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SUMMARY

Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influ-
ence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics
with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force
contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activa-
tion of the muscles are often performed separately. We have developed an intrinsically forward computa-
tional platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies
among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formu-
lation has significant advantages for optimization and forward simulation, particularly with application to
neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows
calculation of system derivatives with respect to kinematic states and muscle and neural control states, thus
affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial con-
ditions for forward simulations. In this review, we describe our algorithm for generating state equations and
explain how they may be used in integration, linearization, and stability analysis tools to provide structural
insights into the neural control of movement. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Movements result from complex neuromuscular interactions

The relative contributions of multiple neural and biomechanical mechanisms to smooth, graceful,
and efficient biological movements are difficult to dissociate intuitively. For example, the response
to a postural perturbation involves interaction among several systems. Imagine being shoved from
behind: at the physical level, this will cause some flexion along the spine and at the hip, extension
of the knees and flexion of the ankles, and motion of the arms. In the absence of any neuromuscu-
lar response, the distribution of joint motions depends on the inertia and anatomy of the body. In
the absence of any change in neural drive, muscular forces still vary with changing muscle lengths
because of joint motion and the forces will affect that motion. The nervous system makes its own
multifaceted contribution, drawing information from muscle proprioceptors, vestibular, and visual
sensors. Weighing the relative importance of these systems requires careful accounting for each
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of their unique properties and their integration through the body. Without integrative and quanti-
tative models to test these theories, controversies persist in the literature. For example, intrinsic
muscle mechanics — passive viscoelasticity and cross bridge mechanics — provide an instanta-
neous force change that counters a perturbation and contributes to postural stability [1], but these
intrinsic properties do not appear to be sufficient to maintain upright posture by themselves [2, 3].
Likewise, spinal reflexes reinforce and amplify muscular stability and could mediate balance [3,4],
but the global behavior of humans during stance is poorly described by these reactive mechanisms
alone [5-7]. Finally, active attention may or may not be required for robust balance control [8]. It is
experimentally difficult to separate the passive physics of the body, the intrinsic mechanical prop-
erties of the muscles, and the control processes of the nervous system because a change in any one
component ripples through the entire system.

Understanding the principles that drive complex and redundant neuromuscular interactions and
strategies requires computational modeling techniques that allow the contributions of different com-
ponents to be varied and evaluated, particularly for motor behaviors that are inherently unstable,
such as walking and standing balance control. Inclusion of postural configuration and appropriate
muscle properties can significantly alter results of musculoskeletal simulations [9], and effectively
stabilize them [10]. In the absence of the appropriate intrinsic stability provided by muscular
contraction and feedback control, small changes in the pattern of muscle activation can com-
pletely destabilize a simulation [11]. Such sensitivity to small perturbation is not physiological,
because our body dynamics are resistant to small perturbations because of viscoelastic properties not
modeled in rigid body dynamics. Nonphysiological instabilities make it difficult to generate de novo
forward simulations based on optimizing task goals [12] or an assumed neural structure, because
of these inherent instabilities. We still lack an appropriate computational platform for under-
standing the neural strategies for muscle activation that can be modulated to generate a range of
different movements.

1.2. Solution strategies

All musculoskeletal models solve the same basic problem of determining how the body moves under
the influence of external and internal forces according to laws of physics. Simplifying and quanti-
fying the complex skeletal, muscular, and neural components that affect these forces is the first
challenge of neuromusculoskeletal modeling.

The dominant strategy for musculoskeletal simulation and analysis is to separate the components
with an inverse dynamics approach. In this strategy it is axiomatic to divide the body into rigid
(i.e., nondeformable fixed inertial parameters) segments linked by mechanical constraints represent-
ing the action of connective tissue at the physiological joints of the body. This is partly motivated
by well-developed formalism for modeling systems of rigid links and by easy access to many excel-
lent rigid body dynamics engines. These engines reduce the description of motion of the rigid body
system to

i=7 (6? ?M), (1)

where ¢ is a vector defining the posture of the system of rigid bodies and 7t is a vector of
generalized internal forces arising primarily from muscle forces.

