Tag Archives: neuroscience

Walking through Paris

Amongst the many changes I have experienced while in Paris, I noticed that I am walking considerably more than I usually do. While most people are aware of the positive impact walking and exercise can have on the body, I am dedicating this post to exploring the effects of exercise on the brain.

Thanks to my handy Fitbit (yes, I know I am a little obsessed), I am able to track my daily activity, so I have a very good idea about how much exercise I am getting. Between going to class, touring museums, and exploring getting lost in the streets of Paris, I am walking an average of over 8 miles every day. Paris is a very “walk-able” city, and my friends and I regularly opt to walk to our destinations instead of using the metro. I know that this must be affecting my cognitive ability, because even while operating on 4-6 hours of sleep every night, I am able to focus and work surprisingly well.

Fitbit evidence that 1) I am walking crazy amounts in Paris, and 2) I can justify eating multiple pastries a day*  *point 2 has not been scientifically proven

Fitbit evidence that 1) I am walking crazy amounts in Paris 2) I can justify eating multiple pastries a day*
*point 2 has not been scientifically proven

A recent study in college-aged females found that after only a single session of moderate exercise, participants showed increased brain activation during a working memory task (Li et al. 2014). Working memory is a limited brain resource that temporarily stores, processes and updates action-related thinking. It is utilized when you need to actively handle information, and your working memory capacity is an important measure of cognitive function. The researchers in this study used a modified N-back task to measure working memory. This task requires participants to attend to a sequence of stimuli, and determine if the current stimulus matches a stimulus that was “N” steps earlier in the sequence. The task gets more and more difficult as N increases, because it becomes harder to keep track of when a stimulus appeared.

A visual representation of the N-back task used in the study by Li et al. (2014)

A visual representation of the N-back task used in the study by Li et al. (2014)

To compare brain function, the subjects performed this task while in a functional magnetic resonance imaging (fMRI) machine, once following exercise, and once following a rest period. The fMRI measures blood oxygenation, which provides a visual image of brain activation. While there was no significant change in subject performance on the task, the data show more brain activation in the exercise condition, especially in the prefrontal cortex (PFC) and medial occipital cortex during the 2-back condition. The PFC is well recognized to be important for working memory, and the specific areas of the occipital lobe that changed are also involved in online processing. The lack of performance change limits the conclusions that can be drawn from this study, but it is reasonable for me to assume that my working memory capacity is positively influenced by the increased exercise I get in Paris. The researchers clearly showed that exercise influenced the brain areas important for working memory in subjects of my same age and sex, and this effect would likely be enhanced by an extended exercise routine like mine. A future study could explore the effect of chronic exercise, or use multiple behavioral measures to see if that leads to more pronounced changes in working memory performance.

Working memory is not the only brain function influenced by exercise. In fact, hundreds of studies explore how exercise can change the brain. One of the most common focus areas is how exercise increases brain-derived neurotropic factor (BDNF) in the hippocampus. BDNF is very important for brain plasticity, and the hippocampus is highly involved in learning and memory. One study found that exercise enhanced memory and cognition in rats, through the action of BDNF and the pathways it influences (Vaynman, et al. 2004). A different study focused on the non-neuronal cells in the brain, called glial cells (Brockett, et al. 2015). They found that running influenced synaptic plasticity in rats, producing widespread positive effects in both neurons and glial cells in areas associated with cognitive improvement. The last study looked at showed how exercise can help people’s mental health by reducing the stress hormone cortisol, through overall regulation of the hypothalamic-pituitary (HPA) axis (Zschucke et al. 2015).

I walked almost 10 miles before stumbling upon this set at Fete de la musique, and the journey was as fun as the event!

I walked almost 10 miles before stumbling upon this set at Fete de la musique, and the journey was as fun as the event!

It is so interesting to hypothesize about the different ways that my brain may be changing in response to something as simple as walking. Evidence suggests that my working memory capacity, brain plasticity, and mental health are all influenced by exercise. Now that I only have one week left to enjoy Paris, I will make sure to walk everywhere to experience, learn and improve my brain as much as possible. With all of the positive effects Paris seems to have, I know I will be planning a return trip the second I get home!

 

References 

Brockett AT, LaMarca EA, Gould E (2015). Physical Exercise Enhances Cognitive Flexibility as Well as Astrocytic and Synaptic Markers in the Medial Prefrontal Cortex. PLoS ONE. 10(5): e0124859.

Li L, Men W-W, Chang Y-K, Fan M-X, Ji L, & Wei GX, (2014). Acute Aerobic Exercise Increases Cortical Activity during Working Memory: A Functional MRI Study in Female College Students. PLoS ONE. 9(6): e99222.

Vaynman S, Ying Z, and Gomez-Pinilla F, (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience. 20: 2580–2590.

Zschyke E, Renneberg B, Dimeo F, Wüstenberg T, & Ströhle A (2015). The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback. Psychoneuroendocrinology. 51: 414-425.

 

 

 

Watch your step!

Dear Friend,

The phrase “Attention à la marche en descendant du train” echoed through the platform as I grabbed my bag and stepped from the train. Ready to explore the beautiful, world-renowned city of Paris, I proudly raised my head and firmly stepped forward with intent. However, I couldn’t help but ask two very important questions. Where am I, and where can I find the delicious food?

Thoughts of savory crepes, warm baguettes, and chocolate-filled croissants distracted me during my voyage, somehow causing me to step off at the wrong station. I stopped and unfolded my pocket metro map, promptly realizing my disorientation landed me somewhere in the center of the complex Parisian underground maze. I wondered how I lost track of time so fast by simply staring through the window of the train. I was practically blinded by my quest for French desserts, but just about ready to go back home to Cité Universitaire.

map

In the two subsequent weeks that zoomed by, I paid much closer attention to my surroundings. Though I indulged in wonderful Parisian delicacies, and adapted to the city life, I also started perceiving my environment with more respect for sensory information. Doing so kept me from getting lost and allowed me to focus more. This habit greatly coincided with our neurosciences classes that started focusing on the brains interaction with bodily functions like motion, vision, and hearing.

