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Chapter 7
Why Is Neuromechanical Modeling of Balance 
and Locomotion So Hard?

Jessica L. Allen and Lena H. Ting

Abstract  A goal and challenge in neuromechanical modeling is to develop val-
idated simulations to predict the effects of neuromotor deficits and therapies on 
movements. This has been particularly challenging in balance and locomotion 
because they are inherently unstable, making it difficult to explore model param-
eters in a way that still coordinates the body in a functional way. Integrating realistic 
and validated musculoskeletal models with neural control mechanisms is critical 
to our ability to predict how human robustly move in the environment. Here we 
briefly review both human locomotion models, which generally focus on modeling 
the physical dynamics of movement with simplified models of neural control, as 
well as balance models, which model sensorimotor dynamics and processing with 
simplified biomechanical models. Combining complex neural and musculoskeletal 
models increases the redundancy in a model and allows us to study how motor 
variability and robustness are exploited to produce movements in both healthy and 
impaired individuals. To advance, the integration of neuromechanical modeling 
and experimental approaches will be critical in testing specific hypotheses con-
cerning how and why neuromechanical flexibility is both exploited and constrained 
under various movement contexts. We give a few examples of how the close inter-
play between models and experiments can reveal neuromechanical principles of 
movement.

Keywords  Balance control · Biomechanics · Musculoskeletal modeling · 
Neuromechanics · Locomotion · Postural control · Muscle synergies · Sensorimotor 
control · Sensorimotor integration · Sensorimotor feedback
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7.1 � Introduction

Our ability to use models to simulate and predict motor behaviors in humans based 
on principles of neural control and biomechanics remains elusive. This is particu-
larly true for whole-body behaviors that are inherently unstable and involve signifi-
cant balance control, including locomotor behaviors such as walking and running. 
Balance and locomotor functions are impaired by a wide range of neurological and 
musculoskeletal disorders, negatively affecting quality of life (CDC 2008). Vali-
dated and predictive neuromechanical models have the potential to help diagnose, 
accurately characterize, and optimize treatments for a broad range of movement 
deficits. These models could allow researchers and clinicians to play “what if” by 
changing the neural control and biomechanical parameters of the model and observ-
ing the motor behaviors that emerge. Thus, a grand challenge in neuromechanical 
modeling is to develop predictive models that can be used to understand effects of 
neuromuscular deficits, predict outcomes of rehabilitation interventions, and de-
velop individualized interventions and therapies optimized to the abilities of each 
participant.

There are a number of barriers to the development of validated neuromechanical 
models in balance and locomotion that we discuss in this chapter. In the first part 
of this chapter we review the current state of the art in human locomotion and bal-
ance models. Although walking and balance are integrated motor behaviors, there 
is a disciplinary divide in the investigation of balance control and locomotion, both 
experimentally and computationally. Neuromechanical models of human locomo-
tion and balance thus reflect this divide and are not well integrated. Whereas the 
goal in locomotion is to move the body from one place to another resulting in large, 
measurable external movements amenable to biomechanical analysis, in standing 
balance the goal is to maintain a stable posture resulting in very small motions that 
belie the complex underlying sensorimotor processing. To date, much of the focus 
of locomotion modeling has been on reproducing the mechanics of the movement 
whereas balance modeling has typically focused on understanding the underlying 
neural control mechanisms, with very minimal overlap between the two modeling 
endeavors.

To advance, it will be necessary to develop integrated experiments and neuro-
mechanical models to test fundamental sensorimotor principles for integration of 
balance and locomotion. A primary challenge is in validating both the neural and 
biomechanical elements of a neuromechanical model. Neuromechanical models 
may be a necessary tool to decompose and interpret the multifaceted ways in which 
balance and locomotor function can be achieved in different individuals and impair-
ments. Experimental observations are difficult to interpret from a mechanistic level 
because internal signals such as muscle force and neural activity cannot be directly 
measured. Moreover, there is a great deal of redundancy in biomechanical and neu-
ral contributions to locomotion and balance, which may be a major contributor to 
the high level of variability observed in muscle and neural activity compared to 
measures of motor function. Using neuromechanical models tailored to a particular 
hypothesis and experimental paradigm will thus be critical for drawing conclusions 

lting@emory.edu



1997  Why Is Neuromechanical Modeling of Balance and Locomotion So Hard?

about how balance and locomotion are jointly achieved. In the second part of the 
chapter we will give some examples from our work of how experimental and com-
putational approaches can be combined to reveal fundamental principles of human 
balance and locomotion that could form a foundation for the development of predic-
tive neuromechanical models.

7.2 � Current Neuromechanical Models of Locomotion and 
Balance

7.2.1 � Locomotion Models are Mechanics-Focused

Neuromechanical models of locomotion, from the very simple to the very com-
plex, typically focus on reproducing the mechanics of gait without emphasis on 
underlying neural control mechanisms. The simplest models demonstrate that lo-
comotor-like motion can be generated almost entirely by passive. More complex 
models typically focus on identifying the necessary joint torques or muscle forces 
that replicate experimentally observed locomotor patterns, but without regard to 
how they are generated from a neural or sensorimotor perspective. Such models 
have generated a large body of literature regarding the mechanics of walking and 
how muscles can be coordinated to achieve the necessary biomechanical subtasks 
of locomotion. Both simple and complex models are essential for understanding the 
physical constraints and principles governing locomotion, defining the biomechani-
cal tasks and functions critical for a successful neural controller to achieve. In some 
cases they can identify aspects of the movement that are governed by the properties 
of the musculoskeletal system as well as performance criteria governing kinematic 
and muscular patterns. However, to date, human locomotion models generally do 
not address specific neural control mechanisms that contribute to the generation of 
locomotor motor patterns and movement strategies.

