Discovery of Small Molecule CXCR4 Antagonists

Weiqiang Zhan, Zhongxing Liang, Aizhi Zhu, Serdar Kurtkaya, Hyunsuk Shim, James P. Snyder and Dennis C. Liotta

Department of Chemistry and Department of Hematology/Oncology, Winship Cancer Institute, and Department of Radiology, Emory University, Atlanta, Georgia 30322

Received June 11, 2007

In light of a proposed molecular mechanism for the C-X-C chemokine receptor type 4 (CXCR4) antagonist 1 (AMD3100), a template with the general structure 2 was designed, and 15 was identified as a lead by means of an affinity binding assay against the ligand-mimicking CXCR4 antagonist 3 (TN14003). Following a structure—activity profile around 15, the design and synthesis of a series of novel small molecular CXCR4 antagonists led to the discovery of 32 (WZ811). The compound shows subnanomolar potency (EC₅₀ = 0.3 nM) in an affinity binding assay. In addition, when subjected to in vitro functional evaluation, 32 efficiently inhibits CXCR4/stromal cell-derived factor-1 (SDF-1)-mediated modulation of cyclic adenosine monophosphate (cAMP) levels (EC₅₀ = 1.2 nM) and SDF-1 induced Matrigel invasion (EC₅₀ = 5.2 nM). Molecular field topology analysis (MFTA), a 2D quantitative structure—activity relationship (QSAR) approach based on local molecular properties (Van der Waals radii, atomic charges, and local lipophilicity), applied to the 32 series suggests structural modifications to improve potency.

Introduction

The C-X-C chemokine receptor-4 (CXCR4) is a seven-transmembrane G-protein coupled receptor (GPCR) classified as a member of the family I GPCR or rhodopsin-like GPCR family. The chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12) is an 8 kDa, 67 residue CXC chemokine peptide, originally isolated from a bone marrow stromal cell line, and it is the natural ligand for CXCR4. The two proteins are rather unique among chemokines and their receptors in that SDF-1 was found to bind with an alternative receptor CXCR7. CXCR4 first drew attention as a major coreceptor for the infection of T cell line-tropic (X4) strains of human immunodeficiency virus 1 (HIV-1). Interaction between the gp120/CD4 complex and a coreceptor, such as CXCR4 or CCR5, triggers conformational changes in the viral envelope (Env) that lead to membrane fusion and entry of the viral genome into the host cell cytoplasm. Importantly, the CXCR4 receptor is expressed much more broadly than chemokine receptors in general, that is, not only on a wide variety of leukocytes but also on cells outside the immune system. Compelling evidence is accumulating that the CXCR4 is far more than a coreceptor for HIV, playing an important role in cancer metastasis, regulation of stem cell trafficking, and neovascularization. Consequently, therapeutic strategies to block the interaction between CXCR4 and SDF-1 hold promise for a variety of clinical applications.

Since the identification of human immunodeficiency virus (HIV) as the causative agent of the acquired immune deficiency syndrome (AIDS) and the disclosure of CXCR4 as a coreceptor for HIV entry, various peptide CXCR4 antagonists, such as T140 and low molecular weight pseudopeptide CXCR4 antagonists, have been reported. However, disclosure of nonpeptidic small molecule CXCR4 antagonists has been limited. Bicyclam-containing small molecular CXCR4 antagonist 1 (AMD3100) was the first CXCR4 antagonist to enter clinical trials for treatment of HIV infection. It was discovered as an anti-HIV agent long before it was understood that it functions by specific blockade of the CXCR4 receptor. At physiological pH, the cyclam ring is doubly charged carrying an overall charge of +2 and can adopt a stable trans-III R,R,S,S-type conformation with respect to the four nitrogen atoms. The protonated cyclam has the propensity to form a direct, hydrogen-bonded complex with a carboxylic acid group in a putative interaction model between 1 and CXCR4. The latter model suggests that one cyclam ring might be “sandwiched” between Asp262 and Glu318 residues in the receptor, while the disposition of the other ring is compatible with binding to Asp171 at the other end of the main ligand-binding pocket.
Mutation of Asp171 and Asp262 to alanines in the CXCR4 chemokine receptor also suggests that the negatively charged aspartate residues at positions 171 and 262, located in transmembrane domains IV and VII, respectively, may represent crucial sites for electrostatic interaction of the positively charged bicyclam rings. The highly basic V3 loop of the gp120 envelope protein of certain HIV-1 strains conceivably operates in a similar fashion.20

Although antagonist 1 binds specifically to CXCR4 and is effective as an anti-HIV agent, it was withdrawn from phase II clinical trials in May 2001 due to cardiotoxicity.21,22 In addition, a specific pharmacokinetic deficit of 1 is its lack of oral bioavailability.21,23 Another orally bioavailable compound, AMD070, is currently behind the recruitment of patients for a phase I/II trial for HIV patients.24,25

In the present study, we designed and synthesized a series of candidate compounds26 with the general structure 2 based on overlapping structural features with cyclam-containing 1, presumably resulting in a similar binding mode to the CXCR4 receptor.2,3,27 The cyclam moieties in 1 (Figure 1) were replaced by N-containing basic centers which not only are capable of binding to acidic residues in CXCR4 but also eliminate potential toxicity originating from the possible coordination of the cyclam rings with metal ions.28–31