With my senses primed, I took note of Paris’ every little detail, and learned how to travel as an expert tourist and passenger, exploring what Paris has to offer both above and below ground.

Above ground, I saw beautiful gardens and remarkable architecture. I experienced the jostling waves of the Seine while on a boat tour, and got dizzy staring up at the Eifel tower. I also heard countless sirens, and noticed pedestrians don’t care about traffic lights.

Below ground, I listed to musicians perform inside metro hallways and I watched entertainers dance in moving trains, all accompanied by the hum of bustling crowds and the sound of screeching metal pressing together to slow down trains. In this wild sub-terrain, I also noticed that closing automatic doors don’t care about rushing passengers, and warnings of “attention à la marche” exist for a reason.

train1Some things however literally caught my eye. As I stared outside of a train window one day, I caught a short glimpse of a nearby pole while we zoomed by. This was strange considering how slow and peaceful the buildings and scenery in the background passed by. I looked more closely, noticing the tracks below the train and the platform steps to the side of the train, moved incredibly fast while the landscape a few hundred meters out barely seemed to move at all. At this speed, the steps were actually dangerous!

 

I realized my mind must be playing tricks on me since the train was moving at the same speed compared to the ground, shared by both the tracks and the landscape. A few days later, I noticed this effect again at the roundabout circling the Colonne de Juillet at the Place de la Bastille (a great monument, see link 1)where cars near me seemed to move faster than those furthest away. I wanted to know more so, like any student investigator, I decided to search and see if neuroscience could provide and answer to this puzzling question.

Bastille

Screenshot at Bastille from GoogleMaps

The above process, called motion parallax. is a visual cue that signals depth where objects that are closer appear as if they move further across the visual field, while those that are farther away move less (Kim et al., 2015)

 

A recent study by Kim et al. (2015) looks at the neuroscience behind this cue and explores a specific area of the brain called the middle temporal (MT) area that could be responsible for the perception of depth from motion parallax. Although another study by Nadler et al. (2008) found that this part of the brain carries information about depth, it was not necessarily clear what kind of information was transmitted. The data from Kim et al. (2015) fill this gap by hypothesizing that the MT specifically carries information about the perception of depth.

The experimenters take two male monkeys, trained to respond to dots they see on a screen, and set them up with recording devices for their eyes. Researchers then fix the monkeys with electrodes in their MT areas, located by the use of MRI imaging. Finally, testing involves placing monkeys on a motion platform where the monkeys’ eye movements and brain signals provide computer-collected data.

The results from Kim et al. (2015) show that the MT will actually predict a monkey’s decision regarding its perception about depth. This paper gives a lot of support to the field of neuroscience because it reveals more information about the MT with sound methods.

The study finds that the MT further contributes to the perception of depth but it does not show that the area is entirely responsible perception. Although very recent, this article comprises one train-cart in a long train of studies on the MT. It lacks particular novelty and demonstrates that there is still much to learn about vision and the brain. Research in animals should definitely continue, but it would find it very interesting blend more than one study to find bigger applications. For example, Nawrot and Stroyan (2012) show that humans require about 30ms to detect depth from motion parallax. What if scientists could use deep brain stimulation (DBS) in the MT to provide brain enhancement for car accident prevention? I am incredibly excited for this research to continue.

Through my city travels, I hope to walk down the beautiful streets of Paris and remember that neuroscience allows me to navigate safely and effectively. My time in Paris is showing me that even though life has twists and turns, senses are needed to make “sense” of them (pun intended). I hope one day, a breakthrough in research and technology will allow us to better watch our steps!

References:

Kim HR, Angelaki DE, DeAngelis GC (2015) A functional link between MT neurons and depth perception based on motion parallax. J Neurosci 35:2766–2777 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25673864 [Accessed June 8, 2015].

Nadler JW, Angelaki DE, DeAngelis GC (2008) A neural representation of depth from motion parallax in macaque visual cortex. Nature 452:642–645 Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2422877&tool=pmcentrez&rendertype=abstract [Accessed June 8, 2015].

Nawrot M, Stroyan K (2012) Integration time for the perception of depth from motion parallax. Vision Res 59:64–71 Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3349336&tool=pmcentrez&rendertype=abstract [Accessed June 8, 2015].

 

link 1 http://www.discoverfrance.net/France/Paris/Monuments-Paris/Bastille6.shtml

link2 http://psych.hanover.edu/Krantz/MotionParallax/MotionParallax.html

Bouba and Bagels

Paris! Land of crepes and croissants, escargot and éclairs, and absolutely exquisite baguettes. While sandwiches currently make up the vast majority of my diet, I’ve also delved into more exciting culinary exploits on occasion. A few days ago I tried escargot for the first time, and the week before, duck confit. I’ve also tasted mouth watering lemon tarts, mille feuille, and a host of other desserts whose names I do not know, courtesy of my terrible French (I may be a linguist, but I’ve never been particularly good at picking up languages).

A delicious lemon tart I ordered by enthusiastically pointing at it.

A delicious lemon tart I ordered by enthusiastically pointing at it.

I came to Paris two weeks ago with just enough knowledge of French to manage taking the train to my dorm room at Cite U–which, considering the number of people who speak English in France, boiled mostly down to “Bonjour”, “Pardon”, and “Parlez-vous anglais?” Since then, I’ve managed to pick up a handful of words, almost all of them about food (clearly, I have my priorities in order). Still, the majority of my ordering at cafes and restaurants involves pointing at what I want or butchering the words for and hoping it all ends well with my taste buds happy and my stomach full (it usually does).