The strategy of separating components of the neuromusculoskeletal system is extremely well
suited to the analysis or reproduction of experimentally-measured kinetic and kinematic data. Given

a set of experimentally measured kinematics E,Eﬁ and external forces, Equation (1) can be

inverted to yield internal generalized forces ?M [13-16].

Muscle forces ( FM) dominate the internal generalized forces and can be derived, along with
muscle excitation (E), from the internal generalized forces based on various optimization criteria

or measured EMG [17-19]. It is nearly axiomatic to model each muscle as a completely independent
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NEUROMECHANIC: ANALYZING THE NEURAL CONTROL OF MOVEMENT 1017

force generator attached to the rigid segments at finite, discrete points. The widespread acceptance
of Hill-type muscle models yields a relationship between kinematics and muscle force,

Fucf (6,27,?) , ?)

which allows inference of the neural drive required to produce the predicted pattern of muscle forces.
The neural model is often embodied in the cost function (e.g., minimum effort) used to distribute
the generalized forces among the various muscles.

Although modeling the rigid body dynamics separate from muscle mechanics has been an invalu-
able tool for analyzing biomechanical experiments, such a strategy masks the complex interdepen-
dencies of the integrated neuromechanical system. Reconstruction of an experimentally observed
motion yields a feedforward pattern of activation, but does not elucidate how the nervous system
arrives at this pattern, nor does it reveal the continuous sensory cues and feedback transformations
that are used to maintain it in the face of continual system and external noise. Because the practice of
separating skeletal, muscle, and neural dynamics grew from inverse dynamics, it carries an implic-
itly inverse paradigm and is limited in its ability to predict motor behavior based on hypotheses
about the neural control system.

We have developed an intrinsically forward computational platform (Neuromechanic) that
explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle
mechanics, and neural control modules. On this platform the dynamics have been formulated to

— s

include states describing rigid body dynamics (5, q ), neural dynamics (n ), and muscle dynamics

(a.1).

q

q ST

i =f(61, ,n,a,l,t) 3)
i
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Although the difference seems subtle, the strategy has significant advantages for optimization and
forward simulation, particularly if one’s principal interest is neural control. Explicit inclusion of
all state dependencies allows calculation of system derivatives and affords a wealth of analytical
tools to examine both kinematic and muscle states, including linearization, stability analyses (useful
for optimization) and calculation of initial conditions for forward simulations. In the sections that
follow, we will describe our algorithm for generating all state derivatives and explain how they may
be used in integration, linearization, and stability analysis tools to provide insights into the neural
control of movement.

2. PROGRAM DESIGN

At the center of Neuromechanic is a method for the calculation of integrated neuromechanical state
equations governing the dynamics of motion. Given the state of the system at a particular instance
of time, the rate of change of that state is calculated and integrated forward in time yielding the state
at the next time step (forward simulation) generating realistic descriptions of movement, muscle
mechanics, and neural dynamics. Forward simulation may reveal many details about the neurome-
chanical coupling across kinematic, muscle, and neural states that are difficult or impossible to
obtain through experimental observation or inverse dynamics. Figure 1 illustrates the order in which
the equations of state are generated by Neuromechanic at each time step and the interdependencies
among the elements. The benefit of the Neuromechanic formalism is that these state equations are
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Figure 1. The schematic demonstrates the order in which state equations are generated by Neuromechanic
at each time step and the interdependencies among the elements. The inputs at any time step are the
constant model parameters, the kinematic, muscle, and neural states, and muscle related state dependent
variables (i.e., muscle fiber force, muscle fiber length, muscle fiber velocity) from the previous iteration.
Neuromechanic first calculates all variables (e.g., system inertia, gravitational forces, moment arm matrices)
dependent only on rigid body states. These variables are then used along with the muscle related state depen-
dent variables from the previous iteration to calculate muscle excitation values and neural state derivatives.
Muscle forces, muscle state derivatives, and other muscle related state-dependent variables from rigid body
and neural variables. Finally, the frictional contact forces and rigid body state derivatives are computed.