To test the activity of the designed compounds, a competitive binding assay utilizing the potent, peptidic CXCR4 antagonist 3 (Figure 3, see the Supporting Information for its structure) was employed. Previously, we reported that peptide 3 blocks the CXCR4 receptor by effectively competing with its ligand SDF-1. The peptidic antagonist 3 also inhibits CXCR4/SDF-1 interaction, and intervene in the progression of cancer metastasis.13,15,35–37 However, because peptides oftentimes exhibit poor druglike properties, we sought to identify a novel series of potent, small molecule antagonists that might prove to be practical for preclinical advancement and progression into clinical evaluation using 3 as the primary screening tool for the binding competition assay. Following our lead design rationale, screening was initiated with various compounds in which two strong basic centers were connected by a phenyl-containing bridge (Table 1). Compounds 4–15 are commercially available, and they were subjected to competitive affinity assay without further purification. Guanidine derivatives 16 and 17 were prepared by allowing cyanamide to react with the corresponding ammonium hydrochloride salts (Scheme 1).38 Hydrazine derivatives 18 and 19 were obtained by condensation of aldehyde and amino guanidines (Scheme 2).39,40 Dihydroimidazol 20 was prepared by an addition–elimination reaction

In this paper, EC (effective concentration) is defined as the concentration at which the compound still elicits a positive response in the peptidic CXCR4 antagonist 3 competition assay.

Table 1. Structures and Activity of Selected Compounds for Initial Screening

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Structure</th>
<th>EC (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>>1000</td>
</tr>
</tbody>
</table>

Results and Discussion

Initial Screening. The discovery and development of effective, small molecule peptide mimics remains a major focus for many medicinal chemistry programs. Previously, we and others have shown that T140 analogues, including peptide 3, bind to the ligand binding site of CXCR4, block the CXCR4/SDF-1 interaction, and intervene in the progression of cancer metastasis.13,15,35–37 However, because peptides oftentimes exhibit poor druglike properties, we sought to identify a novel series of potent, small molecule antagonists that might prove to be practical for preclinical advancement and progression into clinical evaluation using 3 as the primary screening tool for the binding competition assay. Following our lead design rationale, screening was initiated with various compounds in which two strong basic centers were connected by a phenyl-containing bridge (Table 1). Compounds 4–15 are commercially available, and they were subjected to competitive affinity assay without further purification. Guanidine derivatives 16 and 17 were prepared by allowing cyanamide to react with the corresponding ammonium hydrochloride salts (Scheme 1).38 Hydrazine derivatives 18 and 19 were obtained by condensation of aldehyde and amino guanidines (Scheme 2).39,40 Dihydroimidazol 20 was prepared by an addition–elimination reaction
involving p-xylene diamine and 2-(methylmercapto)-2-imidazoline (Scheme 3). Amine 21 was synthesized by one-pot reductive amination of an aldehyde and amine in the presence of the reducing reagent NaBH(OAc)₃ (Scheme 4). From the initial screening results, N,N'-diphenyl-p-xylene diamine 15 and guanylhydrazone 18 were found to be active in the competitive affinity assay with effective concentrations (EC₅₀) of approximately 10 and 100 nM, respectively (Table 1). Since the competitive affinity assay with effective concentrations (EC₅₀) B, and the distal phenyl rings C.

scheme 2

Scheme 3

Scheme 4

a Reagents and conditions: (a) N,N-dimethylethanediamine, NaBH₃(OAc)₃, CICH₂CH₂Cl; (b) HCl/EtOH, Et₃O.

sector a: central aromatic ring. To probe the spatial influence of the flat central phenyl ring, a saturated cyclohexane ring replacement, 24a, was prepared. Combining the precursor dicarboxylic acid with SO₂Cl₂ gave the corresponding acid ring replacement, influence of the flat central phenyl ring, a saturated cyclohexane amine of approximately 10 and 100 nM, respectively (Table 1). Since the competitive affinity assay with effective concentrations (EC₅₀) B, and the distal phenyl rings C.

sector b: amine linker. Initial modifications involved the introduction of methyl groups to the linkages between aromatic rings as depicted by 30a and 30b (Scheme 8). The methyl groups on the benzylic carbons were expected to exert a conformational bias on the terminal rings relative to 15, while those on nitrogen were intended to increase the hydrophobicity and basicity of the heteroatom. Both substitutions reduce the affinity to about 50–100 nM (entry 1 and 2, Table 3). Thus, it would appear that an NH group is necessary to retain the high affinity shown by 15. Second, one or more carbons or nitrogens were inserted between the central and terminal phenyl rings (24c and 30c–d, entries 3–5, Table 3). In 24c, the CH₂CH₂NH moiety caused complete loss of activity even though the extra N is potentially available for binding to the aspartic acid residue in CXCR4. In 30c and 30d, the extra carbon also reduced the potency. In summary, modification of sector B illustrates that a terminal phenyl ring connected directly to an unalkylated nitrogen center results in the best activity for the modifications tested.

sector c: terminal phenyl rings. Several electron-withdrawing groups were introduced onto the para position of the terminal phenyl rings by combining the dialdehyde with various aniline derivatives (Scheme 9). The CXCR4 competition assay demonstrates that none of the compounds block the chemokine (31a–c, entries 1–3, Table 4). Conversely, electron-donating substituents at the para position retain low EC values as illustrated by the para-methoxy in 31d and alkyl in 31e and 31f. By contrast, electron-donating and electron-withdrawing substituents at the meta and ortho positions elicit mixed effects on activity (31g–l, entries 7–12, Table 4). For example, 31g (m-F) exhibits an effective concentration of 100 nM, while 31k (m-OCH₃), 31h (m-NO₂), and 31i (m-OMe) experience a 100-fold improvement by comparison (EC₅₀ = 1 nM). Surprisingly, 31l (m-OMe) is 10-fold less active, while 31j (m-CF₃) is completely unable to block the action of peptide 3 on CXCR4.