However, my lack of French language skills occasionally makes for interesting culinary experiences. The first time I ordered a bagel from Morry’s Bagels, I picked out the word “saumon” and “oeuf” and assumed the bagel contained some combination of salmon and egg. To my pleasant surprise, the filling was salmon eggs, not salmon and egg. A few days ago I visited a patisserie nearby for a sandwich, but since they were all out of sandwiches with ingredients I understood, I used my classic point and pay method to get a sandwich that contained some sort of fish. I think. The connection between cuisine and language goes beyond potential difficulties with ordering food, however.

Morry's, a delicious shop that sells bagel close to the class.

Morry’s, a delicious shop that sells bagel close to the class.

A salmon egg bagel from Morry's.

A salmon egg bagel from Morry’s.

One of the key components of the definition of “language” that every linguistics student learns is arbitrariness. Languages, for the most part, are arbitrary; the sounds of a word do not denote the meaning (Monaghan et al., 2014). Nothing about the sounds in “poulet” makes a non-French speaker automatically think of chicken. However, while you may not be able to derive the meaning of a word from its sounds, you might be able to know some of its properties. In the famous “Kiki” and “Bouba” study by Dr. Ramachandran and Dr. Hubbard, participants looked at spiky or more rounded shapes and decided which nonsense word matched which shape. The angular shapes had a high correlation with “kiki”, while the more rounded shapes correlated with “bouba” in both English speakers and Tamil speakers (Ramachandran and Hubbard, 2001).

How does this relate to food?

 

My first taste of Duck Confit. I'm not sure if I would rate it more "bouba' or more "kiki", but I would definitely rate it "ridiculously delicious".

My first taste of Duck Confit. I’m not sure if I would rate it more “bouba’ or more “kiki”, but I would definitely rate it “ridiculously delicious”.

Well, in 2011, Gallace et al. published a study looking at word-food associations. Ten participants sat in a darkened testing room and tasted several different foods such as Brie, strawberry yogurt, lime jam, or salt and vinegar crisps (aka potato chips), all covering a wide range of flavors and textures. After tasting one sample of each food, the participants rated the food for 24 different nonword, food related, and non-food related opposing pairs. Nonword pairs included, for example, “kiki” at one extreme and “bouba” at the other, while an example of non-food related ratings could be “fast” vs. “slow”, or “salty” vs. sweet for food-related ratings. So, for example, after tasting some strawberry yogurt, the participant might have to decide if the yogurt tasted more “kiki” or more “bouba”, more salty or more sweet, more slow or fast, and so on. After finishing each of the 24 ratings the participant would taste the next food sample, and continue on until they sampled and rated all food items. Each participant tasted and rated each food a maximum of 10 times.

The experimenters found a significant association between certain foods with particular nonwords more than others. The participants rated plain chocolate as more “bouba”, in comparison to mint chocolate, and salt and vinegar-flavored crisps were rated as more “takete” than cheddar cheese or Brie. However, these correlations do not line up neatly so that all the “bouba” foods have a particular taste or texture. This complex association may be due to how many of the other senses, such as smell and vision, interact with taste. To explain these associations, Gallace et al. go on to speculate that the connections between the gustatory areas and the frontal and temporal lobes in the brain may explain this connection between taste and sound, similar to how Ramachandran and Hubbard hypothesized that the connections and coactivation of visual and auditory areas lead synesthetes to “see” sounds (Ramachandran and Hubbard, 2001). Interestingly enough, a study from 2013 found that while a remote population from Noerthern Namibia matched the same shapes and sounds to Westerners, they did not match the same tastes to sounds (Bremner et al., 2013). Thus, the connection between taste and sound is complex and most likely affected by culture.

As a double major in linguistics and neuroscience, I’ve learned about the “Bouba” and “Kiki” study many times, but it wasn’t until I arrived in Paris that I heard about the connection between sounds and taste. I’m excited to have found a connection between three of my passions–– food, neuroscience, and linguistics––and I can’t wait to discover what other connections to neuroscience I can make as I eat my way through Paris!

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think...

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think…

Bibliography

Bremner AJ, Caparos S, Davidoff J, de Fockert J, Linnell KJ, Spence C (2013) “Bouba” and “Kiki” in Namibia? A remote culture make similar shape-sound matches, but different shape-taste matches to Westerners. Cognition 126:165-172.

Gallace A, Boschin E, Spence C (2011) On the taste of “Bouba” and “Kiki”: An exploration of word–food associations in neurologically normal participants. Cognitive Neuroscience 2:34-46.

Monaghan P, Shillcock R, Christiansen M, Kirby S (2014) How arbitrary is language?. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130299-20130299.

Ramachandran V, Hubbard E (2001) Synesthesia and Language. Journal of Consciousness Studies 8:3-34.

An Ambulance in a Traffic Jam

I’ve often wondered if any good could possibly come from a city full of the constant hustle of urban life. Cars always seem to be coming and going, zipping by on the streets below my window. Then the ambulance speeds past, its siren wailing, as it seeks the nearby hospital. Suddenly I am thrust into memory from last week.

The Bastille

Cars honk to one another as if speaking their own language. Smaller and more agile mopeds cut between them acting like they own the road. Firemen have positioned themselves along the sidewalk and are passing out fliers to anyone who will listen. The wail of a siren stuck in traffic was the centerpiece of a small Parisian intersection near the Bastille. My friends and I paused for a moment, mesmerized by the sounds, lights, and the notion that an ambulance with siren wailing could possibly be halted on its life-saving journey. Our stomachs growl in contempt of our delay so we continue shuffling along the sidewalk seeking nourishment after the morning’s academics, the smell of the boulangeries wafting invitingly towards us.