7.2.2 � Simple Locomotion Models Describe Body Mechanics

Point mass models of locomotion are important because they may describe the tar-
gets of neural control (e.g., neural control variables) and demonstrate the reconfigu-
rability and versatility of the body when subject to neural control. The simplest loco-
motion models are typically energetics based, motivated by experimental evidence 
of the different mechanisms for exchange of kinetic and potential energy during 
walking and running (Cavagna et al. 1964, 1977; Dickinson et al. 2000). These en-
ergetic exchanges resemble the patterns that occur in common mechanical elements 
subject to gravity, such as pendulums and springs. Simple locomotion models based 
on such elements require minimal control and instead rely on initial conditions and 

lting@emory.edu



200 J. L. Allen and L. H. Ting

gravity to produce motion. They are thought to reflect energetically efficient modes 
of locomotion that result from the optimal tuning and interactions between complex 
neural and musculoskeletal systems (Srinivasan and Ruina 2006) and the overall 
movement goals of neuromechanical control (Full and Koditschek 1999).

Multisegmental models can reveal features of locomotion that are dominated by 
the mechanical properties of the body versus those that require more active neural 
regulation. Such models have facilitated the development of more energy efficient 
robots and revealed mechanisms of human gait. For example, walking motions can 
be achieved with minimal actuation by harnessing the passive dynamics of pendu-
lum-like limbs. Machines built on such mechanisms can walk down a gentle slope 
without any active control of the joints (McGeer 1990a, b) and require only minimal 
actuation when walking on level ground (e.g., Collins et al. 2001, 2005; Collins and 
Ruina 2005). These passive walking models reveal that the swing phase of walking 
can be driven entirely by passive mechanics of the swinging limb resulting from 
gravity, which has been corroborated through comparison to experimental data 
(Mochon and McMahon 1980; Hoy and Zernicke 1986). Although muscle activity 
is often present during swing (Sutherland 1984; Perry 1992) the fact that passive 
dynamics can generate realistic swing kinematics suggests that neural control may 
be less critical within this region of the gait cycle. In contrast, appropriately timed 
hip or ankle torque in late stance can propel the center-of-mass (CoM) forward and 
is sufficient to generate steady state walking on level ground (Collins et al. 2005; 
Collins and Ruina 2005; Wisse et  al. 2007). The need for actuation for propul-
sion provides evidence that neural mechanisms are necessary to produce the bio-
mechanical function of forward propulsion. Running dynamics can be reproduced 
by passive spring-mass systems (Blickhan 1989; McMahon and Cheng 1990) and 
the addition of springs to pendulum-based models further improves the realism of 
gait features such as the characteristic M-shaped curve of the vertical ground reac-
tion force in walking (Geyer et al. 2006). This suggests that the characteristics of 
the mechanical system are equally important to the neural controller in generating 
realistic movements. Different gaits can be achieved by modulating the leg stiffness 
or compliance, which could be achieved biologically through the active regulation 
of neural commands to muscles. However, neural control mechanisms cannot be 
explicitly examined in such models and require the addition of actively controlled 
muscle models with appropriate mechanical properties.

7.2.3 � Complex Locomotion Models Describe Musculoskeletal 
Mechanics

Neuromechanical models that incorporate muscles are necessary in order to examine 
the detailed neural excitation signals to multiple muscles necessary to drive locomo-
tion. A primary focus of musculoskeletal modeling studies of locomotion has been to 
find the appropriate muscle excitation patterns to reproduce a particular gait that was 
measured experimentally. These studies have provided important information about 
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the biomechanical functions of muscles during walking and how muscles can be 
coordinated to produce the necessary biomechanical subtasks of walking. However, 
because of the redundancy in the musculoskeletal system in production of actions, 
there are many feasible solutions to a particular motor task (Collins 1995; Martelli 
et al. 2013; Sohn et al. 2013; Simpson et al. 2015) and so optimization techniques 
are used to identify a single pattern of muscle activation that are sufficient to repli-
cate experimentally observed kinematics and/or kinetics (e.g., Neptune et al. 2001; 
McLean et al. 2003; Liu et al. 2008). The criteria for optimization are typically based 
on minimizing muscle stress, which has been assumed to be a goal of the neural con-
trol system (Crowninshield and Brand 1981; Collins 1995; Erdemir et al. 2007). The 
choice of the cost function can have large effects on the selected optimal solution of 
muscle activations and thus realistic optimality criteria are essential for predictive, 
optimal control models that can be used to examine the effects of surgical interven-
tions, rehabilitation, etc (Ackermann and van den Bogert 2010). However, even if 
realistic optimality criteria are chosen, the patterns of muscle activation are found 
without specific consideration of various neural mechanisms that may impose other 
constraints or features (Ting et al. 2012). Therefore, while the physics of the motion 
may be accurate in such models, the neural origin on muscle activity (e.g. feedfor-
ward motor pattern vs. feedback response to error) cannot be identified.

Another common focus of studies using detailed musculoskeletal models is to 
understand how altered muscle coordination in clinical populations (e.g., in cere-
bral palsy, stroke, amputation, etc.) affects walking performance (Higginson et al. 
2006; Hall et al. 2011; Peterson et al. 2011; Silverman and Neptune 2012; Steele 
et al. 2012, 2013). Towards this goal, a variety of studies have examined how the 
contributions of specific muscles to important biomechanical subtasks of walking 
are altered. However, such models cannot provide information about why muscle 
coordination is changed because muscle coordination is usually determined only 
by reproducing experimentally observed data. Therefore, dissociation between the 
effect of an initial impairment versus compensation for that impairment is difficult 
and yet gait deficiencies resulting from impairment versus compensation may ben-
efit from different rehabilitation strategies. It is also difficult to make predictions 
using the results of models that were found by tracking experimental measures and 
do not contain explicit representations of neural mechanisms that can be altered. 
Even if it were possible, the number of parameters in the model make it difficult 
to “emerge” new strategies based on various performance criteria and constraints 
compared to simpler models (e.g., Srinivasan and Ruina 2006).

