
Optimal sensorimotor transformations for balance
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Here we have identified a sensorimotor transformation that is used by a mammalian nervous system to produce a multijoint motor

behavior. Using a simple biomechanical model, a delayed-feedback rule based on an optimal tradeoff between postural error and

neural effort explained patterns of muscle activation in response to a sudden loss of balance in cats. Following the loss of large

sensory afferents, changes in these muscle-activation patterns reflected an optimal reweighting of sensory feedback gains to

minimize postural instability. Specifically, a loss of center-of-mass-acceleration information, which allowed for a rapid initial rise

in the muscle activity in intact animals, was absent after large-fiber sensory neuropathy. Our results demonstrate that a simple

and flexible neural feedback control strategy coordinates multiple muscles over time via a small set of extrinsic, task-level

variables during complex multijoint natural movements.

The simple act of standing up is a common and essential motor
behavior that is often taken for granted, even in uncertain and dynamic
environments. Although humans are able to stand on a boat or walk
over uneven terrain without much thought, the neural systems that
regulate postural orientation and equilibrium continually integrate a
large array of sensory inputs and coordinate multiple motor outputs to
muscles throughout the body. Understanding how complex sensory
patterns are transformed into an appropriate temporal sequence of
motor commands is central to unraveling the complexities of the neural
control of movement.

It has been shown recently that just a few motor command signals
are used to generate spatial patterns of muscle activation during natural
movements1–4. By using a single motor command signal to activate
multiple muscles across the body in a group, called a ‘muscle synergy’, a
multijoint motion can be produced. By adding a few additional motor
command signals, a repertoire of complex motions becomes possible.
The advantage of this scheme is that the set of motor command signals
has substantially reduced dimension when compared with the total
number of motor outputs5, whether these are considered to be
individual muscles or motor units. During a natural movement,
these motor command signals are necessarily modulated over time6,7;
however, the neural mechanisms that determine their temporal char-
acteristics are not known.

In balance control in particular, motor command signals must be
dynamically modulated in response to a suite of sensory information
and cannot be generated by feedforward spinal pattern-generation
mechanisms, such as those producing locomotion3,8. Sensory signals
during a perturbation also depend dynamically on the ongoing motor
response to the perturbation, making them difficult to study in a
classical stimulus-response procedure. Moreover, because of redun-
dancy in the multijointed musculoskeletal system, the relationships
between specific joint-angle changes and muscle-activation patterns

during the postural response are highly variable9. Thus, postural
responses to perturbations cannot be explained by reflex loops acting
on individual joint angles, but instead require substantial integration of
multiple sensory modalities, presumably in the brainstem10.

Because the center of mass (CoM) motion compactly encapsulates
the relationship of the body to the extrinsic effects of gravity and
external forces, we reasoned that the control of CoM dynamics would
be important in the feedback regulation of balance. The best predictor
of which muscles are activated during a postural response to perturba-
tion is the horizontal direction of CoM motion9,11. CoM-motion
variables are extrinsic, task-level variables that represent the net motion
of the body with respect to the gravitational reference frame. In general,
extrinsic, task-level variables represent the relative relationship of
multiple body segments to the external environment and cannot be
inferred from local anatomical variables such as joint angles or head
displacement, except in the simplest of cases. Thus, task-level variables
generally cannot be encoded by any one sensory signal or modality;
rather, they must be estimated from many sensory modalities.

We hypothesized that an optimal and hierarchal feedback control
organization based on extrinsic, task-level variables governs balance
control, which is an automatic motor task that does not require
trajectory planning or the involvement of higher brain centers10.
Similar schemes have been proposed as a general organization principle
for voluntary motor tasks12–16. We predicted that neural control
mechanisms for temporal patterning of motor signals for balance
control would be low in dimension, operating on a small set of feedback
gains related to the control of the CoM5. We demonstrate that a simple
model of the neuromechanical system—an inverted pendulum stabil-
ized by a feedback rule—predicts the time course of motor command
signals during balance control in both intact and sensory-loss cats. The
pendulum dynamics nominally modeled CoM acceleration, velocity
and position of the animal and were sufficient to specify the motor
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command signals activating both proximal and distal leg muscles. To
our surprise, the resulting patterns of muscle activation were also
similar to the optimal patterns predicted using an objective criterion
drawn from optimal control theory. Moreover, the predictions were
robust to peripheral sensory neuropathy, which disrupts the encoding
of local joint-angle changes by large-diameter sensory afferents17.
Following re-adaptation subsequent to this acute sensory deficit,
temporal motor patterns were markedly altered, but in the model
resulted simply from a loss of CoM acceleration feedback. Our
approach of defining temporal patterns of muscle activity in normal
and neurologically impaired animals with a neuromechanical model
using feedback of extrinsic, task-level variables provides new insight
into the robust structure of general sensorimotor transformations for
movement control.