A delicious looking piece of artwork

The cool breeze from the window brings me back to present. I now wonder how it is that I could remember that instant so clearly, yet there is nothing to say of its significance. As far as I could tell, there was no reason for this memory to be so strong.

The answer lies in the recent work of James Cousins and his colleagues (2014) regarding cued memory reactivation during slow-wave sleep. In his experiment, Cousins subjected his participants to a specific cognitive task and simultaneously played a series of tones. The researchers then put the participants to sleep while monitoring their brain activity. During slow-wave sleep, some of the participants were played the series of tones from the test, while others listened to brown noise (notably different than the “brown note”). Participants were woken up in the morning, allowed to gather their senses, and then retested on the cognitive task.

Sleepy-time cap

Cousins and his colleagues discovered that while the control participants who listened to brown noise all night slightly improved after having learned the task, the participants who were played the tone series improved significantly more. The researchers concluded that, during slow-wave sleep, auditory stimulation enhances the consolidation of related memories by the hippocampus.

Now lets get back to my ambulance example. After experiencing the piercing cry of the ambulance stuck in traffic on that small back road, my brain had begun creating a memory of this experience. That night as I drifted into slow-wave sleep, the sirens from the ambulances on the street below wailed past, causing my hippocampus to replay that particular memory. Over the course of the night, unbeknownst to me, this seemingly irrelevant memory became a recurrent experience.

The Bastille on a map of Paris

I can no longer remember what I did end up eating for lunch that day, nor what we discussed in class. But thanks to my hippocampus and the sleepless city, I will long remember that ambulance stuck in traffic on a sunny morning in downtown Paris.

-Kamin Bouguyon

References:

Cousins, J.N., El-Deredy, W., Parkes, L.M., Hennies, N. & Lewis, P.A. (2014) Cued Memory Reactivation during Slow-Wave Sleep Promotes Explicit Knowledge of a Motor Sequence. The Journal of Neuroscience, 34, 15870-15876.

“Hello” or “Bonjour” ?

Hello world,

This past week has been extremely interesting, yet exciting, to say the least. After a TERRIBLE delay at JFK airport, I finally made it to Paris (about 6 hours behind schedule…). Once settled into my room, I met up with my friend, Sasha, to grab a quick dinner. We decided to go to a small restaurant close to where we live, as our long day of traveling left us extremely tired. When we sat down at the restaurant, the waiter walked over and said, “Bonjour, comment puis-je vous aider?” This caught me extremely off guard, as this was the first time I engaged in a conversation with a true francophone.

IMG_1115

Sasha (left) and me (right) at dinner

11234833_10206791179517847_2623424007455916451_o

Sasha and me at the Eiffel Tower

 

Let me rewind a little bit. I have studied French since 6th grade, and although it may not be my primary concentration in college, it plays a huge role in my academic career. However, this was my first time in a French speaking country, so I have not had much experience with French conversation, aside from with my fellow French-speaking peers and professors. So, when the waiter confronted me and asked a question in French, I was rightfully so caught off guard.

 

 

(Anyway, returning to the restaurant…) Sasha, being from Montreal and growing up speaking French with her family, swiftly answered the waiter. After a few seconds of gathering myself and adjusting my vocabulary, I too answered him (in French, of course). This event made wonder what physiological differences, if any, occurred in my brain when switching between English and French vocabulary. Were different areas of my brain active for French words versus English words and vice versa? This question sparked my interest, so, upon returning to my room I searched for an answer.

Before I try and explain the studies I found, let me give you a quick and easy lesson concerning neuroscience and language. Broca’s area, a region of the frontal part of the brain, is linked to the production of speech, while Wernicke’s area, a region of the temporal part of the brain (slightly above where your ears are), is linked to the comprehension aspects of speech. In order to engage in a coherent conversation with another individual, one must use both of these areas, as the language one hears must be understood
(via Wetumblr_memuxuR4xw1qf721rrnicke’s area) and the language one speaks must be intelligible (via Broca’s area). So, when looking for an answer to my original question about language, I immediately thought that this must be the sole system affected, but boy was I wrong.

 

After some quick searching, I stumbled upon an article by Correia et al., 2014, concerning brain activation in bilingual individuals. The researchers in this study subjected bilingual participants, fluent in English and Dutch, to a series of experimentations in which the participants were placed inside an fMRI and told to listen to a series of words. The words consisted of the names of specific animal species, and the language spoken varied between English and Dutch. The fMRI constructed images of the participant’s brains, highlighting the regions most active during this process. By examining and comparing the fMRI images created by solely Dutch words, solely English words, and a combination of the two, Correia et al. isolated several regions of the brain active for both languages. The main region of activity they observed was the anterior temporal lobe (ATL). This cortical region is associated with semantic memory, that is, memory of physical objects, people, information, and (most important to this study) words (Bonner and Price, 2013). This finding is significant as it provides evidence that semantic knowledge is processed in a language-independent form in the brains of bilingual listeners (Correia et al., 2014). Essentially, this means that as the participants listened the either English or Dutch words, their ATLs become equivalently active for each. So, when I was in the restaurant with Sasha, although I may have been caught off guard by the waiter speaking French, similar regions of my brain became active compared to if the waiter spoke English to me.

Screen Shot 2015-06-07 at 12.05.16 PM

A figure from Correia et al. (2014) depicting the language-independent regions of the brain, one of which being the anterior temporal lobe (ATL)

Another interesting study I found was conducted by Mohades et al. in 2012. In this study, the researchers assessed the brain circuitry associated with language in children aged 8-11 years old. They compared this circuitry in children raised monolingual to those raised bilingual. Through this, the researchers discovered significantly different white matter density in specific brain regions involved with spoken language and comprehension of language. Certain areas of bilingual’s brains contained different densities of white matter in comparison to the brain’s of monolinguals (Mohades et al., 2012). This means that the circuitry of the brain involved with language differs depending on one’s language capabilities. So, in relation to my brain and Sasha’s brain, we have different densities of white matter in specific regions of our brains, since Sasha was raised bilingual (woah).