7.2.4 � Locomotion Models Designed to Incorporate Neural 
Control Are Unvalidated

There are several examples of locomotion models that can produce stable human-
like locomotion using biologically-inspired control mechanisms yet none have been 
rigorously tested as a predictive model of real human walking. Most neurally-driven 
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models are based upon the hypothesis that spinal central pattern generators (CPGs) 
produce feedforward muscle excitation patterns that are modulated by sensory feed-
back. But, how the CPG is modeled, which types of sensory feedback are utilized 
and how sensory information is integrated differs widely across models. For ex-
ample, there are CPG models based on the half-center hypothesis (Brown 1914) in 
which alternating flexor and extensor activity produces the basic muscle activity 
underlying gait (Taga 1995a, b; Ogihara and Yamazaki 2001; Paul et  al. 2005), 
while others are based on a more complex two-layer CPG network composed of a 
rhythm generator that provides the basic locomotor rhythm and a pattern formation 
network that distributes this activity to the appropriate set of muscles (Jo and Mas-
saquoi 2007; Aoi et al. 2010; Aoi 2015). Similarly, these models also use different 
methods of modifying the CPG and its outputs based on sensory feedback. Despite 
these differences, however, all of these models reproduce locomotion that is qualita-
tively similar to experimentally observed gait patterns. Although some validation of 
each control scheme has been performed, none of the models have been rigorously 
tested against experimental data, particularly data designed specifically to test the 
validity of specific components of the model. This is particularly important as these 
models typically incorporate a large number of parameters in both neural and bio-
mechanical components, increasing the sources of redundancy. Thus, while current 
neuromechanical models of locomotion do provide some insight into the role of dif-
ferent neural mechanisms in locomotion, to date they represent more of a proof of 
concept such that their utility for addressing questions about the neural mechanisms 
contributing to locomotion and to predict the effect of lesions is currently limited.

7.2.5 � Balance Models Are Focused on Understanding  
Neural Control

An obvious difference in standing balance compared to locomotion is that there is 
much less movement involved while standing still, and even when responding to 
perturbations that occur while standing. This may make balance tasks seem boring 
or trivial from a mechanics perspective and yet there are no feedforward models of 
balance that can stand independently without eventually going unstable. Thus, from 
a neural perspective balance is an interesting problem of neural sensorimotor con-
trol. The focus of a majority of studies on standing balance control have therefore 
been on understanding this underlying sensorimotor control system rather than the 
more detailed mechanics of the musculoskeletal system. A commonly assumed goal 
of standing balance control is to keep the CoM within the base of support. How-
ever, this can be achieved by a number of joint and muscle level strategies. As it is 
unclear how the sensorimotor system controls the specific patterns associated with 
different postural strategies, most studies of standing balance control have focused 
on the control of relatively simple mechanical variables such as body orientation or 
CoM dynamics without regard for the control of multi-muscle patterns that generate 
different biomechanical strategies.
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7.2.6 � Simple Models of Balance Reveal Principles of 
Sensorimotor Control

Torque-actuated, inverted pendulum models are commonly used to investigate the 
sensorimotor control of standing balance. Typically, torque at the base of the pen-
dulum is representative of muscle actions at the ankle. Models usually include a 
physiologically-relevant time delay, are inherently unstable, and therefore require 
some form of neural control scheme to remain upright. There has been considerable 
debate about the role of feedforward versus feedback control in standing balance 
control, as well as which variables or error signals are necessary to reliably return 
the body to equilibrium given a perturbation. Further, which sensory signals are 
used to generate a feedback signal is unclear, as well as how this information is 
transformed into motor actions in response to perturbations.

Simple inverted pendulum postural models have been used on both sides of the 
debate of whether movement during quiet standing is generated from feedforward 
or feedback neural mechanisms. Even in the absence of external perturbations the 
body is in constant motion. This motion, typically referred to as postural or body 
sway, is a low-frequency movement that can easily be quantified using measures of 
center of pressure (CoP) displacement. It has been suggested the intrinsic stiffness 
of active muscles about the ankle is sufficient to stabilize the body during quiet 
stance (Winter et al. 1998). However, torque-actuated inverted pendulum models 
demonstrate that the necessary ankle stiffness is higher than any experimental es-
timates of ankle stiffness during standing (Morasso and Schieppati 1999; Peterka 
2002), providing evidence that some active control is necessary. Experimental stud-
ies of CoP displacement suggest that both feedforward and feedback mechanisms 
are at play. Competing concepts describe this as either a slow feedforward motion 
of the desired CoP location with faster feedback oscillations about that trajectory 
(Zatsiorsky and Duarte 1999), or alternately a feedforward mechanism that acts 
on short timescale with a slower feedback mechanism acting on longer timescales 
(Collins and De Luca 1993). Simple models of postural control on both sides of 
this debate can generate spontaneous body sway and reproduce experimentally ob-
served patterns of CoP deviations. For example, a simple inverted pendulum model 
controlled using delayed position and velocity feedback on error that simulates sen-
sory noise can reproduce a wide variety of common time and frequency domain 
CoP measures (Peterka 2000; Maurer and Peterka 2005). In contrast, sway-like mo-
tion has also been demonstrated using a predictive feedforward mechanism (Loram 
et al. 2005; Gawthrop et al. 2009). Because these models have only been used to 
reproduce observations, they only show that it is possible for either mechanism to 
control quiet stance. In order to provide strong evidence regarding the role of either 
mechanism in postural control, experiments must be carefully designed to dissoci-
ate the feedforward from feedback components. However, there are limitations in 
system identification techniques in conditions where sensory noise is dominant over 
external perturbations as in quiet stance where movement is minimal (van der Kooij 
et al. 2005).
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In response to perturbations during standing balance, simple, torque-actuated 
inverted pendulum models have provided clear evidence that feedback involving 
the flexible integration of different sensory systems (e.g., proprioceptive, ves-
tibular and visual information) is necessary for balance control. Modifiable mul-
tisensory integration mechanisms are important for providing accurate estimates 
of body orientation with respect to vertical in a range of biomechanical contexts. 
Conflicting sensory information can be generated experimentally through perturba-
tions to either the visual system (rotating a visual surround) or the proprioceptive 
system (rotating the support surface). The reliance on different sensory modalities 
can be dissociated by fitting experimental sway data to a simple inverted pendulum 
model with variable weightings on different sensory channels. Whereas healthy 
subjects tend to rely on proprioceptive information and align themselves with small 
support-surface rotation amplitude and frequencies, they must increase their reli-
ance on vestibular information to align with the vertical (Peterka 2002, and see 
Chap. 9 in this volume) for faster and larger components of perturbations. This 
simple model predicts that stability can no longer be maintained for larger pertur-
bations in the absence of both visual and vestibular information, consistent with 
responses observed in individuals with bilateral vestibular loss. That the model 
can correctly predict how balance fails under sensory loss provides support for 
the proposed control scheme and demonstrates how computational models, when 
used to interpret carefully designed experiments, can provide evidence regarding 
underlying neural control and provide a mechanism for examining the cause and 
effect of neural impairments.