RESULTS

Simple feedback transformation for postural control

We examined temporal patterns of muscle activation that were
evoked by translation of the support surface in unrestrained, freely
standing cats. The perturbations elicited a maximal response in the left
hindlimb muscles and minimal responses in the other limbs18. The
temporal responses in the majority of the extensors were similar,
suggesting that common neural signals modulated multiple muscles
(Fig. 1). The response to single-ramp perturbations was also similar to
that observed in humans10,19: an initial burst followed by a long plateau
of activity (Fig. 1a). The initial burst of the elicited responses had a
shape similar to that of the temporal pattern of support-surface
acceleration, but with a latency of 30–50 ms. The durations of the
muscular response and perturbation were also similar. However,
the animal’s sensory system cannot directly encode the motion of the
support surface, only the effects of that motion on the animal’s own
body. The time lags between CoM kinematics and muscle-activation
patterns led us to hypothesize that the nervous system uses an estimate
of overall body movement in a feedback manner to regulate temporal
patterns of muscle activation.

To functionally and quantitatively test this hypothesis, we developed
a simple computational model of postural control (Fig. 2) and
evaluated how well it explained muscle-activation patterns that we
observed experimentally. We parameterized the model first on the basis
of experimental data, and second to maximize an objective-cost
function based on performance measures. The model consisted of an
inverted pendulum actuated at the base by a muscle and mounted on a
moveable support surface (Fig. 2a). The experimentally recorded
acceleration of the support surface was used as the only input to the
model. The hypothesized neural controller constructed temporal
patterns of muscle activation from linear combinations of the simu-
lated CoM position, velocity and acceleration signals12,14 (Fig. 2b),
delayed in time to account for latencies due to neural conduction
and computation, and assumed to be estimated by the nervous
system from an ensemble of sensory signals10,20,21. An advantage of
this forward modeling approach is that the biomechanical viability
of the sensorimotor transformation is implicitly tested; solutions
derived from measured kinematic signals do not generally stabilize
the system22.

Identification of model parameters

Variations of only four parameters in our model, three feedback
gains and one delay, were sufficient to reproduce salient features in
each of the experimentally measured muscle-activation patterns (see
Methods; variability accounted for (VAF) ¼ 88 ± 2% s.e.m. across
cats, VAF 4 80% for all muscles across all cats). For each muscle in
each animal, we identified three feedback gains and one delay
that best matched the muscle activation and kinematics of the simula-
tion to experimental data. We dubbed this process temporal system
identification (TSyID) because model parameters were found by
matching features of the data in the temporal domain. Although
we nominally modeled only the net motion of the CoM, and
not individual joints, muscles crossing all joints were analyzed to test
whether CoM kinematics were sufficient to reproduce all muscle-
activation patterns.

Figure 1 Example of muscle-activation patterns

evoked during balance corrections to support-

surface motion in the horizontal plane. Cats were

freely standing on a movable platform that could

move in the horizontal plane. EMGs were

measured in the left hindlimb. (a) Responses to a

ramp-and-hold perturbation in the 2251 direction

evoked a classic EMG pattern of an initial burst
followed by a long plateau in multiple extensor

muscles, whereas the flexor muscles (STEN) were

quiescent. The initial burst shape followed the

perturbation acceleration after a short delay of

about 30 ms. The duration of the plateau followed

the velocity of the perturbations. (b) Responses to

a dual-ramp perturbation in which the direction of

support-surface motion is reversed 20–90 ms

after onset of the initial ramp. These

perturbations allowed us to test the robustness of

the feedback model by altering the acceleration

waveform associated with the initial ramp, as well

as the CoM velocity and position at the onset of

the secondary ramp. Because muscle activity is

direction-specific, the extensor muscles originally

activated by the perturbation were shut off, and

flexor muscles were activated. Muscle

abbreviations: biceps femoris anterior, BFMA;

flexor digitorum longus, FDL; flexor hallicus longus, FHL; medial gastrocnemius, MGAS; peroneous brevis, PERB; semimembranosus anterior, SEMA;
semimembranosus posterior, SEMP; sartorius anterior, SRTA; semitendinosus, STEN; vastus medialis, VMED.
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The initial burst and plateau in the muscle-activation patterns were
well reproduced (Fig. 3) by the model. CoM position, acceleration and
velocity were also similar in experiments and simulations (Fig. 3a).
The initial burst of muscle activity (Fig. 3b) was generated by the CoM
acceleration signal, rather than by a predictive feedforward signal as
previously suggested19, whereas the plateau was a result of velocity and
position feedback (Fig. 3c). Because of the physical dynamics of the
signals, acceleration information was available before velocity increased
appreciably. In turn, the position signal took the longest to evolve and
was only influential toward the end of the temporal pattern of muscle
activation. Although each feedback channel was subject to the same
lumped time delay, the mechanical dynamics of the system accounted
for the different time course of each feedback signal. The predictive
power was not improved by altering the number of parameters in the
model. When we eliminated acceleration feedback, the initial burst was

not predicted, and the model fits to data decreased modestly,
but consistently (paired t-test, DVAF ¼ –2%, P o 0.01). When a
CoM-jerk-feedback term or multiple delay terms were added, model
fits to data did not improve (P 4 0.05).

