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1  |   ERROR‐RELATED 
NEGATIVITY

For nearly three decades, psychophysiologists have studied 
a specific neural response to error commission, referred 
to as the error‐related negativity (ERN or Ne; Falkenstein, 
Hohnsbein, & Hoormann, 1990; Gehring, Goss, Coles, 
Meyer, & Donchin, 1993, 2018). The ERN is elicited when 
participants make errors (i.e., motor slips) in forced‐choice 
speeded‐response tasks. The most common tasks that have 
been used to elicit and study the ERN are variations on the 
flanker task, Stroop task, and go/no‐go tasks (Meyer, Riesel, 
& Proudfit, 2013), which involve basic stimulus‐response 

pairs that are verbally explained at the beginning of the task, 
for example, “When you see Stimulus A, press response 
Button 1.” Although the tasks are relatively simple, partici-
pants make mistakes on a small percentage of trials. By hav-
ing participants perform hundreds of trials while recording 
EEG activity, it is possible to evaluate ERPs time‐locked to 
errors compared to correct responses. The ERN is observed 
as a sharp negative peak within the first 100 ms of the ERP 
following incorrect response commission at frontocentral 
EEG electrodes (Fz, FCz, or Cz; Gehring et al., 1993). 
Figure 1a shows the ERN evoked by errors in a flanker task 
from Marlin et al. (Marlin, Mochizuki, Staines, & McIlroy, 
2014).

Received: 19 September 2018  |  Revised: 14 January 2019  |  Accepted: 8 February 2019

DOI: 10.1111/psyp.13359

R E V I E W

Do sensorimotor perturbations to standing balance elicit an 
error‐related negativity?

Aiden M. Payne1  |   Lena H. Ting1,2  |   Greg Hajcak3

1The Wallace H. Coulter Department of 
Biomedical Engineering, Georgia Tech and 
Emory University, Atlanta, Georgia
2Department of Rehabilitation 
Medicine, Division of Physical Therapy, 
Emory University, Atlanta, Georgia
3Departments of Psychology and 
Biomedical Sciences, Florida State 
University, Tallahassee, Florida

Correspondence
Aiden M. Payne, Wallace H. Coulter 
Department of Biomedical Engineering, 
Emory University, 1760 Haygood Drive, 
Suite W 200, Atlanta, GA 30332.
Email: apayne4@gatech.edu

Funding information
Georgia Tech Neural Engineering Center; 
Residential Care Facilities for the Elderly 
Authority of Fulton County, Atlanta, 
GA, USA; National Science Foundation, 
Grant/Award Number: 1137229; National 
Institutes of Health, Grant/Award Number: 
1P50NS098685, 5T90DA032466 and  
R01 HD46922-10

Abstract
Detecting and correcting errors is essential to successful action. Studies on response 
monitoring have examined scalp ERPs following the commission of motor slips in 
speeded‐response tasks, focusing on a frontocentral negativity (i.e., error‐related 
negativity or ERN). Sensorimotor neurophysiologists investigating cortical monitor-
ing of reactive balance recovery behavior observe a strikingly similar pattern of scalp 
ERPs following externally imposed postural errors, including a brief frontocentral 
negativity that has been referred to as the balance N1. We integrate and review rele-
vant literature from these discrepant fields to suggest shared underlying mechanisms 
and potential benefits of collaboration across fields. Unlike the cognitive tasks lever-
aged to study the ERN, balance perturbations afford precise experimental control of 
postural errors to elicit balance N1s that are an order of magnitude larger than the 
ERN and drive robust and well‐characterized adaptation of behavior within an ex-
perimental session. Many factors that modulate the ERN, including motivation, per-
ceived consequences, perceptual salience, expectation, development, and aging, are 
likewise known to modulate the balance N1. We propose that the ERN and balance 
N1 reflect common neural activity for detecting errors. Collaboration across fields 
could help clarify the functional significance of the ERN and poorly understood in-
teractions between motor and cognitive impairments.
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The ERN appears to reflect activation of the anterior cin-
gulate cortex and/or the supplementary motor area based on 
extracranial EEG (Dehaene, Posner, & Tucker, 1994; Gentsch, 
Ullsperger, & Ullsperger, 2009; Marlin et al., 2014; Miltner, 
Braun, & Coles, 1997), intracranial EEG (Bonini et al., 2014), 
fMRI (Badgaiyan & Posner, 1998; Carter et al., 1998; Hauser 
et al., 2014), and magnetoencephalography studies (Miltner 
et al., 2003). The ERN is thought to represent the activation 
of a generic neural system for error detection because it is 
relatively consistent across different tasks (Meyer et al., 2013; 
Riesel, Weinberg, Endrass, Meyer, & Hajcak, 2013) and re-
sponding limbs (Holroyd, Dien, & Coles, 1998). Theoretical 
and computational models suggest that the ERN reflects 
detection of errors, situations conducive to errors (Carter 
et al., 1998; Kerns et al., 2004; Ullsperger & von Cramon, 
2001; van Veen, Cohen, Botvinick, Stenger, & Carter, 2001; 
Yeung, Botvinick, & Cohen, 2004), or unexpected events 
(Alexander & Brown, 2011) to recruit cognitive control to 
improve behavior (Holroyd & Coles, 2002; Ridderinkhof, 
Ullsperger, Crone, & Nieuwenhuis, 2004; Shackman et al., 
2011; Ullsperger, Danielmeier, & Jocham, 2014). That is, the-
ories of the ERN generally suggest it is functionally linked 