As a working hypothesis, we speculated that the poor pharmacokinetic profile of 15 might be the result of rapid oxidative metabolism and that inclusion of a nitrogen atom in terminal aromatic rings might impede this process. The above SAR profile suggested that a 2-pyridyl substituent might be a good initial choice to assess the merits of our hypothesis. This pyridine-containing compound 32 (WZ811) was easily prepared by one-pot reductive amination (Scheme 10) by two-step procedures described previously. The competition binding assay indicates that 32 is able to effectively inhibit 3 binding to CXCR4 at an extremely low concentration (EC₅₀ = 0.3 nM) (Figure 4). To further evaluate its activity as a potential CXCR4 antagonist, 32 was subjected to two functional assays with encouraging results as discussed below.

cAMP assay and Invasion assay. We originally planned to subject promising CXCR4 antagonists to the calcium mobilization assay utilized by Hatse et al. to show that 1 is specific against CXCR4. However, a general consensus concerning the GPCR pathway has recently emerged that the heterotrimERIC guanosine 5’-triphosphate (GTP) regulatory Gs proteins stimulate cAMP production, while the pertussis toxin-sensitive Gi proteins reduce cAMP. We determined an absorption increase at 665 nm by various concentrations of SDF-1 (0–200 ng/mL) to estimate the EC₅₀ to be 150 ng/mL.
(data not shown). With pretreatment by 32 (15 min at room temperature), the effect of 150 ng/mL of SDF-1 on cAMP reduction is significantly reduced in a dose dependent manner. Compound 32 is effective in counteracting SDF-1 function at doses as low as a few nanomoles, while 1 is only effective at approximately 1000 nM (Figure 5).

We previously reported that peptidic antagonist 3 effectively blocks SDF-1-mediated Matrigel invasion in an assay using SDF-1 as a chemoattractant. Thus, the compounds discussed above with a general structure were examined in the same assay. As shown in Figure 6, 32 is effective at blocking SDF-1 induced invasion. This is consistent with the data displayed in Figure 4 in which 32 is shown to be as potent as 3 in blocking SDF-1-mediated invasion when tested at the same concentration (EC50 = 5.2 nM). In addition, cyclam 1 is not as effective as

Table 2. CXCR4 Blockade for Analogues with Variations in the Central Ring (Sector A)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compd</th>
<th>Structure</th>
<th>EC(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24a</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>2</td>
<td>24b</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>25a</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>25b</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>26a</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>25c</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>26b</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td></td>
<td>>1000</td>
</tr>
</tbody>
</table>

Table 3. CXCR4 Blockade for Analogues with Variations in the Alkylamine (Sector B)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compd</th>
<th>Structure</th>
<th>EC(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30a</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>30b</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>24c</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>30c</td>
<td></td>
<td>>1000</td>
</tr>
<tr>
<td>5</td>
<td>30d</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Table 4. CXCR4 Blockade for Analogues with Variations in the Terminal Rings (Sector C)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compd</th>
<th>R</th>
<th>EC (nM)</th>
<th>Entry</th>
<th>Compd</th>
<th>R</th>
<th>EC (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31a</td>
<td>p-CN</td>
<td>1000</td>
<td>7</td>
<td>31g</td>
<td>m-F</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>31b</td>
<td>p-NO2</td>
<td>1000</td>
<td>8</td>
<td>31h</td>
<td>m-NO2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>31c</td>
<td>p-F</td>
<td>1000</td>
<td>9</td>
<td>31i</td>
<td>m-OMe</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>31d</td>
<td>p-OMe</td>
<td>25</td>
<td>10</td>
<td>31j</td>
<td>m-CF3</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>31e</td>
<td>p-Me</td>
<td>10</td>
<td>11</td>
<td>31k</td>
<td>o-F</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>31f</td>
<td>p-Et</td>
<td>20</td>
<td>12</td>
<td>31l</td>
<td>o-OMe</td>
<td>10</td>
</tr>
</tbody>
</table>

Scheme 6

Reagents and conditions: (a) SO2Cl2, reflux; (b) aniline, pyridine, CH2Cl2; (c) LiAlH4, THF, reflux.

Scheme 7

Scheme 8

Scheme 9

Reagents and conditions: (a) 26a, pyridine, EtOH, reflux; 26b, pyridine, EtOH, –20 °C.

Molecular Field Topology Analysis (MFTA) QSAR. MFTA is an analytical method for generating quantitative structure—activity relationships (QSARs) by topological analysis of a series of closely related compounds associated with a quantitative or semiquantitative biological endpoint. The
approach seeks to model bioactivity in terms of local molecular properties (descriptors). MFTA produces a molecular supergraph for the set of compounds examined, PLS-based (Partial Least Squares) correlation statistics, and a graphical representation of each local descriptor on activity.