3DSlicer-KubickiJPR2007-fig6

The type of fMRI imaging used by Mohades et al. (2011) to measure white matter integrity (density).

 

I found both of these articles very interesting because they offer different findings regarding brain activation in bilinguals. In my NBB classes I learn about many regions of the brain discussed in these studies, yet I never knew the role they played in bilingual individuals. With this newfound knowledge, I am interested in doing further research to discover more differences in brain activation associated with language.

~ Ethan Siegel

References

Bonner M, Price A (2013) Where is the anterior temporal lobe and what does it do? The Journal of Neuroscience. 33(10): 4213-4215

Correia J, Formisano E, Valente G, Hausfeld L, Jansma B, Bonte M (2014) Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. The Journal of Neuroscience. 34(1):332–338

Mohades S, Struys E, Van Schuerbeek P, Mondt K, Van de Craen P, Luypaert R (2011) DTI reveals structural differences in white matter tracts between bilingual and monolingual children. SciVerse ScienceDirect. 1435: 72-80

Blame it on the Music

This past week I got to immerse myself in the most distinctly French experience I’ve had since arriving in Paris – le festival de musique – a festival that’s essentially a giant excuse for everyone in France to leave work early, throw back a few drinks and enjoy music on every street corner, bar, park, and metro station in the city.

It was an amazing day, night, and morning.

There was such a diversity of interesting music – a solo guitarist playing tunes from “dirty dancing” to a bunch of kids, two dueling DJs (the one with a portable smoke machine won), a couple of Rastafarian reggae singers on the RER train, and even a man playing a collection of giant bells on truck bed outside Notre Dame. Just as interesting was the diversity of behavior amongst those listening to the music, specifically their drinking behavior.

Being the upstanding, responsible, academic individual that I am, I used my scientific observation abilities to hone in on the type and amount of alcohol being consumed by the groups listening to each genre of music. I then used this data to make educated decisions about which music attracted the most degenerate groups so that I could join them avoid them. 

NBB students enjoying the portable smoke machine.

Most of the Parisians seamed to be keeping their drinking in check. Those listening to the blues street musicians were sipping on wine and beer, the large group around the truck-bell musician was doing the same, and not surprisingly, the kids surrounding the solo-guitarist weren’t tossing back too many brews. The dueling DJs were a different matter though, and I had to unfortunately dedicate more time there to document the significantly larger quantities of wine consumed by the audience – at one point I even saw a flask and a mini-keg!

I witnessed the most alcohol consumption later that night though, when I followed the deep boom of a bass to a large dubstep-rave outside the Odeon metro station. As I approached the mass of people jumping in synchrony to the deafening music it quickly became apparent that these festival-goers had traded their wine for many liters of flavored vodka.

This sparked my curiosity, why were some groups heavier drinkers than others? Was there something about dubstep and the DJ-house music that caused those listening to drink more? There was a significantly higher percentage of young people at the rave but that doesn’t necessarily account for why they were drinking hard alcohol while the college-aged kids elsewhere were drinking beer and wine. I needed to do some research.
The Effect of Noise on Taste 

The truck bell choir. Definitely the most interesting instrument of the night!

In 2011, an article published in the journal Food Quality and Preference, looked at the effect of music and noise on how 80 college-aged individuals perceived the taste of alcohol (Stafford et al., 2012).

The study was pretty simple. When each participant entered the lab they were blindfolded and given a set of four different solutions (bitter, sour, sweet, and salty) to taste so that they had a baseline to compare against for the rest of the experiment. The students then put on headphones and were divided into four groups. One group had house music played in both ears, another had a news article being read in both ears, a third had music playing in one ear and the article in the other, and a fourth heard neither noise. The members of each group were then given alcohol of varying concentrations (with mixers) and asked to rate the level of sweet/bitter/sour/salty taste and overall strength of the alcohol in each drink (on a scale of 1-100).

Before we evaluate the results it’s important to first think about how the researchers controlled for external factors that might affect the data (like different alcohol preferences in the subjects, mood at the time of the study, type of music they normally listen to, etc.). It appears that the researchers did account for most of these issues, and they chose students with standard alcohol habits, no known taste aversions, and who were in average moods. They also chose the music genre and alcohol mixers based off of an initial study of the preferences of ten students. However, it would have been great to see the house music compared to other genres like jazz and country to make sure that the data wasn’t genre-dependent.

The results showed that those listening to music in both ears actually found the alcoholic drinks significantly sweater than the other three groups. Additionally, the ability to discern between the different strengths of alcohol was significantly lower in the music/news and only-music individuals than the other two groups, a result that has been shown in other papers (Seo et al., 2012). The fact that music only appeared to effect sweetness perception and none of the other three tastes is especially interesting because on average, the sweater alcohol, the more it gets consumed (Lanier et al., 2005). 

How does this all occur in the brain?

Location of Odeon rave!

There are very few articles that show how music affects taste perception in the brain. One thing that is somewhat similar is a process known as sensory deprivation. In sensory deprivation, one sense in eliminated and because of that another sense gets stronger. A perfect example of this would be how blind individuals often have a very good sense of touch. It’s been shown that the louder a noise the more it inhibits a person’s ability to distinguish taste (Woods et al., 2011). The music at the rave was much louder than anything I had heard at the festival, so maybe the reverse of sensory deprivation was occurring. Perhaps the Parisians’ sensory systems were so over-stimulated by the loud music that they were less able to perceive the alcohol concentration, leading to the consumption of more and harder alcohol. Additionally, the music might have made the vodka taste sweeter, making it even easier to drink. This is primarily speculation though, and lack of concluding evidence makes it difficult to know exactly what was happening in the brain. Perhaps I will have to conduct a research study of my own to determine the regions of the brain involved, as well as the effect of different music genres on alcohol perception. I wonder if any Emory students would volunteer for such a tasking experiment!