to post‐error adaptation. However, observable changes in 
behavior accompanying errors in the tasks most commonly 
used to study ERN are limited to less forceful entry of errors 
compared to correct responses, subsequent entry of the cor-
rect response on the same trial, slower reaction time on subse-
quent trials, and increased probability of responding correctly 
on the next trial (Dutilh et al., 2012; Gehring et al., 1993). 
Thus, behavioral changes include differences in error‐related 
responses or post‐error performance measures.

Although the amplitude of the ERN has been correlated 
with changes in behavior after errors (Gehring et al., 1993; 
Ullsperger et al., 2014), a number of experimental factors 
limit the ability to rigorously test adaptive hypotheses of the 
ERN. Primarily, reliance on subjects to sporadically com-
mit errors limits experimental control over error frequency, 
timing, and sequencing. Additionally, discrete classification 
of responses as either overtly correct or erroneous limits the 
ability to observe continuous behavioral adaptation within 
subjects. Although some groups have begun to assess partial 
errors in the form of muscle activation in the nonresponding 
limb in trials with an overtly correct response (Spieser, van 
den Wildenberg, Hasbroucq, Ridderinkhof, & Burle, 2015), 
adaptation in these tasks is typically estimated as an increasing 
probability of an overtly correct response on subsequent trials 
(Gehring et al., 1993), rather than being directly measured in 
terms of incremental progress (e.g., skill acquisition toward 
the development of expertise within individuals; Shadmehr, 
Smith, & Krakauer, 2010). Given that accuracy often exceeds 
90% in these simple tasks, the odds of a correct response fol-
lowing an error would be quite high even in the absence of 
behavioral adaptation. While it is possible to observe incre-
mental changes in response latency across trials within indi-
viduals, it is unclear if behavioral changes such as post‐error 
slowing after errors in speeded‐response tasks actually reflect 
control‐related processes or, rather, orienting responses to in-
frequent events (Dutilh et al., 2012; Notebaert et al., 2009; 
Wessel, 2018; Wessel & Aron, 2017). Further, whether such 
orienting responses increase (Houtman & Notebaert, 2013) or 
decrease (Botvinick, Braver, Barch, Carter, & Cohen, 2001) 
the likelihood of errors on subsequent trials depends on, and 
is thus confounded by, the duration of intertrial intervals 
(Jentzsch & Dudschig, 2009; Wessel, 2018). A more complex 
behavioral task providing better experimental control and 
the presence of robust behavioral adaptation could overcome 
these limitations to facilitate a more mechanistic investigation 
of the ERN in relation to post‐error changes in behavior.

2  |   BALANCE PERTURBATIONS 
AND THE BALANCE N1

Reactive balance recovery following externally imposed 
balance errors provides greater experimental control over 

F I G U R E  1   Comparison of the error‐related negativity (ERN) 
and balance N1, collected in the same recording session in N = 11 
healthy young adults (8 female) from Marlin et al. (2014). (a) ERN 
evoked by errors in an arrow flanker task. (b) N1 evoked by sudden 
release of a cable supporting a portion of body weight from an 
upright leaning posture. Republished from Marlin et al. (2014), with 
permission from the Journal of Neurophysiology
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errors than tasks typically used to elicit the ERN. Reactive 
balance recovery can be evoked by a variety of physical 
perturbations imposing errors on whole body posture, in-
cluding shove (Adkin, Quant, Maki, & McIlroy, 2006) or 
release (Mochizuki, Boe, Marlin, & McIlRoy, 2010) per-
turbations of the upper torso, as well as tilts (Ackermann, 
Diener, & Dichgans, 1986) or translations of the floor 
during standing (Welch & Ting, 2009), walking (Dietz, 
Quintern, & Berger, 1985), or sitting (Mochizuki, Sibley, 
Cheung, Camilleri, & McIlroy, 2009; Staines, McIlroy, &  
Brooke, 2001). In contrast to cognitive paradigms that rely 
on subjects to sporadically commit errors, perturbation de-
vices can be used to precisely control the type, frequency, 
extent, and sequencing of balance perturbations, which can 
be repeated across subjects (Adkin et al., 2006; Welch & 
Ting, 2008, 2009, 2014). In each case, a rapid and highly 
motivated motor reaction is necessary to prevent a fall or 
possible bodily harm. The earliest balance‐correcting mus-
cle activity, called the automatic postural response, is an 
involuntary behavior mediated by brainstem sensorimotor 
circuits (Carpenter, Allum, & Honegger, 1999; Jacobs & 
Horak, 2007), which can be predicted in fine detail from 
movement‐based error trajectories, that is, the deviation 
of the body from the upright, standing position (Welch &  
Ting, 2008, 2009). In this way, balance recovery is an eco-
logically relevant error‐correcting behavior that evokes 
error‐related and error‐correcting muscle activity. And, 
most importantly, balance perturbations evoke an error‐re-
lated scalp ERP resembling the ERN, which has been re-
ferred to as the balance N1. Figure 1b shows the balance 
N1 evoked by sudden release of a cable supporting a por-
tion of body weight from an upright leading posture from 
Marlin et al. (2014).