In the present application, to supplement the qualitative SAR discussion above, approximate log(1/EC₅₀) values for 16 CXCR4 antagonists (compounds 32, 12, 25a, 26a, 30a, 30b, 31b–e, and 31g–l, Tables 1–4; see the Supporting Information for individual values) were tested against a variety of local descriptor sets. A model was constructed with a predictive q^2 value (leave-25%-out cross-validation) of 0.71. The molecular supergraph for 32 is shown in Figure 7 with various compound substituents superimposed on it (white circles).

The best results were obtained with a combination of three descriptors: VdW (Van der Waals radii), Q (effective atomic charge; Gasteiger–Marsili), and Lg (local lipophilicity; sum of Ghose–Crippen atomic contributions for an atom and attached hydrogens). The resulting correlation (Figure 8) is characterized by $N = 16$, number of PLS factors $N_F = 8$, $r = 0.99$, $r^2 = 0.98$, and $q^2 = 0.71$ (leave-25%-out cross-validation). Increasing the number of descriptors did not improve the correlation.

The major contributions of the local descriptors to the correlation can be expressed in terms of color-coded supergraphs (Figure 9). At the red-colored positions, an increase in descriptor property implies an increase in activity. At the blue-colored positions, an increase suggests a decrease in activity.

The VdW supergraph (Figure 9) suggests an activity increase with larger substituents at the red-marked positions. This is reflected in the EC₅₀ decrease of 50–100-fold for 31d and 31e relative to 31c by replacing the small p-F atom with p-OMe and p-Me, respectively, in the terminal aromatic rings. A similar activity improvement is observed for 31i relative to 31g by

Reagents and conditions: (a) 2-amino-pyridine, NaBH(OAc)$_3$, HOAc, CICH$_2$CH$_2$Cl.

Figure 4. Inhibitory efficacy of 32 against peptidic antagonist 3 binding to CXCR4. These results indicate that the EC₅₀ is less than 1 nM.

Figure 5. Comparison of the inhibition of cAMP production by 32 and 1. With pretreatment (15 min at room temperature) of 32 or 1 at various concentrations, the effect of 150 ng/mL SDF-1 on cAMP reduction was measured by using the TR-FRET based LANCE assay kit. While 32 is effective in counteracting SDF-1 function at a concentration as low as 10 nM, 1 requires almost 1000 nM to significantly block SDF-1 function. Note that the slight reduction of cAMP% for 32 at 1000 nM is not statistically significant. The effect levels out from 100 to 1000 nM.

Figure 6. Inhibition of CXCR4/SDF-1-mediated invasion of MDA-MB-231 *in vitro* by 32 compared to 3 and 1. We seeded cells on top of the Matrigel and added SDF-1 to the lower chamber. Invasive cells penetrate the Matrigel and end up on the other side of the Matrigel. We estimated invasion by counting the number of invading cells stained by H&E at the bottom side of the Matrigel chamber and setting the average of the invading cell numbers of MDA-MB-231 with SDF-1 added to the lower chamber as 100%.

Figure 7. MFTA supergraph representing the data set of 16 CXCR4 antagonists with a 32 core (black circles) and various substituents superposed on it (white circles).

Figure 8. MFTA correlation of approximate EC₅₀ values for 16 CXCR4 antagonists based on the following descriptors: van der Waals radii (VdW), charge (Q), and lipophilicity (Lg).
substituting m-F by m-OMe (Table 4). The central ring space is subject to the same phenomenon as indicated by the slight reduction in EC₅₀ for 15 by removal of the four methyl groups in 25a (Table 2).

The supergraph associated with charge suggests that an increase of charge at the para positions of the terminal rings would be beneficial. The 100–1000-fold improvement for 31d (p-OMe) over 31a (p-CN) shows the trend (Table 4). Similarly, the blue centers in this supergraph imply that a reduction of charge should increase activity. The 1000-fold activity gain from his-amide 12 to bis-amine 31i is in agreement. Finally, the operation of the supergraph characterizing changes in lipophilicity (Figure 9) is represented by the replacement of o-OMe with the relatively more lipophilic 30-o-F in 31i and 31k (red centers, 10-fold improvement, Table 4) and by the reverse substitution from 31c (p-F, 1000 nM) to 31d (p-OMe, ~20 nM, blue centers, 50-fold improvement). These observations will be expanded and applied to future syntheses of CXCR4 antagonists.

Conclusions and Prospects

The current study presents the discovery of a new class of nonpeptide CXCR4 antagonists with low molecular weights and a novel and simple scaffold: two aromatic amine moieties connected by a para-xylene group. The template was designed in part based on structural features embedded in the previously reported CXCR4 antagonist 1.²³,²⁷ It appears to incorporate the critical features necessary for blocking the complexation of CXCR4 by SDF-1 while eliminating the metal-chelating properties of a cyclic polamine. Screening of the analogues, performed using a competitive affinity binding assay employing the peptidic CXCR4 antagonist 3, led to the identification of the initial lead 15. Structure–activity studies around 15 brought to light several important structural insights: (1) the central aromatic ring is critical for high CXCR4 affinity; (2) a one-carbon separation between the central phenyl ring and the nitrogen of the acyclic linker is essential for high potency; (3) anti-CXCR4 activity is much more sensitive to para substitution on the terminal aromatic rings compared to meta and ortho substitution; (4) the SAR profile led to the design and synthesis of 32, a highly potent competitive blocker of CXCR4 action at sub-nanomolar concentrations; and (5) an MFTA QSAR analysis based on three descriptors suggests additional structural modifications for extending the antagonist class.