 

– Camden MacDowell

 

Works Cited

Lanier, S. A., Hayes, J. E., & Duffy, V. B. (2005). Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates. Physiology &Behavior, 83(5), 821–831.

Stafford L., Agobiani E., Fernandes M. (2012). Effects of noise and distraction on alcohol perception. Food Quality and Preference 24: 218-224

Seo H., Hahner A., Gudziol V., Scheibe M., Hummel T. (2012). Influence of background noise on the performance in the odor sensitivity task: effects of noise type and extraversion. Exp Brain Res 222:89-97

Woods, A. T., Poliakoff, E., Lloyd, D. M., Kuenzel, J., Hodson, R., Gonda, H., et al.(2011). Effect of background noise on food perception. Food Quality and Preference 22(1), 42-47 

Confessions of a Coffee Addict

With the addition of new coffee vendors on Emory’s campus over the past three years, combined with the excellent surrounding breakfast hotspots, I have become one to regularly appreciate and truly enjoy a hot cup of coffee. Whether the coffee be from Starbucks, Rise-n-Dine or Dunkin Donuts, I am victim to daily expenditure at these vendors for my morning (and sometimes evening) caffeine fix. Now that my time in Paris is approaching its end, I will readily admit that I had routed the closest Starbucks locations to my dorm and to the building where we take classes (before my departure from New York). I saved those directions in my phone; anticipating daily visits to this familiar coffee shop.

My pre-departure routing of Starbucks to the Accent center (where we take classes)

When I realized that it would be a daily struggle to somehow go to Starbucks before my early morning class (thanks to the reliability of the French subway system), I decided to give the conveniently located French coffee (on campus) a chance. My first experience with French café was at the Cite Universitaire cafeteria, as I was presented with a Dixie-cup size equivalent cup of black coffee. No sugar, no milk…but I was pleasantly surprised. I didn’t realize how strong the coffee would be and I can safely say that 3 cups of the café coffee was overkill…

All throughout Paris, I have noticed that the café comes in one size: about a quarter of the size of the regular coffee we get back in America. The coffee is quite deceiving, as the small cup actually keeps me energized despite its miniscule volume. I quickly realized that coffee in itself is a part of French culture, as many cafes throughout the city orient their tables and chairs to face the streets—this way, people can enjoy a cup of coffee and “people watch”. I rarely see Parisians eating lavish breakfasts (doesn’t stop me though…); rather, they enjoy a simple black coffee with the morning paper. French culture, to me, seems to emphasize simplicity and reservation. A cup of coffee, then, serves as a means to collect your thoughts and appreciate the beauty of France while simultaneously obtaining a needed jolt of energy. A cup of coffee transcends the traditional role of a breakfast drink, as “une tasse de café” is readily available (and encouraged) at any time of day.

French breakfast at a local restaurant (notice the tiny coffee...)

One of the classes we are taking here is related to body enhancement and the new, innovative technologies that can alter normal human function. During class one day, Dr. Crutcher shared with us some research that suggested the caffeine fix from our morning cups of coffee actually yields some physiological effects besides just enhanced alertness. In the past, researchers found that caffeine can increase anxiety in the short run, but increased doses of caffeine over time (via more coffee, for example) can lead to a diminished effect because of the build up of tolerance (Rogers et al., 2010). Recent research suggests that caffeine, readily found in coffee, may modify the way the different brain areas react to social threats (Smith et al., 2012). What are the neurological implications of this? Smith et al. (2012) set out to determine if there really was a relationship between anxiety, threatening signals, caffeine and the brain.

How did they do this study? After obtaining a group of subjects, the researchers gave the participants in this study received a fixed amount of either caffeine or placebo in two different sessions. During each session, the participants were placed in an MRI machine that would give researchers an fMRI scan (functional magnetic resonance image). An fMRI is basically a way to measure the changes in blood flow in the brain. Changes in blood flow in the brain represent changes in activity and activation in the different areas of the brain. (For example, if an area of the brain is in use, then there is increased blood flow in that area.) While in the MRI machine, participants were asked to perform an “emotional face processing task” (EFPT). This task involved participants being presented with different faces, each representing different emotions, and they had to match the presented face to a target face at the top of the screen. (Similar to a matching game!) After seeing the faces and doing the matching task, the participants would rate their anxiety and mental alertness (compared to before the task) via a questionnaire. Researchers also measured their blood pressure (before and 2 hours after the treatment of either the placebo or caffeine) (Smith et al., 2012).

Turns out that when the participants who were administered caffeine saw the threatening faces, that is the angry and fearful faces during the EFPT, there was increased activation of a brain area called the “midbrain periaqueductal gray area” and decreased activation in another area called the “medial prefrontal cortex” compared to the placebo group (Smith et al., 2012). Participants who received the caffeine dosage had higher self-rated anxiety on the questionnaires and their diastolic blood pressures were higher also! However, the exact neural mechanisms and implications of how these areas actually process threatening images and scenarios are still unknown (Smith et al., 2012). So what was the point of this study then? Smith et al. (2012) suggest that these brain areas, that showed changes in activity, are actually related to social threat processing and anxiety in humans. Because there were actual changes in blood flow in these areas in response to threatening or anxiety-inducing faces, only in the light of a caffeine dosage, it seems to be that caffeine is modifying the patterns of activation in the brain. A daily dose of caffeine, in the form of coffee for most of us, then, can possibly affect the way we perceive threats and can possibly affect how anxious we are compared to when we do not consume caffeine.

