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ADAPTIVE HUMAN–ROBOT INTERACTION

Ask this robot for a helping hand
To be useful in a variety of daily tasks, robots must be able to interact physically with humans and infer how to be 
most helpful. A new theory for interactive robot control allows a robot to learn when to assist or challenge a human 
during reaching movements.
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What if robots could physically 
interact with humans, work 
alongside us and help us perform 

daily tasks? Such robots could act as a 
helping hand by assisting with difficult 
tasks such as lifting heavy objects, or act 
as a personal coach by providing moderate 
physical challenges to exercise more 
effectively. Such adaptive robots would 
sense forces and movement during physical 
interaction, and infer our goals, motor 
capability and level of effort in order to 
generate the best interactive behaviour1. 
Although we are a long way off from seeing 
robots helping out routinely in our offices 
and gyms, new research from Y. Li and 
colleagues2, published in Nature Machine 
Intelligence, yields insight into how robots 
— through physical interaction — can 
understand our actions and adapt their 
behaviour to help us reach our goals.

Li et al. tackle human–robot interaction 
using a game-theoretic robot control 
framework. In game theory, multiple  
players interact in a game, competing  
or collaborating to complete a task. Each 
player has their own strategy — how they 
choose their next action based on the 
current state of the game — and all players 
try to optimize their performance, while 
assuming their opponents will also play 
optimally3. If you have played chess against  
a computer, then you have probably 
interacted with a machine using a 
competitive game-theory controller. Here, 
the computer evaluates the state of the  
game (the arrangement of chess pieces  
on the board) and selects the move that  
will maximize its chances of capturing  
your king, while also considering moves  
that you might make in the future.

In the study by Li et al., the game is a 
reaching task: the human holds a handle on 
the end effector of the robot and moves to 
a prespecified goal location within a plane. 
The state of the game is the error: how far 
the human hand is from the goal location, 
and how fast it is moving. The human 
can apply forces directly to the handle to 
move it towards the goal, and the robot 

can actuate its joints to move the handle. 
However, because the human and the robot 
act simultaneously and are coupled through 
physical contact, forces from the human can 
cause the robot to deviate from its desired 
motion, and vice versa, creating a difference 
between the actual motion of the handle  
and the motion planned by either the  
human or the robot.

The authors’ major innovation is in using 
game theory to determine how the robot 
responds to the effects of interacting with a 
human. In a typical physical robot–human 
interaction, robots have overpowered 

the human to reduce error4, which could 
accidentally harm the human. Or they 
have allowed the human to move the robot 
easily5, which could increase error in the 
task. The authors introduce a new approach: 
the robot uses the difference between its 
expected and actual motions to estimate the 
human’s strategy — that is, how the human 
uses errors in the task to generate new 
actions. By estimating the human’s strategy, 
the robot can change its own strategy in 
response. For example, if the human’s 
strategy is insufficient to complete the task, 
the robot can increase its effort to help them.
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Fig. 1 | Game theory controllers allow robots to physically interact with humans in a variety of ways. 
Robots can collaborate with humans to perform difficult tasks, such as carrying a refrigerator. The same 
robot may provide a challenge to a human, as in a game of tug-of-war. In between these two extremes, 
robots can mix providing assistance with providing a modest physical challenge, serving as a coach or 
personal trainer. Recent work by Li et al.2 describes how all these behaviours may be accomplished on 
the same robot, by estimating the strategy of the human.
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By changing how the robot views 
errors in the task, the robot of Li et al. 
provides assistance as needed, which has 
been accomplished previously6,7, and also 
challenges and trains humans (Fig. 1).  
Less-than-needed assistance can keep 
humans engaged and prevent them from 
slacking off8. In this case, the robot tolerates 
some error, requiring the human to  
increase effort to complete the task.  
The robot can also challenge the human 
by increasing errors — that is, moving the 
handle away from the goal, in a strategy 
similar to error augmentation9.

The authors tested their game-theoretic 
framework for physical human–robot 
interaction in both simulations and 
experiments with human subjects. In 
simulation, the authors tested the limits of 
their theory. They showed that the robot 
can adapt to situations when the human’s 
strategy changes slowly, as if the human was 
recovering strength, and when the human’s 
strategy is highly variable, as may be the case 
following injury, in which the human does 
not always make steady progress. In human 
experiments, they showed that the robot can 
aid healthy individuals in a reaching task by 
increasing assistance when the user is too 
weak to complete the task. Interestingly, the 
robot also automatically transitions from 
assistive to competitive behaviours as the 
human improves in the task. This behaviour 
allows the robot to help the human when 
they cannot complete the task, and then to 
challenge them to improve when they can.

The methods presented by Li et al. 
represent a significant advance in physical 
human–robot interaction. The game-
theoretic framework allows the robot 
to smoothly transition among a variety 
of interactive behaviours by estimating 
a human’s strategy from errors in 
movement. A single theoretical framework 
encompassing numerous behaviours 
allows the robot to respond to users in a 
flexible way, creating control strategies and 
behaviours tailored to each individual that 
change with the user’s capabilities. The use 
of optimal control also allows for formal 
and rigorous analysis of conditions that 
guarantee stability, which is essential to the 
safety of the human–robot interaction.

This study helps to lay a foundation for 
both theoretical and experimental work 
in human–robot interaction with physical 
contact. Future studies may extend the 
framework to include more than two 
agents, such as a robot mediating physical 
interactions among multiple individuals, 
or teams of robots helping humans with 
dangerous or difficult tasks. Future 
generalization of the theory to systems with 
nonlinear or unknown dynamics would be 
useful for robots that interact with multiple 
joints of a human, such as robotic gait 
trainers and exoskeletons.

The results of this study demonstrate 
that physical interactions between robots 
and humans can help humans to not 
only achieve but also exceed goals. By 
interpreting our actions, these robots can 

adapt alongside us and be personalized 
to continually provide the assistance or 
challenge each person needs to improve.  
The robots of the future may lend us a 
helping hand and make our working lives 
easier, but they may also challenge  
us to be healthier individuals. ❐
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	Fig. 1 Game theory controllers allow robots to physically interact with humans in a variety of ways.