Further functional assays demonstrate that 32 can effectively counteract SDF-1 function at low doses and block in vitro CXCR4/SDF-1-mediated signaling more effectively than 1. Future work with 32 will focus on in vivo animal model studies and preclinical evaluation. We anticipate that the insights gained from the present study will serve as the basis for the development of novel therapeutic strategies for CXCR4-related diseases.

For example, compound 32 has been tested against HIV propagation and it was found to be weakly active in cell culture (Zhan, W.; Liotta, D. et al., unpublished results). Further modification around 32 to increase its anti-HIV activity is in progress.

Experimental Section

Initial Screening of Anti-CXCR4 Small Molecules Based on a Binding Affinity Assay. For compound screening based on a competition binding assay, 2 × 10⁵ MDA-MB-231 cells in 200 μL of medium were seeded in an 8-well slide chamber 2 days before the experiments. Various concentrations of different compounds (1, 10, 100, and 1000 nM) were added to the separate wells and incubated for 10 min at room temperature, and then the cells were fixed in 4% ice-cold paraformaldehyde. The cells were rehydrated in phosphate-buffered saline (PBS) and blocked to eliminate nonspecific binding (avidin and biotin blocking solution, Zymed Laboratories, Inc., San Francisco, CA). The slides were subsequently incubated for 45 min at room temperature with 0.05 μg/mL biotinylated 3, washed three times with PBS, and incubated in streptavidin-rhodamine (1:150 dilution; Jackson ImmunoResearch Laboratories, West Grove, PA) for 30 min at room temperature. Finally, the slides were washed with PBS and mounted in an antifade mounting solution (Molecular Probes, Eugene, OR), and the samples were analyzed on a Nikon Eclipse E800 microscope.

Tumor Cell Invasion Assay. To model in vitro metastasis, a Matrigel invasion assay was performed within a Matrigel invasion chamber from BD Biocoat Cellware (San Jose, CA). SDF-1 (200 ng/mL; R & D Systems, Minneapolis, MN) was added to the bottom chamber to induce the invasion of MDA-MB-231 cells through the Matrigel. The selected compounds were added to the cells before the cells were seeded in the top chamber. The Matrigel invasion chamber was incubated for 22 h in a humidified tissue culture incubator. First, noninvading cells were removed from the top of the Matrigel with a cotton tipped swab. Invading cells at the bottom of the Matrigel were fixed in methanol and stained with hematoxylin and eosin (H&E). The invasion rate was determined by counting the H&E stained cells.

cAMP Assay to Measure Gᵢ Function. Perkin-Elmer’s LANCE cAMP assay kit (catalog #AD0262) based on time-resolved fluorescence resonance energy transfer (TR-FRET) was utilized to determine a compound’s ability to block cAMP modulation induced by CXCR4/SDF-1 interaction. Human glioma U87 cells overexpressing CD4 and CXCR4 (U87CD4/CXCR4) were seeded at 2500 cells/well in a 384-well plate in 2% FBS 48 h before the test. The experiment was performed according to the manufacturer’s instructions using 5 μM Forskolin to induce cAMP production that is reduced by the presence of SDF-1. Results were measured in a Perkin-Elmer Envision 2102 multilabel reader with the following parameters: flash energy area = low, flash energy level = 239, counting cycle = 1 ms, and ex/em = 340 nm/665 nm.

Chemistry: General. Proton and carbon NMR spectra were recorded on INOVA-400 (400 MHz) or INOVA-600 (600 MHz) spectrometers. The spectra obtained were referenced to the residual solvent peak. They were recorded in deuteriochloroform (CDCl₃), dimethyl sulfoxide-d₆ (DMSO-d₆), or deuterium oxide (D₂O). Mass spectra were recorded on a JEOL spectrometer at the Emory University Mass Spectrometry Center. Element analyses were performed by Atlantic Microlab, Inc. (Norcross, GA). Flash column chromatography was performed using Scientific Absorbent Incorporated Silica Gel 60. Analytical thin layer chromatography (TLC) was performed on precoated glass backed plates from Scientific Adsorbents Incorporated (Silica Gel 60 F₂₅₄, 0.25 mm thickness). Plates were visualized using ultraviolet, iodine vapors, or phosphomolybdic acid.

Compounds 1, 3–15, 27, 31a, 31c–f, and 31k are available from commercial suppliers, and they were tested without further purification.