Yum

As with almost everything that seems too good to be true, in this case a delicious cup of French coffee, this study seems to suggest that loading up on multiple cups of coffee a day might not be the best idea. But, I don’t really plan on giving up my black Americano any time soon (especially since I’m leaving France soon and am already having French coffee withdrawal).

-Noareen Ahmed

References:

Rogers, P, Hohoff C, Heatherley S  (2010) Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology 35: 1973–83.

Smith J, Lawrence D, Diukova A, Wise R, Rogers P (2012) Storm in a coffee cup: caffeine modifies brain activation to social signals of threat. Scan 7: 831-840

Well that was embarrassing….

The Palais de la Decouverte is a science museum located at the Grand Palais and it was at this very spot I was put to shame. Our first destination was the insect exhibit which was located on the first floor. There, we saw glass casings full of ants, termites, and spiders and tons of information about their livelihood. Near the end of the insect exhibit, there was an apparatus with holes large enough to fit a hand. Curiosity got the best of me and I stuck my right hand through. As I was moving my arm farther into the hole, about elbow deep, something suddenly grabbed my hand and started shaking me. I shrieked… and as I jerked my body back, the straps of my computer bag snapped and fell to the floor. Before I knew what was going on, I heard a snicker. Out pops this 12-year-old French girl who points and laughs at me and then runs off. I didn’t know that on the opposite side of the apparatus was another hole where others could insert their hands. The little punk had bested me. I slowly grabbed my bag and walked away with my head down in shame.

Have you ever wondered why you feel embarrassed? It is defined as feeling awkward, self-conscious, or ashamed and it is a state of intense discomfort from a socially unacceptable act. In my situation, I should not have been so easily frightened by a 12-year-old girl. My broken bag is now strewn over my chair and acts as a constant reminder. Embarrassing situations occur frequently to me, or at least I feel more susceptible than the average person. I’m sure there was some traumatizing childhood moment, where I was so utterly embarrassed that now even the little voice cracks seems to embarrass me. Or maybe it’s from an enlarged right pregenual anterior cingulate cortex (pACC). Probably a bit of both, but let’s focus on the later.

In a research study in 2012, Sturm et al. obtained 27 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease that targets the pACC region and is known to decrease self-conscious reactivity. Do not confuse self-consciousness and self-conscious behavior, one being self-awareness and the latter social discomfort which this study is based on. The purpose of the experiment was to find evidence supporting the pACC region playing a role in self-conscious activity. Sturm et al. tested the hypothesis by comparing the bvFTD patients to 33 healthy patients through a self-conscious reactivity test and an MRI scan(Sturm et al., 2013).The patients were instructed to put on headphones and sing-along to “My Girl” by the Temptations without knowing they were being recorded. They were then hooked up to a machine, which measured self-conscious reactivity and shown a video of themselves singing without the music in the background. The machine specifically measured heart rate, blood pressure, respiration, etc., and a score was calculated from the data to determine self-conscious reactivity. Patients were also shown a sad clip to measure baseline activity. The data showed healthy patients scoring a higher self-conscious reactivity score than the bvFtD patients which supported the hypothesis. An MRI scan revealed a higher volume of the right pACC region correlating with a higher self-conscious reactivity score.

The study suggests if I had a larger right pACC region, I would be more susceptible to embarrassment every time I trip in public, or when someone posts an ugly picture of me online. So now that we have located a possible section of the brain that deals with self-consciousness, I am going to have mine removed to avoid feeling any embarrassing emotions in the future. No just kidding. There’s not an overwhelming amount of data associating pACC to self-conscious behavior and the pACC is involved in many brain processes. However, the study provides a deeper understanding of self-conscious behavior.

~James Eun

Bibliography

Sturm VE, Sollberger M, Seeley WW, Rankin KP, Ascher EA, Rosen HJ, Miller BL, Levenson RW (2013) Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Social cognitive and affective neuroscience 8:468-474.

Poisoning Pigeons in the Park

We’ve now been in Paris for close to three weeks. It’s a wonderful city, and I’ve enjoyed so many terrific experiences since we arrived: long, sunny walks along the Seine from the Louvre Museum to the Eiffel Tower, terrific concerts by countless street musicians, and many delicious French crepes and baguettes! However, there’s one part of Paris that is slowly pecking away at my enjoyment of the city – Pigeons. 

Paris isn’t quite as famous for its pigeons as other large cities like New York and London, but their presence is certainly noticeable – especially if you attempt, as I did, to eat a fresh baguette under the statue of Charlemagne at Notre Dame, an area where the pigeon density rivals that of the tourists. As soon my first breadcrumb dropped, I was surrounded and bombarded by more birds than I could count. This happened again at Tuileries Garden, and yet another time on the Cite Universitaire campus.

Even when I’m not eating baguettes the pigeons seek me out. While relaxing in a small urban park near the Bastille I was lucky enough to receive a pigeon “deposit” on my pant’s leg, followed by another on my chest and a third that landed on my shoulder, narrowly missing my right ear. I can see one such gift being an accident, but three in a row makes me think that these pigeons might have a vendetta against me for the bird research I do back at Emory.

It turns out that I’m not the only one who’s annoyed with Paris’s bird problem. For many years the city has pigeon-proofed historical buildings by placing spikes on all the ledges where the birds might land. Additionally, in 2008 Paris officials set out to curb the pigeon population by building nesting-lofts throughout the city and then sterilizing the eggs while the birds were out feeding (bloomberg). Given my recent experiences, these attempts don’t appear to be working and so I looked into another possible method of population control – feeding the birds poison-laced food.