Evidence supporting the role of task-level feedback governing balance control 
has also come from inverted pendulum models incorporating muscles to produce 
the torque about the ankle. Examining muscle activity in response to perturbations 
has provided evidence that the transformation from sensory information to mo-
tor action is based on the estimation of the CoM, a task-level variable estimated 
through multisensory integration, rather than local joint-level variables. Whereas 
the initial burst of muscle activity was previously proposed to be due to feed-
forward processes, reflecting a stereotypical response to a perturbation (Diener 
et  al. 1988), more recent studies demonstrate that the magnitude and timing of 
this initial burst is scaled according to the CoM acceleration signal at the onset of 
the perturbation prior to the observed muscle response (Lockhart and Ting 2007; 
Welch and Ting 2008, 2009). Moreover, the entire time course of muscle activity 
can be reproduced and used to stabilize a simple inverted pendulum model with 
delayed feedback on CoM acceleration, velocity, and displacement. Note that this 
model assumes that the CoM is accurately estimated by multisensory integration 
mechanisms (Peterka 2002, 2015). In combination with experiments in which ac-
celerations were varied, the model demonstrated that acceleration information is 
necessary to accurately reproduce the measured muscle activity responses across 
a wide range of perturbation (Lockhart and Ting 2007; Welch and Ting 2009; Sa-
favynia and Ting 2013a). The model also demonstrates how the delayed feedback 
on acceleration information generates peak muscle activity that occurs earlier than 
and appears to “predict” future peak CoM displacement (Welch and Ting 2009; 
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Insperger et  al. 2013). Together, these models suggest that delayed acceleration 
feedback due to sensory noise could account for the appearance of a feedforward 
component in both perturbed and quiet standing, although as mentioned previ-
ously, challenges exist in system identification where sensory noise is dominant 
(van der Kooij et al. 2005).

Even when multisegmental movements are not well-described by inverted pen-
dulum models, the response to perturbations can still be predicted based on task-
level CoM kinematics, reflecting sensorimotor rather than biomechanical processes. 
For example, the sensorimotor integration model of Peterka (Peterka 2002, 2015) 
holds true even when hip movement occurs (personal communication). Muscle ac-
tivity in response to perturbations can also be predicted based on measured CoM 
kinematic error even during a response predominated by hip motion (Welch and 
Ting 2008, 2009). This suggests that the delayed feedback sensorimotor transfor-
mation for reactive balance uses neutrally-computed CoM information to drive the 
excitation of multiple muscles independent of joint-level motions. This is further 
supported by evidence that CoM kinematics are a better predictor of muscle activity 
than joint level kinematics (Safavynia and Ting 2013a), and may drive the coor-
dinated recruitment of multiple muscles throughout the body (Safavynia and Ting 
2013b). Although a simplification of body dynamics appears inherent in the excita-
tion of multiple muscles, more complex musculoskeletal models are necessary to 
demonstrate that such control signals are sufficient to provide postural stability in 
multisegmental models of balance.

7.2.7 � Multisegmental Models of Balance

Multisegmental models typically incorporate sagittal-plane ankle, hip, and some-
times knee joints to examine how multisensory information is integrated to control 
the multiple joints of the body. These models are able to include proprioception at 
joints other than the ankle, demonstrating more complicated integration of sensory 
information in controlling the body (e.g. information from hip proprioceptors may 
be important for controlling the ankle and vice-versa). Multisegmental models have 
also provided evidence that humans likely utilize some internal model to overcome 
noisy or conflicting signals, and have facilitated study of multi-joint coordination 
strategies that is not possible with simple single-inverted pendulum models.

Multisegmental biomechanical models reveal that biomechanical as well as neu-
ral influences govern the choice of multi-joint movement strategy in balance con-
trol. Different multi-joint coordination strategies can be used to achieve the same 
higher task-level outcome due to redundancy in joint-space. Typically, small pertur-
bations to standing balance elicit motions predominantly about the ankle (“ankle” 
strategy) whereas larger perturbations that tend to place the CoM near the edge of 
the base of support, evoke flexion or extension at the hips (“hip” strategy) (Diener 
et al. 1988). Kuo and Zajac (1993) demonstrate the ankle strategy is insufficient 
to keep the feet on the ground for larger perturbations, necessitating a hip strategy 
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response. Similarly, Alexandrov and colleagues (2005) also found that the hip strat-
egy is more efficient at restoring the body at larger perturbations by comparing three 
eigenmovements that were primarily dominated by motion at one joint (e.g., ankle, 
knee and hip eigenmovements). However, in both cases there was no biomechanical 
reason for the selection of an ankle strategy over the hip strategy, thus there likely 
exist other reasons (such as minimizing motion head or increasing trunk stability) 
that lead to the preferred selection of the ankle strategy for small perturbations.

Models incorporating sensory dynamics further demonstrate that movement 
strategies may also depend on the ability of the nervous system to obtain reliable 
sensory information. Multisegmental models have shown that the healthy nervous 
system is very good at accounting for sensory noise and errors (van der Kooij et al. 
1999, e.g., Kuo 2005). In combination with a feedback scheme to keep the body 
upright, such models also incorporate a state estimator to minimize the error associ-
ated with imperfect sensors and to represent an internal model of the body and sen-
sor dynamics. Modifying the parameters of the model to simulate removing a sensor 
or increasing sensory noise can reproduce changes in postural responses strategies 
used in healthy individuals under altered sensory conditions using both two-link 
(hip and ankle, Kuo 2005) and three-link inverted pendulum models (hip, knee, and 
ankle, van der Kooij et al. 1999). They can also produce similar responses to those 
found experimentally in older adults and vestibular loss patients. Together, the abil-
ity of these models to fail in a similar way to the human system suggests that an 
internal model of sensorimotor dynamics is critical in controlling balance.