General Procedure for Guanidine Hydrochlorides (A). 1,4-Diguanidobenzene Dihydrochloride (16). The preparation was
performed according to a modified literature procedure.38 p-Phenylenediamine dihydrochloride (1.81 g, 1.0 mmol) and cyanamide (1.26 g, 3.0 mmol) in absolute ethanol (50 mL) were heated under reflux overnight. After condensation, the resulting dihydrochloride was filtered off, washed with diethyl ether, and dried to give a crude product which was recrystallized from hot methanol to give 16 as white crystals (0.81 g, 42% yield).41 H NMR (600 MHz, D$_2$O) δ 7.58 (4H, s), 3.47 (4H, s), 3.58 (8H, s), 2.98 (12H, s); 13C NMR (100 MHz, D$_2$O) δ 131.95, 130.81, 52.45, 51.30, 43.45, 41.45. mp 250$-$252°C (dec). Anal. Calcd for C$_{11}$H$_{14}$N$_2$·2HCl: C, 46.15; H, 5.24; N, 24.07. The mixture was stirred at room temperature for 1 h. The white precipitate was filtered off, washed with dichloromethane and water to give crude amide 23a as a white solid in quantitative yield which was pure enough to use in the next step. 42 H NMR (600 MHz, D$_2$O) δ 9.86 (2H, s), 7.61 (4H, d, J = 7.8 Hz), 7.31 (4H, t, J = 7.8 Hz), 7.02 (2H, d, J = 7.8 Hz), 2.35 (2H, br), 1.91 (4H, d, J = 7.2 Hz), 1.49 (4H, m); 13C NMR (100 MHz, D$_2$O) δ 173.94, 134.92, 131.63, 129.23, 119.03, 44.09, 31.29. HRMS calcd for C$_{13}$H$_{17}$N$_2$O: 322.16183; found, 323.17515 [M + H$^+$].

Step 2. A mixture of amide 23a (322.4 mg, 1.0 mmol) and LiAlH$_4$ (2.0 mL, 2.0 mmol) in THF (40 mL) was refluxed until the disappearance of the amine from the TLC plates. After cooling down to room temperature, the reaction was quenched with the addition of water and aqueous NaOH (15%) as described in the literature42 and then extracted with diethyl ether to give 24a as a white solid (25.5 mg, 85% yield). The white solid was pure enough to use in the next step. 42 H NMR (600 MHz, CDCl$_3$) δ 7.18 (4H, m), 6.69 (2H, t, J = 7.8 Hz, 0.6 Hz), 6.60 (4H, dd, J = 9.0 Hz, 0.6 Hz), 3.72 (2H, s), 2.99 (4H, d, J = 6.6 Hz), 1.92 (4H, d, J = 6.6 Hz), 1.59 (2H, m), 1.03 (4H, m); 13C NMR (100 MHz, CDCl$_3$) δ 148.71, 129.45, 117.19, 112.50, 53.65, 39.06, 32.67 m/z (El$^+$) calcd for C$_{22}$H$_{24}$N$_2$, 316.5; found, 316.4 M$^+$. Anal. Calcd for C$_{22}$H$_{24}$N$_2$: C, 81.59; H, 8.90; N, 9.51. Found: C, 81.45; H, 8.98; N, 9.27.

N,N'-Diphenyl-1,4-phenylenediacid (24a). 43 Starting from 1,4-phenylenediacidic acid, general procedure D provided the title compound as a yellow solid in 49% yield (2 steps). 43 R$_f$ = 0.47 (4:1, hexane/ethyl acetate). 43 H NMR (600 MHz, CDCl$_3$) δ 8.15 (2H, dd, J = 6.0 Hz, 3.0 Hz), 7.58 (2H, dd, J = 6.0 Hz, 3.0 Hz), 7.51 (2H, s), 7.42 (4H, t, J = 7.8 Hz), 6.77 (2H, t, J = 7.2 Hz), 6.71 (4H, d, J = 7.2 Hz), 4.76 (4H, s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 148.24, 134.54, 132.15, 129.56, 126.51, 126.02, 124.58, 117.97, 108.47, 66.67, 57.57 (El$^+$) calcd for C$_{22}$H$_{24}$N$_{2}$O$_2$, 338.5; found, 338.4 M$^+$. Anal. Calcd for C$_{22}$H$_{24}$N$_{2}$O$_2$: C, 85.17; H, 6.55; N, 9.31. Found: C, 84.71; H, 6.47; N, 8.11.

N,N'-Diphenyl-1,4-benzenediaminedithiocarbamate (25a). From 2,3,5,6-tetramethyl-1,4-benzenediaminedithiocarbamate (95.1 mg, 0.5 mmol) and aniline (0.1 mL, 1.05 mmol) with NaI\cdot(Ac$_2$O)$_2$ (317.9 mg, 1.5 mmol) and an activated molecular sieve, the modified general procedure D delivered 25a (110.9 mg, 64%) as a white solid. 29 R$_f$ = 0.67 (4:1, hexane/ethyl acetate). 44 H NMR (600 MHz, CDCl$_3$) δ 7.26 (4H, m), 6.78 (2H, t, J = 7.8 Hz, 0.6 Hz), 6.64 (4H, d, J = 7.8 Hz), 3.92 (2H, s), 3.82 (4H, d, J = 7.2 Hz), 2.92 (4H, d, J = 7.2 Hz); 13C NMR (100 MHz, CDCl$_3$) δ 148.21, 137.60, 129.49, 129.22, 118.77, 113.18, 45.24, 35.32 m/z (El$^+$) calcd for C$_{22}$H$_{16}$N$_2$O$_2$, 316.5; found, 316.4 M$^+$. Anal. Calcd for C$_{22}$H$_{16}$N$_2$: C, 83.50; H, 7.64; N, 8.85. Found: C, 83.63; H, 7.65; N, 8.64.
which point the solvent was removed to minimum volume followed by 2.5 mL of 3.6 M HCl. The resulting mixture was washed with brine and dried over MgSO4. Removal of the solvent gave the crude product which was purified by column chromatography to give yellow solid. Rx = 0.54 (41, hexane/ethyl acetate). 1H NMR (400 MHz, CDCl3) δ 7.21 (6H, m), 6.76 (2H, t, J = 7.2 Hz), 6.67 (4H, d, J = 8.0 Hz), 4.24 (4H, s), 3.90 (2H, br), 2.32 (6H, s); 13C NMR (100 MHz, CDCl3) δ 148.42, 136.25, 134.21, 130.85, 129.50, 117.82, 113.04, 46.44, 18.68. m/z (EI+) calculated for C20H18N4O4 344.7; found, 344.5 M+. HRMS calcd for C20H18N4O4: C, 63.48; H, 4.79; N, 14.81. Found: C, 63.53; H, 4.91; N, 14.76.