available to tools that enhance analysis and simplify the forward simulation process. An equilibra-
tion tool is used to set the many initial conditions to viable and realistic values. A stability analysis
tool allows a prediction of the behavior of the model, even before the simulation begins, given these
initial conditions. A linearization tool can be used to design optimal neural controllers. In addition,
the program is extensible with neural control modules for modeling and testing a wide variety of
neural control hypotheses. The methods used to construct the state equations and their applications
are discussed in this section.

2.1. Constructing state equations

2.1.1. Skeletal dynamics. The inertial and skeletal dynamics are modeled using well-established
rigid body dynamics methods. Although a remarkable diversity exists in the development of
algorithms for numerically simulating rigid multibody dynamics, all methods ultimately result in
identical system dynamics. The different algorithms balance the ease of conceptually representing
a dynamic system with the speed, accuracy, and stability of the resulting differential equations that
must be solved [20-22]. The dynamics engine behind Neuromechanic is based on the common
simplification that biological systems can be represented as open-chain, rigid linkages. This slight
compromise in generality is balanced by a simpler representation of the dynamics, increased speed,
and more stable numerical simulation. Each rigid body is assigned translational and/or rotational
degrees of freedom relative to a parent body resulting in a minimum number of dependent coordi-
nates. This coordinate scheme also lends itself well to an anatomical description of a biomechanical
model where the joint angles are defined relative to their adjacent body parts as opposed to some
abstract reference. It also allows implicit embedding of kinematic constraints into the formulation of
the equations of motion and removes the need for additional constraint equations. The concatenated

position and velocity of these coordinates comprise the rigid body state vectors (6,5) and the
equations of motion for these states are developed from a Lagrangian formulation of D’ Alembert’s

principle similar to the algorithm proposed by Kane and Levinson [23]. This particular algorithm is
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well suited to open-chain linkages with a tree structure and allows rapid recursive computation of
kinematic and dynamic variables from local coordinates. It is important to note that the equation of
motion in Neuromechanic is fundamentally the same as in the separate physics solution

Mg, =V + Te + Tu. )

The system inertia matrix M is dependent on the systems current configuration (6) The vector of

generalized Coriolis and centripetal forces V and vector of externally imposed generalized forces

?E are dependent on both the configuration (q) and joint velocities (a) The vector of internal

generalized forces ?M is entirely due to the force generated in muscles, which will be described

later. Here, it is sufficient to say that they are dependent on rigid body, muscle, and neural states.
The vector of externally imposed generalized forces is induced by a combination of externally

applied forces and moments (wrenches) that depend on the environment. In Neuromechanic these

are separated into those induced by gravity (6) frictional contact (ﬁ) other imposed external
wrenches (Jéw IX/E), and imposed, external kinematic constraints (J g ﬁ’c) The external wrenches

influence the rigid body dynamics through the product of the external wrench (ﬁ/) and endpoint
Jacobian at the point of application (J).

?E=5+ﬁ+J£ﬁ/E+JZ§ We. (5)

The tree structure and recursive formulation employed by Neuromechanic has the benefit that the
system inertia and generalized Coriolis and centripetal forces are efficiently calculated. Moreover,
the formulation of these components results in extremely efficient calculation of arbitrary endpoint
Jacobians and external forces can be defined either in terms of relative or inertial frame coordinates.

In the case of kinematic constraints it is the kinematics, rather than the wrenches that arise from
them, which are prescribed. Holonomic acceleration constraints (X.) are prescribed and the induced
wrenches augment system of linear equations of motion as Lagrange multipliers [22].