I was curious about how effective poisoning would be. Do the birds learn to avoid dangerous food? And if so, how quickly does this avoidance behavior develop, especially if that food had a distinct taste or smell associated with it?

How quickly do pigeons learn to avoid poison?

A map of the places I've had run-in with pigeons


In 1999 a study published in the Archives of Environmental Contamination and Toxicology looked exactly at how quickly pigeons learn to avoid poisonous-food and the effect of hunger on the amount of toxic food they ingested (Pascual et al., 1999).

The study used four groups of eight pigeons. Two of these groups were given as much food as they wanted (ad libitum) for the 6 days leading up to testing while the other two groups were deprived of food. The researchers did two experiments. First they offered seeds laced with the sulfurous-smelling toxin fonofos to one of the ad libitum groups and one of the deprived groups for 6 straight hours. The birds were videotaped throughout the test, and eating behavior was measured by the amount of food eaten as well as the rate at which it was consumed. The second experiment, using the remaining two bird groups, was very similar but the food was offered first for 2 hours followed by a half-hour break, and then for an additional four hours. While not much different then the first experiment, this test showed whether the birds were able to remember that the food was dangerous when exposed to it a second time.

On average, it only took the birds 6 minutes to learn to avoid the food and all of the pigeons from experiment two still avoided the food after a half-hour break. Five of the birds from the food-deprived group did die and the authors attributed this to the fact that these birds ate huge amounts of food in the first six minutes. This is interesting because it suggests that the ability to develop avoidance behaviors is dependent on time, not on the amount of food eaten. Additionally, the video recordings showed reactions (head shaking, food-spitting, vomiting) during the first six minutes, which confirmed that the food was unpleasant to the birds. Given the size of the Parisian pigeons that have harassed me so far, I doubt any of them are food deprived, so unfortunately poisons (or at least poisons that have odor or taste like fonofos) would not be effective.

While this article clearly documented the development of avoidance behaviors and specifically showed that internal state (such as hungry/not hungry) did not affect the rate at which these behaviors we were created, it did not discuss how these behaviors are mediated in the brain.

How is avoidance mediated in the brain?

A pigeon posing in front of the Eiffel Tower. A perfect summary of my experiences so far in France.

 

 

Most research in avoidance behavior concentrates on the role of a small almond-shaped region in the bottom-middle of the brain called the amygdala, which is thought to mediate avoidance behavior development (Davis, 1992). How exactly it does this is still being debated but the majority of articles suggest that the amygdala helps consolidate a memory associated with an unpleasant experience like eating food that makes you feel sick (Smith et al., 2001). More specifically, some research has shown that it plays a role in the initial acquisition of the memory (Wiliskey et al., 2005). Even though these studies were not done in pigeons, we can use can use them to predict what might have occurred in the pigeon experiment. When the pigeons first ate the fonofos food and experienced the unpleasant side effects, it’s possible that their amygdalae were activated and that a connection between the food and the effects was formed. However, this connection in the brain probably was not strong enough to cause avoidance after just one exposure to the food, so it took multiple exposures over the course of six minutes. Even though the food-deprived pigeons ate more, it’s possible that they didn’t avoid the food any faster than the ad libitum group because their hunger took priority and inhibited the avoidance behaviors from forming (Gilette et al., 1999).

Unless the Parisian pigeons have faulty amygdalae, which I highly doubt, I will unfortunately have to come up with another way to control their population. Perhaps, a poison that doesn’t have any smell or immediate unpleasant effects associated with it? Or maybe the best option is just to take all of my baguette eating indoors. Regardless, it does not appear that I will be poisoning Parisian pigeons anytime in the near future. Now that you’ve finished the post I recommend that you click on the following link and enjoy a 3 minute tune by 1960s comedian Tom Leher, it applies nicely.

http://www.youtube.com/watch?v=yhuMLpdnOjY

 

– Camden MacDowell

UPDATE: I GOT EVEN WITH THE PIGEONS!

mmm... tasty pigeon lunch! Literally the taste of revenge!

 

Works cited:

Davis M. (1992) The role of the amygdala in fear and anxiety. Annual Review Neursci 15:353-375

Gillete R., Hatcher N., Huang R., Moroz L. (1999). Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. PNAS 97: 3585-3590

Pascual J., Fryday S., Hart A. (1999) Effects of Food Restriction on Food Avoidance and Risk of Acute Poisoning of Captive Feral Pigeons from Fonofos-Treated Seeds. Arch. Environ. Contam. Toxicol. 37: 115-124

Smith DM., Freeman JH., Gabriel M., Monteverde J., Schwartz E. (2001) Lesions in the central nucleus of the amygdala: discriminative avoidance learning, discriminative approach learning, and cingulothalamic training-induced neuronal activity. Neurobiol Learn Mem 76: 403-25

Wilensky A., LeDoux J., Schafe G. (2005) Amygdala Modulates Memory Consolidation of Fear-Motivated Inhibitory Avoidance Learning But Not Classical Fear Conditioning. The Journal of Neurosci 20: 7059-7066

 

NBB in Paris!

Welcome to NBB in Paris! The course uses the format of an open-access blog to help the students develop their communication skills via feedback from peers and the public audience. Each student will connect their experiences in Paris with a current neuroscience research finding and convey that information here, as interestingly and as accurately as possible. This is not an easy task but one that I believe is becoming increasingly important in our world of  instantaneous information. In my opinion, the future scientists, health professionals, engineers, or mathematicians have an obligation to be the translators of complex technical information to the non-expert public. Without these communicators, the task of being informed citizens, able to make hard decisions about personal health or public policy, becomes much more difficult.

Be sure to check back to see the latest posts…and comment freely!

Kristen Frenzel, Ph.D.