In each animal, the temporal pattern of activation in each muscle
reflected a slightly different combination of CoM kinematic variables
(Fig. 3d). However, we found significant differences in acceleration-
(P o 0.01) and position-feedback gains (P o 0.01) across animals,
suggesting that each animal used a characteristic combination of
feedback gains (Fig. 4). The consistency in the feedback gains in each
animal supports the idea that proximal and distal muscle-activation
patterns are coupled via muscle synergies that activate multiple muscles
across the limb with differential weighting1–3,23,24. This coupling of
distributed muscles may be necessary to produce coordinated actions
across joints during balance control25,26.

We also collected postural responses to dual-ramp perturbations that
substantially altered the temporal patterns of perturbation acceleration,
velocity and position by reversing platform direction after 20–90 ms
(Fig. 1b). Experimentally, this resulted in changes in both the initial
CoM-acceleration patterns and the CoM kinematics when the longer
secondary perturbation, which was identical to the single-ramp
perturbations, was presented. Accordingly, as extensor muscles were
highly active in the 2251 direction (Figs. 1a and 5a), but quiescent in
the 451 direction (Fig. 5b), extensor muscles were either activated
for a short period of time in response to an initial 2251 ramp (Figs. 1b
and 5c) or activated later for a longer duration in response to a
secondary 2251 ramp (Fig. 5d).

We cross-validated the predictive power of our model by simulating
responses to dual-ramp perturbations (Fig. 5c,d) without altering
the feedback parameters derived from the single-ramp perturbations
(Fig. 5a,b). The model predicted changes in the initial extensor bursts
in response to short 2251 perturbations (for example, Fig. 5c; VAF ¼ 86
± 8%), which were due primarily to changes in initial perturbation
acceleration. The timing of the small burst at the end of the secondary
ramp was also predicted by the model (Fig. 5c). Extensor responses
to the longer secondary perturbations were also qualitatively well
accounted for (Fig. 5d), particularly the timing of the onset and offset
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Figure 2 Simple feedback model of postural control used to predict muscle

activity during balance responses. (a) The mechanics of the CoM during the

balance task is approximated as an inverted pendulum on a moving cart.

Experimentally measured accelerations of the platform were applied to the
cart so that realistic acceleration, velocity and displacement trajectories of

the platform were modeled. (b) The perturbation acceleration generates a

disturbance torque at the base of the pendulum. Delayed kinematics of the

horizontal CoM were used in a simple feedback law to generated model

muscle-activation patterns, which were compared with those measured

experimentally. The model muscle activation then generated a stabilizing

torque about the representative joint.

Figure 3 Comparison of recorded and simulated

muscle activation and CoM kinematics.

(a) Recorded (gray lines) and simulated

(black lines) CoM displacement, velocity and

acceleration. (b) Recorded (gray line) muscle

activity in the MGAS and simulated (black line)

muscle activity from the best-match model

parameters derived from the TSyID formulation

of the model. (c) Decomposition of simulated

muscle activity (black line) into components

arising from CoM position feedback (gray dashed

line), CoM velocity feedback (gray dotted line)

and CoM acceleration feedback (gray solid line).

Note that the initial burst is due primarily to

acceleration feedback. (d) Comparison of recorded

(gray line), simulated (thick black line) and

optimal (thin black line) muscle activity in several
extensor muscles crossing the knee and ankle

joints. VAF of the data-matched simulations

(TSyID) for muscles shown ranged from 85–91%.

VAF of the simulations from the optimal

DQR prediction for the muscle shown

ranged from 84–90%.
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of the muscles. To our surprise, the antagonistic, flexor muscle
responses in both cases (Fig. 5c,d) were similar to those predicted by
the model (Fig. 5c).