Mg, =V + G +JL We + J5 We + Tu

Xe =Joqr +Jcqr
[M —Jg}[;ﬁ]_ V +G +J% We + Tu -
—Jo 0 We Jeqr —xc

Inelastic impact and frictional contact forces are obtained from a velocity-based frictional con-
tact model [24], which has been adapted to work with acceleration-based dynamics. In the
current implementation of Neuromechanic, frictional contact constraints cannot be combined with
holonomic acceleration constraints. The frictional contact forces are calculated each time step after
all other contributions, including internally imposed generalized forces, are computed.

2.1.2. Neural control. The internal generalized forces (?M) depend on the rigid body states and

a neural controller and muscle dynamics. In the Neuromechanic workflow, the neural control
(including muscle excitation functions) is calculated after the skeletal and inertial dynamics
(consisting of variables that depend only on rigid-body states), but before muscle dynamics at each
time step.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:1015-1027
DOI: 10.1002/cnm



1020 N. E. BUNDERSON ET AL.

Neuromechanic supports the implementation of neural dynamics with an arbitrary number of
neural states. The simplest, zero-state feedforward and/or instantaneous feedback control are imple-
mented in the form of a neural network. Each ‘neuron’ transforms inputs (sx;) derived from

kinematic (6, 5) and muscle (a, ) states to neural outputs (0),

nsyn
o= fn (Z spir(sx; — SPiz)) : ®)

i=1

Specifically, the inputs may be generalized coordinate positions and velocities, muscle force, fiber
length and velocity, musculotendon length and velocity, the scalar output of another neuron, or
time-dependent cubic-spline functions. The inputs sum linearly with a gain (sp;;) and offset (sp;2)
applied and may be passed through sigmoidal, hyperbolic tangent, or Heaviside shaping functions

Ny =(1+e 7!
Jn(x) = tanh(x) , ©)
fn(x) =1b+ (ub—1b)H(x)

where [b and ub are lower and upper bounds and H (x) is the Heaviside step function. Alternatively,
the output may be saturated at ub for values greater than ub and at [b for values less than /b. Because
the output of one neuron may be an input for other neurons, these can be strung together in layers
after the fashion of a neural network.

More advanced and specific neural controllers are implemented in external control modules. The
control modules can implement their own neural equations of state,

n=f(.) (10)

which are incorporated into the state vector (Equation (3)) for simulation and analysis. For example,
a center of mass controller, included in the software distribution, adds six states representing the
integral of linear and angular momentum of the animal,

my=1Lq. (an
The matrix L relates the generalized coordinate velocities with the vector of linear and angular

momentum ﬁM) and depends on the generalized coordinate positions. It is calculated by the

Neuromechanic master program and passed into the neural control module. An API is available for
creation of controllers based on any of Neuromechanic’s states and many state-derived variables.

As previously stated the output of any neuron may serve as an input for other neurons. In addition
the neuron output may be the excitation (&) to a muscle. These ‘motoneurons’ provide the direct
connection from the neural controller to the muscle dynamics. One of the most confounding inter-
dependencies of neuromusculoskeletal modeling is that the muscle excitation functions may depend
nonlinearly on muscle variables and the muscle variables may depend nonlinearly on the muscle
excitation function. These functions may combine to form a transcendental function, which must
typically be solved iteratively. In the current implementation of Neuromechanic this applies to three
muscle variables (muscle fiber length, muscle fiber velocity, and muscle force) and neural excita-
tion. To circumvent this computationally-expensive step, Neuromechanic assumes that changes in
these muscle variables are small and uses the stored values from the previous time-step to compute
the excitation function. As long as time steps are appropriately small, errors introduced from this
method should be negligible.