Motor reactions to balance perturbations have been well 
characterized as rapidly adapting, error‐driven responses. 
Balance performance error can be measured by the posi-
tion, velocity, and acceleration of the body’s center of mass 
relative to the feet, which serve as three error signals that si-
multaneously evoke balance‐correcting muscle activations 
(Figure 2a; Lockhart & Ting, 2007; Welch & Ting, 2008, 
2009). Sensitivities to each of these error signals can vary 
independently and substantially within a range of solutions 
that are sufficient to generate forces to correct balance 
errors, and differences in these sensitivities can parsimo-
niously explain apparently complex differences in balance‐
correcting motor responses between individuals (Figure 
2a,b,c; Welch & Ting, 2008, 2009). These error sensitivi-
ties can adapt on a trial‐by‐trial basis within an experimen-
tal session toward optimal solutions that can be predicted 
through physics (Welch & Ting, 2014). Such adaptation 
can also occur over motor rehabilitation, as demonstrated 
by an increase in sensitivity to velocity and position errors 
in cats when the sensory afferents encoding acceleration 

F I G U R E  2   Kinematic error signals define the balance‐correcting 
motor response to perturbation. (a) Recorded center of mass kinematics 
(top) are multiplied by subject‐ and muscle‐specific error sensitivities, 
added together, clipped below zero, and delayed 100 ms (middle) 
to reconstruct recorded balance‐correcting electromyogram (EMG) 
response (bottom). (b) Different kinematic error sensitivities can explain 
differences in balance‐correcting EMG between subjects responding to 
the same perturbation. (c) Changes in sensitivity to acceleration error 
(top) primarily influence the initial burst of the balance‐correcting 
response, whereas changes in sensitivity to velocity (middle) or position 
errors (bottom) influence later portions of the response due to the 
relative peak timings of the error signals. Republished from Welch and 
Ting (2008), with permission from the Journal of Neurophysiology
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error were damaged by pyridoxine overdose (Lockhart & 
Ting, 2007). The mechanisms underlying such changes in 
error sensitivities remain unclear, but a better understand-
ing could facilitate rehabilitation of balance disorders.

In addition to error‐related and error‐correcting muscle 
activity, balance perturbations elicit error‐related cortical 
activity resembling the ERN (Figure 1). Specifically, a fron-
tocentral negativity called the balance N1 is evoked simul-
taneous to the balance‐correcting muscle activity (Payne, 
Hajcak, & Ting, 2018). The balance N1 is a negative peak of 
cortical activity occurring between 100–200 ms after balance 
perturbation at frontal and central midline EEG electrodes 
(Fz, FCz, Cz; Marlin et al., 2014; Mierau, Hulsdunker, & 
Struder, 2015), with amplitudes large enough to observe on 
single trials (Mierau et al., 2015; Payne et al., 2018). The 
balance N1 has been localized to the supplementary motor 
area (Marlin et al., 2014; Mierau et al., 2015), but theories 
of its function are extremely limited. The balance N1 was 
initially thought to reflect sensory activity from balance per-
turbations (Dietz, Quintern, & Berger, 1984, 1985; Dietz, 
Quintern, Berger, & Schenck, 1985). However, the absence 
of the balance N1 when perturbations are predictable (Adkin 
et al., 2006) suggests that the balance N1 may represent an 
error signal similar to the ERN. In fact, many factors known 
to modulate the ERN, including motivation, perceived conse-
quence, perceptual salience, expectation, development, and 
aging, are likewise known to modulate the balance N1 (see 
Section 3). If the balance N1 and ERN are manifestations 
of a common neural system for error detection, sensorimotor 
perturbations may present a more controllable experimental 
paradigm to study the relationship between errors, the action 
monitoring system, and subsequent changes in behavior (see 
Section 4).