Optimal control model of posture

We compared the neural feedback gains identified through TSyID
with an optimal solution predicted without a priori knowledge
of the experimental CoM kinematics or muscle activations. We used
an optimal control formulation that was similar to the linear
quadratic regulator formulation devised previously in postural control
models27. We dubbed our approach a delayed quadratic regulator
(DQR) because it incorporated a time delay and determined
optimal feedback gains via a quadratic cost function. In contrast
with other models28–30, we used experimentally measured platform
acceleration to generate perturbations with realistic temporal charac-
teristics. The delay was set to the value estimated through TSyID (B30
ms), thus representing a constraint of the neural transmission and
computation time, as the optimal delay would be a nonphysiological
value of zero.

The optimal solution predicted a postural response with initial burst
and plateau regions that were similar to those measured experimentally
(for example, Fig. 3d; VAF ¼ 78 ± 6% s.e.m., across all muscles in all
cats, VAF 4 70% in all muscles) and were also similar to those
estimated through TSyID (Fig. 3d). Using measured perturbation
acceleration was critical for achieving a physiologically relevant
muscle-activation pattern because of the dependence of the sensory
feedback on the exact perturbation characteristics.

Changes following sensory loss

We observed notable changes in temporal patterns of muscle activation
in animals with large-fiber (group I) proprioceptive deficit as a result of
pyridoxine overdose. Proprioceptive afferents are critical for generating
the proper timing in postural responses; postural responses are delayed
following proprioceptive loss but not following vestibular or visual

loss17,31–33. The pyridoxine intoxication affected sensory afferent fibers
larger than 10 mm in diameter, including primary muscle spindle
afferents, Golgi tendon organ afferents and large cutaneous afferents17.
In the days following the pyridoxine injections, the loss of group I
afferents was devastating; animals became ataxic, and in many cases lost
the ability to stand independently. Over a period of about 2 weeks,
animals regained the ability to stand and be mobile, although group I
afferents remained nonfunctional, as determined by stretch-reflex tests
and histological measurements17. Sensory-deficit animals could stand
and maintain their balance, presumably using smaller group II affer-
ents. We analyzed postural responses after a B3-week period of
re-adaptation, when animals had recovered postural control and
other motor functions.

In the animal with the greatest sensory deficit, the initial burst
(Fig. 3) of the temporal muscle-activation pattern was absent (Fig. 6).
Instead, muscle activity was characterized by a long, slow rise in muscle
activation. These changes were previously described simply as an
increase in response latency and amplitude17.

Changes in temporal patterns of muscle activation following
large-fiber sensory loss were due to decreased CoM-acceleration feed-
back. A 50% reduction of the acceleration feedback gain accounted for
the diminished initial peak in animals with the complete loss of
afferents in the group I (o10-mm diameter; cat Be and cat Kn) range
(Table 1). In these animals, fits were improved when the acceleration
feedback was explicitly set to zero (DVAF ¼ +2%, P o 0.01). In
animals with only a partial loss of group I afferents (Table 1), accel-
eration bursts were still present, and fits were degraded when accelera-
tion feedback was set to zero (DVAF ¼ –3%, P o 0.01). Although the
quantitative effects of removing acceleration were modest because the
acceleration component contributes only a small amount to the overall
temporal variance of the signal, the qualitative loss of the initial burst
was very noticeable.

The optimal muscle-activation pattern predicted by the DQR model
in the absence of acceleration feedback was notably similar to what was
actually measured (for example, Fig. 6e; VAF¼ 65 ± 6%). The resulting
optimal pattern was characterized by a slow rise in muscle activation,
which was expected as a result of the loss of acceleration feedback. An
increase in velocity gain was predicted to compensate for the loss of the
initial burst (5% increase, P{ 0.01). The optimal prediction has only
slightly decreased postural stability compared with the intact condition
and produced qualitatively similar CoM velocity and displacement
trajectories (Figs. 3a and 6a).

Therefore, after the recovery of balance control in sensory-impaired
animals, the extrinsic, task-level variables of CoM position and velocity
are still regulated, albeit with different sensory pathways. Redundancy
and neural plasticity mechanisms presumably upregulate the contribu-
tion of group II sensory signals in the regulation of postural control.
Thus, the new temporal patterns of muscle activation that the animal
achieves after a period of re-adaptation reflect a process of optimal
reweighting of sensory feedback to maintain control of extrinsic, task-
level variables.
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Figure 4 Summary of model (TSyID) fits and parameter values (mean ± s.d.)

for all muscles in four cats. (a) VAF was greater than 80% in all muscles in

each cat. (b) Acceleration feedback gain, ka, for all muscles in each cat.

(c) Velocity feedback gain, kv, for all muscles in each cat. (d) Position

feedback gain, kp, for all muscles in each cat. These results demonstrate

that similar feedback gains are used across all muscles in each animal,

suggesting that they are activated by a common neural command signal.