Optimal control theory applied to multisegmental models of standing balance 
provide insight into the modulation and variation of response strategies by the 
nervous system. Several models simulate postural response strategies based on lo-
cal feedback at each joint where the torque produced is based on joint kinematics. 
However, a single set of feedback gains cannot generate the appropriate postural 
response across biomechanical contexts given biomechanical limitations, including 
differences in maximum muscle torque about each joint, different postural con-
figurations, and different perturbation levels. Therefore the nervous system must 
use knowledge of the current biomechanical state to plan future responses. For ex-
ample, Park and colleagues (Park et al. 2004) used a two degree-of-freedom model 
(hip and ankle) to demonstrate that feedback control gains are continuously scaled 
as perturbation levels increase. As the postural challenge increased, the gains at the 
hip increased while ankle gains decreased, consistent with increased hip strategy for 
larger perturbation. In this case, the optimal feedback gains were found by replicat-
ing experimentally-recorded data, rather than testing a specific neural hypothesis. 
However similar results were found in a data-free model by optimizing the criteria 
of minimizing CoM excursion while maintaining upright stance (Kuo 1995). Al-
though promising, these types of studies can only provide evidence that it is pos-
sible that the nervous system selects strategies based on particular task-level goals, 
but do not rule out the possibility that controlling other variables may also produce 
similar results. A further challenge remains in identifying which neural systems pro-
duce such behaviors and how these idealized commands are translated into muscle 
recruitment and coordination signals.
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7.2.8 � Complex Models of Balance with Muscles

In order to examine how the different neural control strategies identified in simple 
models translate to multi-muscle coordination, detailed musculoskeletal models 
that incorporate realistic musculotendon elements are necessary. Such models face 
increased challenges for validation associated with neuromechanical redundancy in 
sensory systems, different joint-level strategies, and the control of multiple muscles 
crossing the joints. To date, there have been a few attempts at modeling standing 
balance control in the sagittal plane using detailed musculoskeletal models. For 
example, Jo and Massaquoi (2004) developed a planar muscle-driven model that 
was designed to demonstrate the possible cerebrocerebellar influence on postural 
control. Reinbolt and colleagues (Clark et al. 2011; Mansouri et al. 2012) developed 
a three-dimensional muscle-driven model that responds to perturbations to balance 
using local stretch-reflex mechanisms, and Nataraj and colleagues (Nataraj et al. 
2010; 2012a, b) incorporated both local joint feedback and whole body center of 
mass feedback in a three-dimensional musculoskeletal model. Each of these models 
are capable of remaining upright in response to perturbations and reproduce a kine-
matic response that looks qualitatively like the experimentally-observed response. 
Similar to the neurally-driven models of walking discussed above, there are variety 
of different control mechanisms that can be used to achieve similar results, and thor-
ough validation efforts must be performed to test any given neural control scheme. 
However, it is not clear that we have sufficient information about the neural control 
of balance to perform these validations.

7.3 � Challenges in Developing Validated Neuromechanical 
Models

Substantial challenges remain in the development of neuromechanical models of 
locomotion and balance that can be used to understand and predict mechanisms 
of motor dysfunction and rehabilitation. Combining complex musculoskeletal and 
neural control models exponentially compounds the redundancy “problem” fac-
ing neuromechanical modelers. Yet it is exactly this redundancy–or flexibility–be-
tween mechanical and neural contributions to movement that we need to understand 
in order to identify how compensatory mechanisms may facilitate movement in 
neuromotor deficits, and how different people could find different solutions for per-
forming the same task. Ultimately, predictive neuromechanical models would in-
corporate both the musculoskeletal complexity used in many biomechanical walk-
ing simulations as well as the robust feedforward and feedback control systems 
found in balance models and other complexities including multisensory integration 
models and parallel feedback mechanisms with different time delays and tunable 
passive mechanics (Ting et al. 2009).
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The integration of neuromechanical modeling and experimental approaches will 
be critical in testing specific hypotheses concerning how and why neuromechanical 
flexibility is both exploited and constrained under various movement contexts. As 
neuromechanical redundancy increases as more elements are included, the more 
critical it will be to go beyond simply reproducing a single measured behavior. 
While optimization is an important tool for predicting movement and in resolving 
redundancy, evidence suggests that humans do not always use optimal solutions 
(Muller and Sternad 2004; Welch and Ting 2008; de Rugy et al. 2012; Loeb 2012). 
Further, optimal solutions are highly dependent on the structure of the model as 
well as the constraints and the costs specified in the problem formulation. Thus, 
identifying neural constraints are critical for identifying relevant optimal solutions 
(Ting et al. 2012). To support the principled addition of model complexity, stud-
ies demonstrating where extant models fail to reproduce experimental data will be 
important (McKay et al. 2007, e.g., McKay and Ting 2008, McKay and Ting 2012) 
as well as robustly reproducing multiple experimental conditions. Even better, spe-
cific experiments should be designed to support or refute explicit hypotheses about 
how redundancy is exploited or constrained. In fact, neuromechanical models may 
be necessary to help interpret data by dissociating the effect of various underly-
ing mechanisms of movement. Identifying neural constraints on muscle activity 
will likely be a more effective and physiologically-relevant way to resolve redun-
dancy than through optimization alone. Below, we give some examples of how 
such constraints and limits can be identified through investigations combining both 
experimental and computational analyses and how they aid in the advancement of 
neuromechanical models for balance and walking and can define a range of possible 
motor patterns for the same movement as well as variations in movement observed 
across individuals.

