Coffee: For Optimal Results Find Your Caffeinated Balance

I love my coffee black. No sugar, no cream, just the rich, complex flavor of the world’s most beloved bean. It’s part of my daily ritual, either in the morning or afternoon or on special days both. When the first taste hits, I feel the smooth bitter taste swirl in my mouth, the notes of fruit or chocolate, the acidity, and the warmth blend together, and my mood is elevated. I am more alert, the coffeeshop I am sitting in enters the periphery and the assignment or tasks in front of me take precedent. After coffee, I feel more in control of my day, more optimistic, and generally happier and bubblier.

Coffee also opens the door to a unique world that transcends language. Every city, including Paris, has their own haven of coffeeshops, equipped with a variety of beans and a melancholy playlist perfect for work. Given its wide appeal, it unsurprising to discover that researchers are curious about its effects. Recently, Haskell- Ramsay et al, 2018 studied the acute effects of black coffee on cognition and mood amongst young people (20-34 years old) and older adults (61-80 years). Mainly Haskell-Ramsey et al, 2018 wanted to know whether it was the caffeine in the coffee that was causing these increased mood benefits or the behavioral components of drinking coffee. In order to test this, a randomized, placebo-controlled, double-blind, counterbalanced-crossover study was used on 72 participants under three conditions: intaking 220 mL water mixed with 2.5 g coffee flavouring (placebo),220 mL regular coffee (without milk and sugar) containing 100 mg caffeine, and 220 mL decaffeinated coffee (without milk and sugar) containing ~5 mg caffeine.

Participants took cognitive assessment tests and mood measurement tests via the Computerized Mental Performance Assessment System (COMPASS) before drink intake and 30 minutes after. This metric is common in caffeine research and includes learning object locations and driving in PC simulations (Stalmach et al, 2014). Additionally, a saliva swab was taken and a caffeine research visual analogue scale was used to identify participant’s emotional and energy state prior to coffee intake. The researchers took rigorous measures in ensuring the participants were in proper testing conditions prior to intake. No coffee was consumed 24hours before the experiment, a proper breakfast was eaten at least one hour before the participants came to the lab, and a food diary were maintained (Ramsey et al, 2018). Further screening occurred the day of the study to make certain everyone was eligible.

The results were fascinating. For rapid visual information processing, object location learning, and alertness, caffeinated coffee showed statically significant difference than decaffeinated drinks. Consumption of caffeinated coffee also resulted in mood elevation and other cognitive tasks, and these benefits were seen across age groups. In the conclusion, the authors discuss that the benefits of coffee last between 4-6 hours (Stalmache). However, testing of mood and cognitive behavior were measured between 30 minutes to 120 minutes. I would be curious in future studies to see if these benefits declined, specifically if caffeine crashes led to the opposite of the positive effects of this study. Additionally, I would be interested to compare drinks with the same caffeine content to coffee and see if the mood and cognitive metrics changed. Coffee contains many chemical compounds that could be attributing to these positive effects compared to an energy drink, tea, or caffeine pill (Carrillo et al, 2000). Lastly, this study limited caffeine intake to 100mg. Does taking more than 100mg contribute to these heightened emotional and cognitive states or could it have a backfiring affect?

To better understand the beneficial parameters of caffeine and its effect on the body, Santos et al, 2016 studied the behavioral response when zebra fish were given different caffeine dosages. 144 adult zebrafish of both sexes were given one of 12 caffeine dosages: the lowest being 0.5 and the highest being 150.0mg. Caffeine was added directly to a tank containing twelve zebra fish and then observed for 60 minutes (Santos et al, 2016). For total distance traveled and freezing behavior, both were enhanced with caffeine exposure of 10 and 25mg/L, but decreased when fish were in water containing 50mg/L. Caffeine’s role in the nervous system, specifically alerting the body and enhancing performance, mainly occurs at an intermediate dose- too little no enhancement, too much a backfiring. This study is limited in its scope, however, because the zebrafish likely have never been exposed to caffeine before. However, human can be regular coffee drinkers. These studies did not account for the behavioral and mood differences found in those who regularly consume coffee as opposed to occasionally or never. The different dosages and level of dependency after years of drinking can affect the benefits of caffeine (Meredith et al, 2013).

Furthermore, these two studies focused on direct consumption of caffeine either in black coffee or directly placed in the tank, but would cream and sugar affect the effectiveness of caffeine? At home, I was a fiend for black coffee, hot or iced, but in Paris, I have become a latte gal, even indulging in the occasional espresso or flat white. Espresso based drinks such as a latte or flat white feel like a spurt of energy hitting me all at once. While coffee tends to be a slower burn, a slightly elevated state steady throughout the day. Regardless of form, coffee makes everything undeniably better, and in the right quantity can improve function. The Parisians may love wine, but I would take a latte over a bottle any day of the week.


Carrillo, J.A.; Benitez, J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin. Pharmacokinet. 2000, 39, 127–153.


Haskell-Ramsay, C., Jackson, P., Forster, J., Dodd, F., Bowerbank, S., & Kennedy, D. (2018). The Acute Effects of Caffeinated Black Coffee on Cognition and Mood in Healthy Young and Older Adults. Nutrients, 10(10), 1386.


Meredith SE, Juliano LM, Hughes JR, Griffiths RR. Caffeine Use Disorder: A Comprehensive Review and Research Agenda. J Caffeine Res. 2013;3(3):114–130.


Santos, L. C., Ruiz-Oliveira, J., Silva, P. F., & Luchiari, A. C. (2017). Caffeine Dose-Response Relationship and Behavioral Screening in Zebrafish. The Question of Caffeine.


Stalmach, A.; Williamson, G.; Crozier, A. Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food Funct. 2014, 5, 1727–1737.


Oat Milk Latte

Almond Milk Latte

Leave a Reply

Your email address will not be published. Required fields are marked *