2.1.3. Muscle dynamics. Neuromechanic uses Hill muscle models [25, 26] to estimate muscle
forces from rigid body states, neural activation, and internal muscle states that capture series
elasticity and activation dynamics. In addition to providing the musculotendon force (Fyr), the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:1015-1027
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muscle models provide state equations for activation level (a;) and contractile element length (/;)

for muscle 7,
a; N
L-ﬂ = f (lhaid.e:), (12)

where ¢; is the excitation from a neuron. In addition the muscle force may be directly proportional
to the muscle excitation

Fyi = Fyaxici, (13)

where Fjr4x; is a fixed model parameter. By using this proportional muscle model in combina-
tion with a neural control module, additional user-defined muscle models may be included with an
arbitrary number of additional muscle states.

The internally induced generalized force vector (?M) is calculated from the muscle forces
(]?M) through the moment arm matrix (R), which is dependent only on fixed parameters (muscle

attachment points and wrapping surfaces) and the configuration (a),

Tv = RFy (14)

2.2. Application of state equations

2.2.1. Forward simulation. As described previously, given the current configuration of a neuro-
musculoskeletal model (including fixed parameters such as mass and the current kinematic, muscle,
and neural states) a single vector (Equation (3)) describing the rate of change of all dynamic states
can be obtained at each time step. During forward simulation, the vector of state time derivatives
is numerically integrated to obtain the state values at the next time step. Those states are, in turn,
used to calculate the updated state derivatives. This process is repeated generating the trajectory
for each state and many additional state-derived variables useful for understanding animal motion.
Neuromechanic implements three numerical integrators: a fixed step fourth-order Runge—Kutta, a
variable step fourth-order/fifth-order Runge—Kutta and a Runge—Kutta method of order 8 [27].

2.2.2. Equilibration. To obtain reasonable forward simulations, each state (kinematic, muscle and
neural) must be set to an appropriate initial value, and finding these values can often require
substantial offline calculations. Neuromechanic implements an equilibration tool that can be used to
automatically set the muscle and neural states to equilibrium initial conditions based on a solution
that minimizes a user-modifiable cost function. First, a set of muscle forces achieving kinematic
equilibrium is obtained by solving

RFy =35 We— G —J5 We — P (15)
subject to
I?MIN < I?M < FMAX7 (16)

where ( Fyin and FMAX) are the vectors of minimum and maximum allowable muscle force,

respectively. Because there are often multiple solutions to this problem the tool chooses a unique
solution by solving Equation (15) subject to the constraint in Equation (16) while minimizing a
quadratic cost,

1 =
CZEFN’{QFM‘FCTFM- A7)

The quadratic (Q), and linear (E ) terms can be set by the user based on the requirements of the
task. Set to the identity matrix and zero vector respectively results in a cost function, ¢, which

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:1015-1027
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describes the sum square of total muscle force. Setting the diagonal terms of Q to the square inverse

of the maximum isometric force for each muscle and setting all other terms of Q and C to zero
approximates the popular muscle stress [19] cost (see Illustration 2 below).

After solving for the equilibrium muscle forces, the neural excitations (E) and compatible muscle

states (E, ! ) are found to satisfy the equilibrated muscle and neural dynamic equations,

hi=0= f(..). (18)
ai =0= f(a;,si), (19)
i=0=f (1i,ai,6). (20)

The result is a complete set of mechanical, neural, and muscle states that produce the desired inter-
action forces in a desired equilibrium posture, providing convenient initial conditions for many
forward simulations.