7.3.1 � Neuromechanical Models Dissociate Neural Versus 
Mechanical Contributions to Movement

Any given movement results from interactions between neural and mechanical 
dynamics, including the passive mechanics of the body and muscles, changes in 
muscle properties with excitation level and muscle state, as well as parallel neural 
pathways with different delays and different information content (Ting et al. 2009; 
Roth et al. 2014). As passive mechanical models have the capability of exhibiting 
movements similar to those observed during behavior, it is important to dissociate 
the contributions that are due to neural control signals versus mechanical dynamics. 
Under various conditions and especially in impaired populations, the dependence 
upon neural versus mechanical elements could vary substantially. Neuromechani-
cal models may be necessary to identify both the possible range of variability in 
neural signals as well as the degree of neural versus mechanical control for a given 
measured behavior.
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One example of how a simple neuromechanical model can be used to define the 
necessary contributions and possible variations in neural control signals to balance 
control is a frontal plane model of balance control driven by delayed feedback 
(Scrivens et al. 2006; Bingham et al. 2011; Bingham and Ting 2013). We sought to 
understand why the dynamics of the CoM after a postural perturbation are similar 
when subjects stand at different stance widths even though the magnitude of mus-
cle activity differs dramatically (Henry et al. 2001; Torres-Oviedo and Ting 2010). 
This suggests a variation in the neural and mechanical contributions to standing 
stability within an individual across biomechanical contexts. To understand and 
quantify these neuromechanical interactions, we developed a model of lateral bal-
ance control using a four-bar linkage model where the distance between the feet 
can be altered. A delayed feedback signal based on hip angle position and velocity 
drive the torque about that joint. This is reasonable as the acceleration signal in the 
muscle activation pattern is essentially low-passed filtered by muscle activation 
contraction dynamics in the production of force. When altering the stance width, 
we found that the same feedback gain values could no longer be used to stabilize 
the system and that similar variations in postural stability could be generated in the 
model based on changing only feedback gains or stance width, demonstrating neu-
romechanical redundancy in postural control (Scrivens et al. 2006). Indeed, large 
differences in torques are necessary to produce the same CoM motion when stand-
ing at wide vs. narrow stance such that that the set of possible delayed feedback 
gains varies dramatically with stance width (Fig. 7.1) (Bingham and Ting 2013). 
An analysis of stability in our model further revealed substantial variability in the 
magnitudes of the feedback gains that can be used within each stance, which is cor-
roborated with the variations in feedback gains that we observe across individuals 
(Bingham et al. 2011).

While we can use the model to investigate the effects of non-delayed passive 
stiffness and damping due to tonic muscle activity prior to the perturbations, we 
were not able to accurately identify the passive versus active contributions to kine-
matics even in simulated data where those components were known. While there is 
a delay between the effects of passive versus active torque generation at the begin-
ning of the perturbation, there was simply not enough information in the kinematic 
signals in the perturbations that we used to reliably dissociate their effects (Bing-
ham et al. 2011). In healthy individuals the passive contributions are typically about 
10 % of the overall torque generating in perturbed balance control, but this value 
could increase substantially in individuals with neuromotor impairments (Dietz and 
Sinkjaer 2007). To allow the effects to be more apparent in the kinematics data, we 
further designed specific experiments that modified the effects of passive versus ac-
tive dynamics by altering subject mass, passive joint stiffness, and delayed feedback 
gains and extended the duration of perturbation (Bingham 2013). Similar variations 
in the model were implemented to examine how feedback gains are altered. Across 
stance widths, we also found that the level of stability could vary across individuals, 
and that these differences were preserved across stance widths, suggesting a higher 
level goal driving the selection of redundant neuromechanical strategies that could 
differ across individuals and movement contexts.
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Fig. 7.1   Frontal plane model of human mediolateral balance control. a Frontal plane motion of 
the body is modeled as a four-bar linkage. Two bars represent the legs, the third bar is the torso, 
and the fourth bar is the ground. Perturbations are applied as ground translations. Important param-
eters of the model are the hip width (W), stance width (S), hip torque (TH) and ankle angle (qA). b 
Stable feedback gains vary across stance widths. The dotted line indicates the feedback gain pairs 
that produced maximum stability across stance widths. The solid line indicates the feedback gain 
values that produced identical stability characteristics across stance widths. c Simulated CoM 
position across stance widths that have similar stability characteristics. Narrow ( top) and wide 
( bottom) stance responses correspond to feedback gains from orange and red X’s in b, respec-
tively. Although feedback gain values differed substantially across stance widths, the resulting 
CoM motion produced in response to a change in the initial state of the system was similar in 
narrow ( solid) and wide ( dotted) stance widths when feedback gains with the same stability char-
acteristics were used. (Reprinted with permission from Bingham and Ting 2013)
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7.3.2 � EMG Provides Better Information for Validating 
Neuromechanical Models

Using kinematic measures to validate model outputs is an obvious and necessary 
step, but may be a very blunt instrument for validating neuromechanical systems. 
Indeed, Bernstein’s original formulation of the redundancy problem arose from the 
very idea that the internal forces that generated a given kinematic trajectory could 
not be uniquely identified (Bernstein 1967). This redundancy is due to the fact 
that forces are integrated twice to produce movements, computations that are also 
dependent upon the position, velocity, and inertial properties of the limb. Adding 
ground-reaction forces is helpful, but still leaves intersegmental dynamics at the 
level of kinematics. An example of this problem can be seen in the use of modern 
digital control in controlling motors; it is well known that a smooth trajectory can be 
generated either from a constant torque or a series of pulses as long as the area under 
the curves are equivalent. The differences in the resulting trajectories are too small 
to be discerned and cannot be used to back out the forces going in. Therefore, using 
kinematics alone is insufficient to distinguish different neural control strategies that 
result from different forces or patterns of muscle activation, potentially indicating 
different mechanisms of sensorimotor control.

