, we compared the plasma metabolome of healthy and 

malaria-infected populations globally.  Here in the global principal components analysis 

(PCA), we can see while there is an overlap between uninfected and infected, there is a 

separate cluster of infected cases that cluster away from the group in the bottom right of 

the plot (green dots, Fig. 3).  

After running a limma analysis comparison the two groups, we found 924 significant 

features, which can be seen on Figure 4a in a hierarchical clustering analysis. When the 

PCA is run with just significant features a stronger distinction between the clusters can be 

seen (Fig. 4b)  

  

Figure	3.	Global	PCA.	principal	
components	analysis	of	all	features		

A)	 B)	



After running pathway analysis and removing pathways with less the 3 metabolites there 

were 13 significant pathways found 

to have significantly different 

metabolic activity in uninfected 

versus infected individuals (Fig. 5). 

These pathways related to a range of 

metabolic functions, including amino 

acids (e.g. lysine, tryptophan), lipids 

(e.g. phosphatidylinositol), vitamins 

(e.g. Vitamin B3), nucleic acids (e.g. 

purine), and sugars (e.g. hexose). 

 

Discussion  

Several insights can be gleaned from the analyses in the present study. First, when 

studying metabolomics, it is important to normalize your data. This is necessary to reduce 

noise that may be preventing you from seeing any sort of results. This noise exists 

because biology and human life, in addition to laboratory processes steps, is rarely 

perfect and there are many situational factors that need to be controlled for. 

Both in the global PCA, HCA, and the PCA with significant features there is a clear 

difference in healthy and infected individuals. Some of the important metabolites and 

pathways affected are different amino acids, like leucine and arginine, biliverdin, 

glycerophosphocholine, and different LysoPCs These are similar to those found in the 

literature[9][5][6].  The Gupta et al. study similarly found significant enrichment of heme 
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Figure	5.		Significant	pathways.	List	of	most	significant	pathways	
with	3	or	more	metabolites	and	their	corresponding	p	values	 



metabolites as we find hemolysis related metabolites, like biliverdin, indicating blood cell 

lysis and possibly a malaria specific response. Like the Uppal et al. study, we found 

changes in levels of glycerophosphocholines which relate to more general infection and 

immune pathways, but could be used to target a more general response. One thing of note 

in the global analysis is that not all the patients infected clustered out. What made these 

patients different, could it be disease severity? The next part of this study hopes to look at 

this.   
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