2.2.3. Linearization and stability analysis. The integrated approach also makes it easy to generate
a linearized approximation of the system dynamics for rapid approximation of neuromechanical
responses, optimization, and Lyapunov stability analysis. The linearized system state matrix is
a truncated Taylor series expansion that describes how a small change in the states will affect
the system,

n-
Il

=f (E,E,Ejﬁ,r) Q1)

oo~ Q. )

=

o0
S Az™ (o™ N
Az=2—-29= E L(Tf)_\ =~ AAz
z

=<0 ) (22)
where A = (%)
Z

Here, the full value of an integrated approach to generating system equations across kinematic,
muscle and neural states can be seen. Neuromechanic generates the columns of the linearized state
matrix A by slightly perturbing each element of the state vector to determine the sensitivity of the
state derivatives to that state. Because all state dependencies are collected into a single routine,
the perturbation is propagated through all state equations. This differentiation of the system state
matrix includes all native states and additional states prescribed in the neural control modules. This
facilitates linearization of the state equations even with the arbitrary user-defined neural controllers.
The linearized state matrix is very useful in various optimization methods and useful in reveal-
ing the local stability of the system. If the state vector Zois an equilibrium value, the eigenvalues
of A reveal the first-order response to perturbations along the system modes (eigenvectors of A).
Eigenvalues with negative real parts indicate that the linearized system will be asymptotically sta-
ble, while positive eigenvalues indicate divergence toward infinity. Equally important, the linearized
system matrix allows application of the whole wealth of linear control theory, subject to the caveat
of small perturbations, including analytical solutions to optimization problems.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:1015-1027
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2.2.4. Extensibility. Neuromechanic emphasizes control of biomechanical models with the goal
of evaluating interactions between neural control strategies and constraints imposed by the
musculoskeletal system in the production of stable and robust movement. User-defined neural
control modules may model sensory feedback, synaptic and transmission delays, and internal
models of skeletal and muscle dynamics. Nearly all the information used to simulate
musculoskeletal dynamics is available to these neural control modules. This includes additional
and sometimes abstract variables such as center of mass dynamics and momentum variables, which
are key to some hypothesized models of neural control. Moreover, the user-defined states of the
neural control modules are directly incorporated into the global state vector making them available
for the previously described integration, equilibration, and linearization tools.

3. ILLUSTRATIONS

3.1. Illustration 1: stability as a criteria for muscle activation pattern selection

We used Neuromechanic to investigate the role of intrinsic muscle properties and musculoskeletal
anatomy on the stability of a feline hindlimb. One of the inherent difficulties of such an analysis is
that production of a target endpoint force is insufficient to define a unique muscle activation pattern,
but allows a large space of redundant muscle activation patterns to produce the required ground
reaction forces. The mechanical stability varies among these patterns because of the intrinsic sta-
bility of individual muscles and co-contraction of antagonist pairs. We hypothesized that muscular
redundancy could be resolved and postural performance improved by using musculoskeletal sta-
bility as a criterion to select muscle activation patterns to maximize stability and satisfy endpoint
force production [10]. To test this hypothesis, we evaluated the Lyapunov stability of a limb under
the action of many different muscle activation patterns, each producing the identical endpoint force.
The model was implemented in Neuromechanic and has seven kinematic degrees of freedom and
31 muscles. The posture of the limb and ground reaction force was chosen based on experimental
measurements. We then used the equilibration tool of Neuromechanic to generate random muscle
activation patterns, which produced the desired ground reaction force in the desired posture. The
linearization and stability analysis tool of Neuromechanic was then used to determine the stabil-
ity of the limb for each of the muscle activation patterns. We found that only 35% of the random
muscle activation patterns produce mechanically stable limb behavior (Figure 2(a)). The implication
is that a large fraction of the activation patterns that satisfy the force constraint of the postural task
require active, attentive stabilization. Furthermore, a cost function based on the moment arms and
intrinsic stiffness of muscle could be used to obtain activation patterns with high stability and little
co-contraction [10], suggesting that the nervous system can use mechanical stability to restrict the
large available control space to a smaller domain, or even a single activation pattern, thus resolving
the apparent redundancy as effectively as a metabolic cost constraint.
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Figure 2. (a) From 10,000 tested activation patterns 35% were stable at an intrinsic stiffness level of 3 (units
are maximum isometric force per optimal fiber length). Even the most unstable had a doubling time of
greater than 200 ms. (b) The percentage of stable solutions increases with increasing intrinsic stiffness.
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A limitation of this analysis is that, because of the complexity of the model, there are many
parameters (including posture, ground reaction force, and magnitude of intrinsic muscle stiffness)
that influence the results. For example, as the magnitude of intrinsic muscle stiffness is increased
the percentage of stable patterns increases (Figure 2(b)). This demonstrates the need for sensitivity
analysis of complex biomechanical models.