Muscle activity as recorded through electromyography (EMG) can provide im-
portant information as it represents amplified motor neuron pool activity and is also 
related to muscle force (Milner-Brown and Stein 1975; Basmajian and De Luca 
1985; Winter 2009). Not only can EMGs help validate neuromechanical models, 
but models may also be necessary to understand EMG activity. Although EMG 
provides only partial information about the outputs of the nervous system, the full 
information contained in such signals has yet to be fully exploited in the develop-
ment and validation of neuromechanical models. While using EMG to drive mod-
els has been attempted e.g., (Lloyd and Besier 2003; Buchanan et al. 2004; Shao 
et al. 2009; Sartori et al. 2012), there are issues in appropriately converting EMG 
to muscle force and in many cases only the general on and off and mean amplitude 
of muscle activation patterns are used to validate optimal model excitations (Za-
jac et al. 2002; Thelen et al. 2003; Damsgaard et al. 2006). One reason could be 
that EMG patterns are highly variable compared to biomechanical measures mak-
ing them difficult to analyze and interpret using statistical tests. Yet the relative 
consistency of motor outputs compared to the flexible neural strategies we use to 
generate them are at the crux of the questions that neuromechanical models can 
and should answer. The variability observed both within and across subjects can 
be used to identify the task-level goals that are controlled by the nervous system 
(Scholz and Schoner 1999; Todorov and Jordan 2003) and the underlying structure 
of the signals can be used to identify constraints on the organization of motor activ-
ity (Torres-Oviedo and Ting 2007; Welch and Ting 2008, 2009; Torres-Oviedo and 
Ting 2010; Safavynia and Ting 2013b), some of which could improve optimization 
and simulation of walking and balance (McKay and Ting 2012; Borzelli et al. 2013; 
Walter et al. 2014). Neuromechanical models become essential to understanding the 
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impact of variations in muscle activity on biomechanical performance (e.g., Kutch 
and Valero-Cuevas 2011; Sohn et  al. 2013; Simpson et al. 2015). While it may 
be considered ideal to access neural signals directly, there are substantial limita-
tions in current invasive and noninvasive techniques and advances in understanding 
variability in muscle activity will provide insights for incorporating more complex 
neural models

As an example of how a simple neuromechanical model used to predict muscle 
activity can reveal fundamental neural mechanisms of balance, our sensorimotor 
feedback model demonstrated the importance of acceleration feedback in reactive 
balance responses. A simple delayed feedback loop using COM acceleration, ve-
locity, and displacement can reproduce the entire time course of muscle activity 
during postural perturbations to standing balance in both humans and other animals 
(Fig. 7.2) (Lockhart and Ting 2007; Welch and Ting 2008). We found that the steep 
initial rise of muscle activity occurring at a long latency (~ 40 ms in cats, ~ 100 ms 
in humans) after a perturbation follows the initial acceleration induced by the per-
turbation. Feedback on the acceleration signal can account for what can appear to 
be a predictive, or feedforward, burst of muscle activity (Diener et al. 1988) where 
the peak in muscle activity precedes the peak in CoM displacement induced by the 
perturbation. Removing acceleration feedback from the model only reduced the 
goodness of fit to recorded data by about 2 %, yet the initial burst was eliminated, 
altering the qualitative shape of the response (Lockhart and Ting 2007); adding jerk 
to the model did not improve fits. Using current quantitative metrics of similarity 
it would thus be possible to simulate muscle activation patterns that quantitatively 
account for the variance in the data, but which generate qualitatively different re-
sponse patterns. Further, clues to the physiological basis of the acceleration infor-
mation were obtained by demonstrating that the initial burst is lost after large-fiber 
peripheral neuropathy (Fig. 7.2) (Lockhart and Ting 2007). In this condition, the 
large diameter muscle spindle, Golgi tendon organ, and cutaneous afferents were 
damaged (Stapley et al. 2002). The selection of feedback gains could be predicted 
by the same optimization criteria with a further constraint on removing acceleration 
feedback, suggesting there was a common motor goal driving the selection of the 
motor pattern both before and after neuropathy. While qualitative changes in the 
muscle activity were found, the kinematics of the CoM were quite similar before 
and after neuropathy, differing only in magnitude (Fig.  7.3). This highlights the 
relative insensitivity of the kinematic signals to changes in the underlying neural 
control system.

Since qualitative differences may not be easily identified using typical quantita-
tive statistical analyses, better exploratory statistical tools are necessary to facilitate 
better neuromechanical models that can identify subtle but potentially important 
differences between and across conditions as well as to compare simulated and 
experimental kinematic and muscle activity data. High variability across trials and 
subjects often hinder our ability to rigorously test the fidelity of neuromechanical 
models, leaving many to be validated “by eye”. Often models are considered valid if 
they roughly lie within the broad 95 % confidence limits of the data, which allow for 
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Fig. 7.2   Simple feedback model of postural control used to predict muscle activity during reactive 
balance responses. a The mechanics of the body during balance is approximated as an inverted 
pendulum on a moving cart. Experimentally measured accelerations of the platform were applied 
to the cart so that realistic acceleration, velocity and displacement trajectories of the platform were 
modeled. b The perturbation acceleration generates a disturbance torque at the base of the pen-
dulum. Delayed kinematics of the horizontal CoM were used in a simple feedback law to gener-
ate model muscle-activation patterns, which were compared with those measured experimentally. 
The modeled muscle activation then generated a stabilizing torque about the representative joint. 
(Reprinted with permission from Lockhart and Ting 2007)
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Fig. 7.3   Comparison of recorded and simulated muscle activation and CoM kinematics before 
and after large-fiber peripheral neuropathy. a Recorded ( gray lines) and simulated ( black lines) 
CoM displacement, velocity and acceleration. b Recorded ( gray line) muscle activity and simu-
lated ( black line) muscle activity from the best-match model parameters. c Decomposition of 
simulated muscle activity ( black line) into components arising from CoM position feedback ( gray 
dashed line), CoM velocity feedback ( gray dotted line), and CoM acceleration feedback ( gray 
solid line). Note that the initial burst in the intact condition ( left panel) is due primarily to accel-
eration feedback and the absence of the initial burst and acceleration feedback in the sensory loss 
condition ( right panel). (Reprinted with permission from Lockhart and Ting 2007)

 

lting@emory.edu



2157  Why Is Neuromechanical Modeling of Balance and Locomotion So Hard?

qualitative differences in the traces, or only certain features such as peak amplitude 
and timing are used in statistical analysis. Toward the development of better tools 
to compare curves, we recently proposed a new method for functional analysis of 
variance (fANOVA) based on the wavelet representations of EMG signals (McKay 
et al. 2013). The statistically significant differences identified within the wavelet 
domain are then transformed back into the time domain rendering clearly interpre-
table difference curves between conditions. These analyses have the potential to 
reveal critical features that are typically hard to quantify such as inflection points 
and small bursts of activity and could be expanded to demonstrate differences be-
tween model outputs and experimental data with more power and better temporal 
resolution than traditional methods, ultimately enhancing our ability to develop and 
validate neuromechanical models.