(e) Delay, l, for all muscles in each cat. For cats Be, Kn, Sq and So, 9, 7,
10 and 8 left hindlimb muscles were analyzed, respectively. In cat Kn,

4 left forelimb muscles were also included.
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DISCUSSION

We demonstrated that neural commands to multiple muscles are
modulated by extrinsic, task-level movement parameters through a
low-dimensional feedback transformation. The sensorimotor transfor-
mation for balance control is a delayed-feedback rule using CoM
kinematics, which are dynamically affected by both the perturbation
and the ongoing motor response. The time courses of multiple muscle-
activation patterns throughout the postural response are dependent
on information from multiple sensory receptors, which can be re-
weighted when specific populations of sensory afferents are damaged
following large-fiber sensory neuropathy. The postneuropathy
feedback transformation takes advantage of the available sensory
information in redundant sensory afferents.

We present quantitative evidence demonstrating that a hierarchal
neural feedback controller modulates muscle synergies in vertebrate
motor systems. Prior studies have suggested that a similar, linear neural
control mechanism might sit at the top of a complex hierarchy of
sensorimotor feedback loops used for voluntary-movement con-
trol12,14,15. Our results explicitly demonstrate a low-dimensional hier-
archal control structure in a natural and biomechanically unstable
multijoint task that does not require trajectory planning10. Temporal
activity in multiple muscles crossing multiple joints reflects the

dynamic changes in the task-level variables
that are being controlled. The temporal pat-
tern reflects a weighted sum of the accelera-
tion, velocity and position of the task variable,
similar to the temporal patterning of neural
population vectors in the motor cortex during
reaching movements12,13,34. The command
signals, based on task-variable feedback, are

distributed spatially to multiple muscles across the body5, consistent
with the muscle-synergy hypothesis, whereby a single neural command
activates multiple muscles with specific relative patterns of
activation1–4. In our scheme, each feedback gain can activate a different
muscle-synergy pattern, allowing flexibility in the spatiotemporal
coordination of multiple muscles5.

Although the exact neural mechanisms regulating postural control
are unknown, evidence suggests that the hierarchal controller for
posture resides in supraspinal circuits, possibly in the brainstem.
Classic experiments have demonstrated that decerebrated cats are
able to produce righting responses and walk35. In contrast, animals
with complete spinal cord transection can walk, but do not produce
directionally specific postural responses36, and supraspinal connections
to the spinal cord are essential for maintaining postural orientation35.
Because postural responses are essentially absent following spinal cord
transection, and the cerebral cortex is not required for postural
orientation, we propose that the brainstem is critical for the estimation
of task-level variables for directional postural control in response to
disturbances. However, whether muscle synergies themselves are
encoded in the brainstem or in the spinal cord is still an open question.
Regardless, the roles of spinal circuits37 and musculoskeletal proper-
ties38 in facilitating interjoint stability and coordination are critical to

Extensor
(FDL)

Flexor
(STEN)

1 cm

a Response to 225°  ramp b Response to 45° ramp

c Responses to 225°–45° dual-ramps d Responses to 45°–225° dual-ramps

Extensor
(FDL)

Flexor
(STEN)

180°

0°

90° 270°
180°

0°

90° 270°

180°

0°

90° 270°

180°

0°

90° 270°

Recorded extensor EMG 
and standard error

Simulated extensor EMG 
Perturbation displacement

Recorded flexor EMG 
and standard error

Simulated flexor EMG 

0 100 200 300 400 500 6000 100 200 300 400 500 600

Time (ms) Time (ms)

Figure 5 Robustness of the feedback model to

varying perturbation characteristics. We predicted

responses to dual-ramp perturbations using the

feedback gains derived from responses to ramp-

and-hold perturbations in an extensor and flexor

muscle. (a) Extensor response to a 2251 ramp-

and-hold perturbation (thick gray lines) and

simulated TSyID response (thick black lines).
(b) Flexor response to a 451 ramp-and-hold

perturbation (thin gray lines) and simulated TSyID

response (thin black lines). (c) Responses to

2251–451 ramp-and-hold perturbations (dashed

black lines) with varying initial ramp duration. The

extensor muscle (thick gray lines) was initially

activated and rapidly shut down as the

perturbation reversed direction, activating the

flexor muscles (thin gray lines). Over all of the

perturbations, the muscle activity is predicted by

the model using a fixed set of feedback gains

derived from the perturbations shown in a and b.

The model predicted the switching between the

extensor (thick black lines) and flexors (thin black

lines), as well as the changes in the short initial

burst of the extensor muscles. The timing of the

extensor burst at the termination of the secondary

ramp is also predicted. (d) Response to a 451–

2251 dual-ramp perturbation. The initial flexor
burst is well-predicted, as is the timing and

amplitude of the longer extensor burst. Overall,

the changes in muscle activity can be

characterized by a common set of feedback gains

and are therefore due to differences in

perturbation characteristics processed through a

common sensorimotor transformation.
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the implementation of a low-dimensional, hierarchal controller and
warrant further study15,39.