3.2. Illustration 2: fast computation of Lyapunov stability

We used Neuromechanic to explore the stability of the extremely large subspace of activation pat-
terns generating a desired endpoint force using the feline hindlimb model. This subspace is described
by the 24-dimensional null space of the moment arm matrix, resulting from the disjunction of the
seven static joint constraints and the 31 muscles included in the model. A search for a solution
with constraints or costs associated with the Lyapunov stability can be formulated by using the state
derivatives from the linearization step of Neuromechanic. However, Lyapunov stability depends on
the state and must be recalculated at every optimization step, requiring substantial computational
overhead, which increases [O(nz)] with the size of the state space. We developed a computational
shortcut by approximating the state matrix as a linear function of the muscle activation vector.
Although the state equations depend on muscle activation resulting in a unique state matrix for
each unique activation pattern, the dependence is linear provided that muscle models contain no
series elasticity [25]. Because of this linearity, the state matrix (A in Equation (22) above) can

be written as a function of muscle activation (?) activation-dependent (A,,) coefficients, and
activation-independent (A() coefficients.

NumberofMuscles

A=Ay + Z EmAm
=1

2
where A,,, = (—8 f )A
Z =

07 0em

(23)

—

20

These coefficients can be obtained by regression of activation patterns and their corresponding state
matrices. Thereafter, additional state matrices can then be generated from arbitrary muscle activation
patterns very efficiently [O(n)]. To test the validity of the method, we directly compared linearized
state matrices estimated from precalculated regression coefficients in MATLAB (Mathworks, Inc.,
Natick, MA, USA) with those calculated directly from Neuromechanic based on a sample of 200
muscle activation patterns. Root mean square (RMS) errors between estimated and computed state
matrices were 2.2 0.7 x 107°% and the shortcut was four orders of magnitude faster. Although
this shortcut still requires the precalculation step, it is still computationally advantageous especially
when the search space is large requiring the analysis of many activation patterns.

Use of the method requires that a relatively simple Hill-type muscle model with inelastic tendon
be used. The static effect of elastic tendon in series, in essence, is that the shape of the force-length
curve is distorted; range of lengths where actuator operates on the ascending region of the force-
length curve is stretched. Therefore, the method may not be appropriate if it is desired to investigate
the role of compliant tendons in more dynamic conditions such as when subjected to quick stretches.
However, provided that the motor task in interest can be assumed quasi-static, such as in generat-
ing an isometric limb endpoint force in the human finger [28] or leg [29], such linear mapping
between the muscle activation vector and the state equation at static equilibrium has been found to
be valid. Moreover, this computational shortcut approximates the true state matrix even for models
with series elasticity provided that the series elasticity is much larger than the parallel elasticity.
As the difference in magnitude of these elasticities decreases, the approximation becomes invalid
and the full state matrix should be calculated with the perturbation method. Similar separations are
possible for other classes of state variables, and it is the unified formulation of the system that allows
both linearization and determination of the state-dependence of the linearized state matrix.
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3.3. Illustration 3: analysis of frontal plane standing using delayed neural controllers and
intermittent ground contact