N,N-Diphenyl-1,4-benzenedimethanamine (30b). Starting from 1,4-benzene-dialdehyde (536.0 mg, 4.0 mmol), N,N-bis(4-cyano)phenyl-1,4-benzenedimethanamine (2.54 g, 12.0 mmol), general procedure C delivered the title compound 30b (1.18 g, 93%) as a pale white solid. Rx = 0.69 (41, hexane/ethyl acetate). 1H NMR (400 MHz, CDCl3) δ 7.24 (4H, m), 7.19 (4H, s), 6.75 (4H, m), 6.54 (2H, s). 13C NMR (100 MHz, CDCl3) δ 148.90, 137.83, 129.35, 127.16, 116.69, 112.52, 56.53, 38.69. HRMS calcd for C22H24N2, 316.19395; found, 317.20085 [M + H]+. Anal. Calc. for C22H24N2: C, 83.50; H, 7.64; N, 8.85. Found: C, 83.36; H, 7.63; N, 8.87.

N,N-Diphenyl-1,4-benzenedimethanamine (30c). Starting from 1,4-benzene-dialdehyde (536.0 mg, 4.0 mmol), N,N-bis(4-cyano)phenyl-1,4-benzenedimethanamine (2.54 g, 12.0 mmol), general procedure C delivered the title compound 30c (852.8 mg, 67%) as a pale yellow solid. Rx = 0.69 (ethyl acetate with 2% NH4OH). 1H NMR (600 MHz, DMSO-d6) δ 7.32 (8H, m), 7.31 (8H, s), 7.22 (2H, t, J = 7.2 Hz, 1.2 Hz), 3.64 (4H, s), 2.53 (2H, s). 13C NMR (100 MHz, DMSO-d6) δ 140.44, 139.12, 131.49, 131.33, 131.26, 127.04, 53.24, 53.00. HRMS calcd for C26H20N4O4: 371.20085 [M + H]+. A salt form of 30c was prepared as a white solid for the elemental analysis. Anal. Calc. for C26H20N4O4·2HCl: C, 64.42; H, 7.21; N, 12.52. Found: C, 64.32; H, 7.21; N, 12.30.

N,N-Bis(phenylmethyl)-1,4-benzenedimethanamine (30d). Starting from 1,4-benzene-dialdehyde (536.0 mg, 4.0 mmol), benzzenemethanamine (0.92 mL, 8.4 mmol), and NaBH(OAc)2 (2.54 g, 12.0 mmol), general procedure C delivered the title compound 30d (852.8 mg, 67%) as a pale yellow solid. Rx = 0.69 (ethyl acetate with 2% NH4OH). 1H NMR (600 MHz, DMSO-d6) δ 7.32 (8H, m), 7.31 (8H, s), 7.22 (2H, t, J = 7.2 Hz, 1.2 Hz), 3.64 (4H, s), 2.53 (2H, s). 13C NMR (100 MHz, DMSO-d6) δ 140.44, 139.12, 131.49, 131.33, 131.26, 127.04, 53.24, 53.00. HRMS calcd for C26H20N4O4: 371.20085 [M + H]+. Anal. Calc. for C26H20N4O4·2HCl: C, 64.42; H, 7.21; N, 12.52. Found: C, 64.32; H, 7.21; N, 12.30.

N,N-Bis(4-cyano)phenyl-1,4-benzenedimethanamine (31a). The title compound was prepared according to general procedure C as a pale white solid in 57% yield. Rx = 0.25 (1:1, hexane/ethyl acetate). 1H NMR (400 MHz, DMSO-d6) δ 7.42 (4H, d, J = 9.2 Hz), 7.29 (4H, s), 7.26 (2H, t, J = 6.0 Hz), 6.63 (4H, d, J = 9.2 Hz), 4.30 (4H, d, J = 6.0 Hz), 1.3C NMR (100 MHz, DMSO-d6) δ 152.04, 137.68, 133.31, 127.31, 120.54, 112.22, 95.88, 45.41. m/z (EI+) calculated for C22H18N2O4 338.5 M+. Anal. Calc. for C22H18N2O4: C, 78.08; H, 5.36; N, 16.56. Found: C, 77.84; H, 5.38; N, 16.17.

N,N-Bis(4-nitrophenyl)-1,4-benzenedimethanamine (31b). The title compound was prepared according to general procedure C as a yellow solid in 62% yield. Rx = 0.24 (1:1, hexane/ethyl acetate). 1H NMR (400 MHz, DMSO-d6) δ 7.97 (4H, d, J = 9.2 Hz), 7.88 (2H, t, J = 5.6 Hz), 7.33 (4H, s), 6.66 (4H, d, J = 9.2 Hz), 4.39 (4H, d, J = 5.6 Hz); 13C NMR (100 MHz, DMSO-d6) δ 154.40, 137.42, 135.86, 127.42, 126.14, 45.50. HRMS calcd for C22H18N2O4 378.18231; found, 379.13890 [M + H]+. Anal. Calc. for C22H18N2O4: C, 63.48; H, 4.79; N, 14.81. Found: C, 63.53; H, 4.91; N, 14.76.