The computation of task-level variables requires substantial multi-
sensory integration. Particularly in postural control, local variables
arising from visual, vestibular and various proprioceptive afferents are
each insufficient to account for body orientation and multisegmental
coordination. Local feedback of sensory signals cannot explain postural
behaviors in humans or cats, particularly in situations of sensory
conflict where an erroneous sensory signal must be ignored5,29,40,41.
We demonstrate that the CoM kinematic signals are the relevant task-
level variables that encapsulate the relationship between the body and
the extrinsic reference frame and define the temporal patterns of
muscle activation used in postural control. But CoM motion cannot
be reliably derived from any single sensory afferent population9,10,40. As
this study does not address how the task-level variables are computed
from local, anatomical variables, further study and validation of more
complex models28 that explicitly include redundant sensor and muscle
dynamics is warranted.

Our model defines a framework for understanding functional feed-
back gains that are specified at a hierarchal control level, but whose
specific implementation at a local, anatomical level may vary as a result
of sensory and motor redundancy5. Our data demonstrate that, after a
period of re-adaptation, the task-level feedback hierarchy for balance
control was maintained when specific local sensory afferent pathways
were eliminated. Loss of group I afferents produced short-term ataxia
and an inability to maintain standing balance control. But after a
period of re-adaptation, the nervous system was able to adequately
estimate CoM position and velocity, but not acceleration, for postural
control. Presumably, contributions of sensory information from
group II afferents used to estimate CoM motion were increased by
the nervous system to make up for the loss of group I information.

Similarly, reweighting of position and velocity
information from different sensory modalities
explains changes in body motion when visual
or vestibular information is absent29,30. The

surprising robustness of our simple feedback model suggests that
manipulating the strength of local sensory-feedback pathways to
maintain hierarchal, functional feedback gains regulating task-level
variables is a fundamental strategy of the nervous system for dealing
with changing sensory conditions.

Hierarchal and functional feedback gains may be flexibly modulated
by descending neural commands to modify postural responses under
different conditions5. Animals were able to compensate well for the loss
of CoM acceleration information and were able to regulate their
balance with only small differences in CoM kinematics from the intact
condition. This illustrates nicely the redundancy in temporal muscle-
activation patterns; acceleration feedback is not biomechanically
necessary for adequate balance control but reflects a preferred neural
transformation for balance control in the intact condition. Our animals
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Table 1 Grand mean feedback gains and delay before and after

sensory loss

%VAF kp kv ka l

Cat Be intact 89 ± 2 5.7 ± 0.1 0.75 ± 0.06 0.022 ± 0.004 32 ± 2

Sensory loss# 88 ± 3 5.4 ± 0.2** 0.69 ± 0.07* 0.011 ± 0.009** 30 ± 1

Cat Kn Intact 87 ± 4 6.4 ± 0.1 0.65 ± 0.10 0.034 ± 0.004 34 ± 5

Sensory loss# 88 ± 7 5.9 ± 0.1* 0.68 ± 0.06 0.016 ± 0.007** 30 ± 1

Cat Sq Intact 89 ± 2 5.6 ± 0.2 0.72 ± 0.08 0.018 ± 0.008 31 ± 2

Sensory loss& 88 ± 2 6.2 ± 0.2** 0.64 ± 0.09** 0.027 ± 0.007** 40 ± 6

Cat So intact 91 ± 1 5.5 ± 0.2 0.65 ± 0.08 0.019 ± 0.080 30 ± 1

Sensory loss& 85 ± 2 5.4 ± 0.2 0.75 ± 0.75** 0.019 ± 0.007 32 ± 3

#complete sensory loss in group I range; for example, no afferents 410-mm diameter. &partial
sensory loss in group I range; for example, some afferents 410-mm diameter. *sensory loss
condition is significantly different from the intact condition at P o 0.05 level. **sensory loss
condition is significantly different from the intact condition at the P o 0.01 level.