We illustrated Neuromechanic’s ability to utilize delayed feedback control and intermittent ground
contact by comparing a simulation to the results of a delayed feedback four-bar linkage model of
frontal plane standing [30]. Delayed feedback is an important feature of neuromuscular systems,
because neural conduction velocity can be slow relative to kinematics, resulting in long and poten-
tially destabilizing reflex latencies. These delays result in highly nonlinear behavior and are difficult
to model. The previous model consisted of four segments corresponding to the ground, two legs,
and the torso connected by pin joints in a closed chain. Inertial and geometric properties were scaled
based on average anthropometric data [31]. The leg segments consisted of a lumped representation
of the shank and thigh with a locked knee and pin joints for the ankle and hip. The torso segment
included a head, arms (folded across the chest), trunk, and pelvis and attached to the leg segments
by pin joints at the hips. The ground segment was considered immobile and its length specified
the stance width of the model. Muscular force was modeled as a lumped term and applied with
constant moment arms as torque about each hip joint. Hip torque was generated as delayed feed-
back with fixed gains on position (255 N-m/rad) and velocity (85 N-m/rad/s). The delay was a single
lumped value of 120 ms to account for neural transmission from sensation to actuation (100 ms) and
mechanical actuation (20 ms) as observed from the automatic postural response [32]. Perturbations
were applied to the four-bar linkage as an inertial acceleration pulse with magnitude 7.75 m/s? to
match platform translations from experimental ramp-and-hold protocols. The equations of motion
for the previous model were derived using a symbolic dynamics package (AutoLev 4.1, OnLine
Dynamics, Inc). This model predicted that ground reaction force at one foot would reach zero,
representing foot lift-off. The pin constraint did not permit lift-off, and further simulation would
require implementation of a second, open kinetic chain model to account for periods of single
limb contact.

The Neuromechanic model was assembled with the same parameters and geometry as above
except for the feet, which were unpinned and free to move. This resulted in a 5 DOF rigid-body
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Figure 3. Neuromechanic reproduced analytical results during conditions of nonstepping (1,2). The two

models diverged when the left foot slipped in the Neuromechanic simulation (2). Stepping behavior emerged

in the Neuromechanic model because of frictional contact (3 — 5). (a) Overlayed frames show the sequence

of stepping (3 — 5). The model results were compared for (b) hip torque and (c — d) ground reaction forces
(GRF) for the left leg.
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system of three links with the root body defined as the torso and the legs as child bodies resting
on an impenetrable rigid surface with a dry frictional coefficient of 0.8. Ground reaction forces and
hip torque were compared for both models for 3 s of simulation (Figure 3). During the first 400 ms
of simulation the results were consistent between the two models when ground contact was main-
tained. At approximately 400 ms slip occurred at the left foot in the Neuromechanic model, which
led to different and richer results than the pinned model. Furthermore, near 2.3 s of simulation the
Neuromechanic model allowed for the modeled feet to come off of the ground leading to emer-
gent stepping. This stepping behavior was not explicitly controlled, but rather emergent from the
dynamics and was also observed in previous experiments with a physical robot [33]. The emergent
stepping was not possible in the simpler, four-bar linkage model.

4. CONCLUSION

We have developed a platform that emphasizes an integrated, control-oriented approach to neu-
romusculoskeletal modeling. Rather than extracting the individual skeletal, muscular, and neural
components from experimental data, Neuromechanic focuses on providing the tools necessary to
test hypotheses of neural control within the context of a musculoskeletal model. Neuromechanic
provides a way to evaluate multiple solutions for a motor task, and to search the large space of
possible solutions, rather than relying on matching experimental data, or finding a single solu-
tion based on optimal control. The approach used for generating equations of motion allows the
effects of rigid body, muscle, and neural states to be evaluated within the same set of equations.
This allows for linearized equations of motion to be generated for stability analysis. Therefore,
the generation of a trajectory and the system’s ability to reject perturbations along that trajectory
can be evaluated. Because these equations are constructed at each timepoint, changes in degrees
of freedom associated with ground contact can be easily simulated. The tools presented should
facilitate an understanding of the sensitivity of musculoskeletal dynamics to neural, muscular, and
skeletal dynamics, facilitating the development of robust and stable forward dynamics simulations
of movement.
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