N,N-Bis(3-fluorophenyl)-1,4-benzenedimethanamine (31g). The title compound was prepared according to general procedure C as a white solid in 62% yield. Rx = 0.35 (4:1, hexane/ethyl acetate). 1H NMR (400 MHz, CDCl3) δ 7.35 (4H, s), 7.10 (2H, q, J = 8.4 Hz), 6.44–6.39 (4H, m), 6.32 (2H, dt, J = 11.6 Hz, 2.4
1H NMR (400 MHz, DMSO-d6) δ 7.34–7.26 (10H, m), 7.00–6.95 (4H, m), 4.32 (4H, d, J = 6.0 Hz). 13C NMR (100 MHz, DMSO-d6) δ 149.65, 148.76, 137.78, 129.95, 127.36, 118.45, 109.95, 105.57, 45.91. HRMS calc for C20H18N2F2O2: 378.18231; found, 379.19364 [M + H]+. Anal. Calc. for C20H18N2F2: C, 73.35; H, 5.74; N, 8.42.

N,N′-Bis-(3-nitrophenyl)-1,4-benzenedimethanamine (31h). The title compound was prepared according to general procedure C as a yellow solid in 95% yield. Rf = 0.51 (1:1, hexane:ethyl acetate). 1H NMR (400 MHz, CDCl3) δ 7.35 (4H, s), 7.09 (2H, d, J = 8.0 Hz); 4.12 (2H, br), 3.76 (4H, s); 13C NMR (100 MHz, CDCl3) δ 151.75 (d, J = 236.7 Hz), 138.26, 136.59 (d, J = 11.4 Hz), 127.96, 127.94 (d, J = 3.1 Hz), 111.76 (d, J = 6.8 Hz), 114.62 (d, J = 18.2 Hz), 112.58, 47.79. HRMS calc for C20H18N2O2: 348.1387; found, 349.19073 [M + H]+. Anal. Calc. for C20H18N2O2: C, 75.83; H, 6.94; N, 8.04. Found: C, 75.79; H, 6.93; N, 8.02.

N,N′-Bis-(3-methoxyphenyl)-1,4-benzenedimethanamine (31i). The title compound was prepared according to general procedure C as a white solid in 94% yield. Rf = 0.58 (2:1, hexane:ethyl acetate). 1H NMR (600 MHz, CDCl3) δ 7.38 (4H, s), 6.87–6.79 (4H, m). 6.70 (2H, td, J = 8.0 Hz, 1.2 Hz), 6.62 (2H, dd, J = 8.0 Hz, 1.6 Hz), 4.70 (2H, br), 4.35 (4H, s), 3.86 (6H, s); 13C NMR (100 MHz, CDCl3) δ 146.97, 138.66, 138.31, 127.97, 121.45, 116.83, 110.24, 109.56, 55.58, 47.95. HRMS calc for C22H24N2O2: 348.18378; found, 349.19059 [M + H]+. Anal. Calc. for C22H24N2O2: C, 75.83; H, 6.94; N, 8.04. Found: C, 75.77; H, 6.96; N, 7.97.

N,N′-Di-(2-pyridinyl)-1,4-benzenedimethanamine 32. A mixture of 1,4-benzenedialdehyde (2.68 g, 20.0 mmol), 2-aminopyridine (3.95 g, 42.0 mmol), and NaBH(OAc)3 (12.7 g, 60.0 mmol) in 1,2-dichloroethane (50 mL) was stirred for 5 min, followed by addition of H2OAc (2.4 mL, 40.0 mmol). After stirring for 5 h, the reaction was quenched with aqueous NaOH (1.0 N), providing a white precipitate which was collected. The liquid phase was extracted with ethyl acetate (2 × 100 mL). The combined organic phases were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure to give a solid residue which was combined with the previously collected white solid to give the crude product. The crude product was purified by recrystallization in ethyl acetate to give free base product 32 (3.25 g, 56%) as white crystalline. 1H NMR (400 MHz, DMSO-d6) δ 7.93 (2H, dd, J = 5.2 Hz, 0.8 Hz), 7.34 (2H, dd, J = 8.4 Hz, 6.8 Hz, 2.0 Hz), 7.25 (4H, s), 6.96 (2H, t, J = 6.0 Hz), 6.45 (4H, m), 4.42 (4H, d, J = 6.0 Hz). 13C NMR (100 MHz, DMSO-d6) δ 158.66, 147.53, 138.84, 136.60, 127.11, 117.67, 108.11, 43.92. mp 192–194 °C. HRMS Calc for C17H13N2: 290.15315; found, 291.15997 [M + H]+. Anal. Calc. for C17H13N2: C, 74.46; H, 6.25; N, 19.30. Found: C, 74.25; H, 6.18; N, 18.98. The analytical data are in agreement with those reported in the literature.444
Zhan et al.

(26) Several of the analogues described in this paper have been synthesized previously; however, none of them have been reported to possess CXCR4 antagonists.

JMJ0706791