Figure 6 Comparison of recorded and simulated

muscle activation and CoM kinematics following

large-fiber neuropathy. (a) Recorded (gray lines)

and simulated CoM kinematics (thick black lines)

using parameters from TSyID. (b) Recorded

muscle activity (gray lines) in the MGAS and FDL,

and simulated muscle activity (thick black lines)

from the best-match model parameters derived
from the TSyID formulation of the model

(VAF ¼ 87 and 90%, respectively). (c) Decompo-

sition of simulated muscle activity (black line) into

components arising from CoM position feedback

(gray dashed line), CoM velocity feedback (gray

dotted line) and CoM acceleration feedback (gray

solid line). Note that acceleration feedback is

absent. (d) Recorded (gray lines) and simulated

CoM kinematics (thick black lines) from optimal

DQR formulation. (e) Recorded muscle activity

(gray lines) in the MGAS and FDL and simulated

muscle activity (thick black lines) from optimal

DQR formulation of the model (VAF ¼ 77 and

83%, respectively). (f) Decomposition of

simulated muscle activity (black line) into

components arising from CoM position feedback

(gray dashed line), CoM velocity feedback

(gray dotted line) and CoM acceleration feedback

(gray solid line). Note that acceleration feedback
(gray solid line) is absent.
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were trained long-term on the postural perturbation procedure and
their responses were comparable to an optimal solution. However,
under different conditions, the desired tradeoff between neural effort
and biomechanical stabilization may vary, altering the optimal
feedback-gain values. The latencies and spatiotemporal patterns of res-
ponse in naive animals are similar to trained animals, but the amplitude
and duration are increased40. With experience, greater motion of the
CoM may be tolerated in return for lower energy expenditure and
neural effort. We predict that variations in postural responses as a result
of cognitive and emotional influences, or prior experience10,42, may be
explained by variations in the strength of hierarchal feedback gains.

Our findings demonstrate that the nervous system uses acceleration
information for generating motor commands; further investigation
into the nature of acceleration encoding is warranted. Acceleration
feedback is lost following sensory loss in the group I range, implicating
muscle spindles, Golgi tendon organs and cutaneous receptors in the
encoding of acceleration. As early as the 1950s, it has been postulated
that muscle spindles can encode acceleration43,44. It is also possible that
the acceleration information is encoded in the Golgi tendon organs, as
forces in an active muscle may vary in relation to acceleration. The
contributions of cutaneous receptors, which can respond dynamically
to pressure on the skin45, cannot be ruled out either. Although
acceleration feedback is responsible for the fast initial rise in muscle
activation, our results are consistent with previous findings that velocity
feedback accounts for the bulk of the functional response46 (Fig. 3c).

The simple neural transformation identified here, and its adaptation
following sensory loss, may reflect general neuromotor control strate-
gies and warrants further investigation. Many muscles are activated by
weighted combinations of the same temporal patterns, which is
consistent with a reduced dimension descending control structure for
extrinsic, task-level variables using muscle synergies4,13,15,47,48. Simi-
larly, muscle synergies may arise naturally in optimal motor beha-
viors48. The recognition that task-level, and not anatomical, variables
are regulated in balance control could help to identify neural circuits
that underlie balance control. Moreover, it is likely that a similar
transformation occurs in other types of motor responses where the
nervous system must alter a motor output in response to a perturba-
tion, as in fingertip grip response45, or in responses to perturbations
during reaching49. Finally, the comparison of experimentally measured
responses to different optimal control solutions may help test hypo-
theses regarding the nature of neuromotor adaptation.

METHODS
Data collection. We collected data from postural perturbations in the standing

cat. Detailed experimental and training procedures have been described

previously18. Three cats (of mean mass 3.8 kg) were trained to stand freely

with each foot on a force plate. Muscle activity from chronic indwelling

electrodes was recorded from a subset of 8–15 left hindlimb muscles in each of

four cats; in one animal (cat Kn), four forelimb muscles were also recorded.

Two types of perturbations were applied along a diagonal axis to elicit

maximal extensor and flexor activity in the left hindlimb, and to minimize the

contributions of the other three limbs18. Left hindlimb extensor muscles were

maximally activated when the platform translated forward and to the right18

(Fig. 1a). The first type of perturbation was a single ramp-and-hold translation

in the forward-right direction (2251) of 5-cm amplitude, 370-ms duration and

15-cm s–1 mean velocity. The second type of perturbation was a dual ramp that

began movement in the forward-right direction, but then reversed direction

after a variable duration of 20–90 ms. This altered the initial acceleration of the

platform and elicited a short response of the extensor muscles, followed by a

response in flexor muscles (Fig. 1b).

We collected postural responses in the same cats following peripheral

neuropathy that was induced by pyridoxine (vitamin B6) intoxication17.

Pyridoxine overdose initiates sensory loss in the peripheral and central processes

of myelinated primary afferent fibers in humans, dogs, rats and cats; our doses

were designed to induce deficits only in the group I range (10–20 mm)17.

Five trials of each perturbation type were collected per day. We analyzed data

from 3 different days in intact animals. After pyridoxine intoxication, we

analyzed the last day of data collection, when animals had recovered the ability

to stand on the platform. Position and acceleration of the support surface,

ground reaction forces and electromyograms (EMGs) were collected at

1,000 Hz. Forces were low-pass filtered at 100 Hz, and raw EMG data were

high-pass filtered at 35 Hz, demeaned, rectified and low-pass filtered at 40 Hz.