7.3.3 � Neuromechanical Constraints on Musculoskeletal 
Redundancy

Developing validated neuromechanical models using muscles has the further chal-
lenge of dealing with musculoskeletal redundancy in a physiologically-relevant way 
as adding neural complexity only furthers the “problem” of redundancy and model 
validation (Prinz et al. 2004). It is well known that many different coordination pat-
terns across multiple muscles can be used to generate a given set of joint torques at 
an instant in time. Some evidence suggests that the activity of multiple muscles dur-
ing movements can be predicted based on optimality criteria typically minimizing 
muscle stress or force (Crowninshield and Brand 1981; Thelen et al. 2003; Kurtzer 
et al. 2006; Erdemir et al. 2007). However, these produce only a single solution for 
a given task, whereas great variability within and across subjects is often observed. 
Our work using a musculoskeletal model demonstrates that substantial variations in 
the amplitude of activity in a given muscle are possible to achieve a given biome-
chanical task (Sohn et al. 2013; Simpson et al. 2015). How thus do we interpret and 
quantify these deviations in muscle coordination? And to what degree do these need 
to be accounted for in neuromechanical models?

In order to develop a new framework for understanding, quantifying, and predict-
ing muscle activation patterns we have performed a number of experimental studies 
to investigate constraint of the spatial activation of muscles and their relationship to 
biomechanical functions. Our work in combination with studies from upper extrem-
ity movements suggest that muscles are not activated independently, as assumed by 
optimization models, but are constrained to be active in modular units specifying 
fixed spatial patterns of muscle activity (d’Avella et  al. 2003; Bizzi et  al. 2008; 
Ting and Chvatal 2010). These motor modules, also referred to as muscle syner-
gies, coordinate muscles across multiple joints and can produce consistent biome-
chanical outputs necessary to achieve a task (Ting and Macpherson 2005; Chvatal 
et al. 2011). Within this framework, movements are constructed by combining and 
varying the recruitment of motor modules to achieve a task (Fig. 7.4). Thus, motor 
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modules provide a framework for understanding variability observed both within 
and across subjects. For example, trial-by-trial variations in reactive balance and 
cycle-by-cycle variations in walking can be explained by different levels of recruit-
ment of motor modules rather than muscles (Clark et al. 2010; Torres-Oviedo and 
Ting 2010). Further, we observe different number and structure of motor modules 
across individuals (Torres-Oviedo and Ting 2007). Moreover, these are preserved 
across different biomechanical contexts consistent with the idea that motor modules 
are neural constraints (Torres-Oviedo and Ting 2010; Chvatal et al. 2011) that could 
represent preferred motor patterns (de Rugy et al. 2012). The same motor modules 
are even shared across walking and balance tasks (Chvatal and Ting 2012; 2013). 
Finally, in the upper extremity, performance of novel force generation tasks that can 
be achieved using existing motor modules are much easier for subjects to learn than 
those that require muscle activation patterns that are not compatible with existing 
muscle synergies (Berger et al. 2013).

Incorporating motor modules into neuromechanical models is necessary to ef-
fectively understand motor function; in return they may also improve the predic-
tive capabilities of model performance. Several studies have demonstrated that 
similar motor performance can be achieved through optimal control of individual 
muscle versus recruitment of muscle groups (Raasch and Zajac 1999; McKay and 
Ting 2012). In reactive balance responses, we demonstrated that minimizing mo-

Fig. 7.4   Motor module concept. a Each motor module (Mi) contributes to the activation (ei) of 
a single muscle (mi) with a fixed weight (wij, where i = 1 to number of motor module and j = 1 
to number muscles) with an activation profile that can vary over time (Ci). In this example, the 
weight of the connection between each motor module and muscle is depicted by the width of the 
arrow. For example, the activity of muscle 1 (e1) has a large contribution from module 1 ( blue) 
and a much smaller contribution from module 2 ( red). In contrast, the activity of muscle 3 (e3) has 
approximately equal contributions from both modules. b This allows the search space of neural 
control inputs to satisfy the objective function be constrained to a smaller number
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tor module recruitment better matched the force evoked during reactive balance 
responses compared to minimizing individual muscle activation (McKay and Ting 
2012). While the total level of muscle activation was increased slightly compared 
to the minimum possible activity, the computation time required to find an optimal 
solution was improved. The feasibility of using motor modules in simulations of 
human walking has also been demonstrated (Neptune et al. 2009; Allen and Nep-
tune 2012; Sartori et al. 2013) (Fig. 7.5), as well as the detrimental consequences of 
altered motor modules to walking function observed in stroke (Allen et al. 2013). 
Further, the internal joint loading force predictions are improved in a torque-based 
model of walking when motor module constraints are considered (Walter et  al. 
2014). Therefore, using motor modules constraints may be an important step to both 
validating motor modules as a mechanism for motor control as well as improving 
the predictive power of model on an individual basis.

Fig. 7.5   Detailed musculoskeletal models with motor modules instead of individual muscles as 
the control inputs can be used to successfully reproduce well-coordinated walking patterns. Allen 
and Neptune 2012 demonstrated that that the six motor modules shown here are sufficient to sat-
isfy the biomechanical demands present during walking. Each motor module coordinates multiple 
muscles with a common temporal recruitment pattern
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7.4 � Conclusion

In conclusion, neuromechanical models are becoming increasingly important in 
elucidating principles of movement in balance and locomotion. Advancing the in-
tegration of neuromechanical modeling and experimental approaches will require 
researchers to have a training in a diverse set of disciplines spanning neural and 
musculoskeletal systems, experimental design, as well as computational modeling 
techniques. As computational tools for analyzing and simulating both musculoskel-
etal models and their control improve (Cofer et al. 2010; Bunderson et al. 2012; 
Bunderson and Bingham 2015; Markin et al. 2015) our ability to develop models 
that can not only describe but also predict movement strategies and control will also 
improve. Focus on a principled increase in complexity of models, with explicit tests 
to demonstrate the contributions of each component will help to justify the neces-
sity of each component to explain the robustness of human locomotor and balance 
behaviors.
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