CoM kinematics of the cat were computed by integrating the summed ground

reaction forces. Average kinematic, kinetic and EMG data for each condition

were computed for each day of data collection.

Feedback control model. A model of an inverted pendulum on a cart was used

to represent the overall dynamics of the standing cat. The neural controller was

modeled as a linear feedback loop with a lumped time delay. Using this model,

we used two optimization techniques to determine the appropriate feedback

gains and delay: (i) a TSyID technique in which temporal EMG and kinematic

responses were used in a tracking optimization and (ii) a data-independent

optimal solution using a quadratic cost function, referred to as a DQR.

The inverted pendulum reasonably approximated the dynamics of the cat, as

the limb axis rotates about the toe joint like an inverted pendulum and joint

angle changes are r61 (ref. 9). The linearized equation of motion for the

pendulum is:
€y ¼ g

l
y+

T

ml2

where y is the angle of the pendulum with respect to the vertical, m and l are

the mass and height of the CoM of the cat, respectively, and T is the applied

torque at the pin joint. A mass of 4 kg and a height of 20 cm were used.

Because the actual platform kinematics were not identical to the specified

kinematics, and because the exact perturbation characteristic were critical to

the predicted EMG signals, we applied recorded platform-acceleration data to

the model. Support-surface perturbations were modeled by converting mea-

sured linear platform acceleration into a disturbance torque about the base of

the pendulum and linearizing:

Tpert ¼ ml � aðtÞ

where T is disturbance torque, and a(t) is the measured linear acceleration of

the support surface.

The neural controller was modeled as three feedback channels on the

horizontal position, velocity and acceleration of the pendulum and the lumped

time-delay at the input to the feedback loop. Because neural latencies exist

between the onset of a perturbation and the onset of the EMG response (30–

60 ms), this delay could not be ignored when predicting temporal EMG

patterns. The control effort of our system u, which is equivalent to the

predicted EMG signal, was a linear combination of time-delayed horizontal

CoM position (x), velocity (
.
x) and acceleration (€x):

uðtÞ ¼ ka€xðt � lÞ+kv
.
xðt � lÞ+kpxðt � lÞ

where t is time, l is a time delay, and kp, kv and ka are feedback gains for

position, velocity and acceleration, respectively. The three feedback gain values

and time delay were chosen via optimization methods. The predicted EMG, u,

was transformed to torque on the pin joint of the pendulum using a first-order

muscle model with a time constant of 40 ms27.

TSyID. System identification in the time domain was carried out to determine

values for the three feedback gains and time delay using a tracking optimization

that minimized the error between recorded and predicted EMG and CoM

kinematics. A cost index, J, was defined to be a linear combination of the square

of error terms, and the maximum of the square of error terms:

min
kp ;kv ;ka ;l

J ¼
ZT

0

ðS
i
eTi miei+ maxS

i
mie

2
i Þdt

2
4

3
5

where em, ep, ev and ea are the differences between recorded and predicted EMG,

and CoM position, velocity and acceleration, respectively, and mm, mp, mv and ma
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are weighting coefficients used for normalizing across units (set to 1.0, 0.01,

0.02 and 1.0, respectively). A set of admissible gains was defined by extending a

liberal window around the nominal region of convergence.

Optimal parameter values quantified by J were found using a MATLAB

(Mathworks) optimization package (fmincon.m). White Gaussian noise with a

mean of zero was injected into each feedback channel30,50. This noise caused

gradient-descent optimization methods to converge to a more repeatable

solution. Variances for the noise in the feedback channels were set to be

sp ¼ 0.0001 m, sv ¼ 0.001 m s–1 and sa ¼ 0.01 m s–2.

DQR optimization. In addition to the TSyID optimization, a quadratic cost

index was used to predict EMG and CoM kinematics a priori, that is, without

reference to the recorded data. The quadratic cost index penalized deviations

from zero of the pendulum position, velocity and acceleration, the predicted

EMG and the final position of the pendulum:

min
kp ;kv ;ka

J ¼
ZT

0

ðxTQx+ru2Þdt+O � xðTÞ

2
4

3
5

where Q ¼ diag(qpqpqp) is the weighting for CoM kinematic deviation, r is a

weighting on predicted EMG and O is a weighting vector for the terminal state

values. The same weightings were used as in the TSyID formulations. Because

optimization always pushes the time delay to the minimum allowable value, the

delay length was set to be equal to the value found in the TSyID method. Thus,

the DQR optimization only incorporated the three feedback gains that were

found using a MATLAB optimization package (fmincon.m).
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