3  |   PARALLELS BETWEEN 
BALANCE N1 AND ERN

The previous sections defined the ERN and balance N1 as 
frontocentral negativities time‐locked to an error event, 
which have largely overlapping scalp distributions (Figure 3)  
and sources localized to the medial frontal cortex (Marlin  
et al., 2014). In this section, we describe parallel outcomes of 
investigations of the balance N1 and the ERN to support the 
argument that these brain responses reflect similar functions 
of the action monitoring system, and in the following section, 
we conclude with the suggestion that collaboration across 
fields could overcome barriers to progress in both fields. 
One apparent contrast is that the ERN is typically quantified 
within the first 100 ms of the response‐locked ERP waveform, 
whereas the balance N1 is typically quantified in the second 
100 ms of the stimulus‐locked ERP waveform. However, 
in tasks that elicit the ERN, the onset of muscle activity 

associated with the erroneous response entry can be observed 
100 ms before the response button is pressed (Spieser et al., 
2015). Thus, if the ERN were quantified relative to the onset 
of the error event rather than completion of the error event, its 
timing would be more aligned with the timing of the balance 
N1 relative to the onset of perturbation acceleration. In other 
words, both the balance N1 and ERN could be equivalently 
quantified within the second 100 ms relative to the onset of 
an error, whether the error is internally generated, as in the 
case of the ERN, or externally applied, as in the case of the 
balance N1. Much like the ERN, which displays a similar 
scalp distribution whether responses are entered by the hand 
or foot (Holroyd et al., 1998), or even by the eyes (Endrass, 
Reuter, & Kathmann, 2007; Nieuwenhuis, Ridderinkhof, 
Blom, Band, & Kok, 2001; Van’t Ent & Apkarian, 1999), the 
balance N1 displays a similar scalp distribution regardless of 
whether perturbations are delivered during standing or sitting 
(Mochizuki, Sibley, Cheung, Camilleri, & McIlroy 2009), 
consistent with a generic system for error detection.

Larger and more intense balance perturbations elicit a 
larger balance N1 response (Mochizuki et al., 2010; Payne  
et al., 2018; Staines et al., 2001). Likewise, the ERN increases 
in amplitude with the extent of an error, such as when an error 
is committed with both the wrong finger and the wrong hand 
compared to errors committed with either the wrong finger 
or the wrong hand (Bernstein, Scheffers, & Coles, 1995). The 
balance N1 also decreases in amplitude when sensory input 
is partially blocked by tendon vibration (Staines et al., 2001) 
or when sensory input is naturally suppressed during walking 
(Dietz, Quintern, & Berger, 1985). These data are similar to 
observed reductions in the amplitude of the ERN in a visual 
two‐choice reaction task under degraded stimulus conditions 

F I G U R E  3   Scalp distributions of the error‐related negativity 
(ERN) and balance N1, collected in the same recording session in N = 
11 healthy young adults (8 female) from Marlin et al., 2014. (a) Scalp 
distribution of the ERN evoked by errors in an arrow flanker task. 
(b) Scalp distribution of the N1 evoked by sudden release of a cable 
supporting a portion of body weight from an upright leaning posture. 
Republished from Marlin et al. (2014), with permission from the 
Journal of Neurophysiology
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(Scheffers & Coles, 2000). In contrast to the balance N1 stud-
ies that directly altered the sensory experience of the error, 
the degraded visual stimulus condition in Scheffers and Coles 
altered the representation of the error by making subjects 
more uncertain about the identity of the appropriate response. 
In either case, the error‐related cortical response was influ-
enced by altering the perceptual intensity of the information 
necessary to compare the actual and desired events, thereby 
implicating some dependency on the sensory manifestation 
of the error‐related stimulus.

The balance N1 and the ERN both scale in amplitude with 
the perceived consequence of an error. The balance N1 is 
increased in amplitude when a balance failure would be more 
significant, such as when the participant is perturbed at an 
elevated height (Adkin, Campbell, Chua, & Carpenter, 2008; 
Sibley, Mochizuki, Frank, & McIlroy, 2010). In this case, 
the externally applied force of the perturbation is the same, 
but the change in context from standing at ground level to 
standing at the edge of an elevated platform increases the 
perceived consequences of a possible balance failure and 
increases the amplitude of the balance N1. The ERN like-
wise increases when an error is perceived as more signifi-
cant, for example, when an error incurs a higher monetary 
loss (Hajcak, Moser, Yeung, & Simons, 2005; Pailing & 
Segalowitz, 2004a) or when the participant is informed that 
their performance is being evaluated and judged (Hajcak  
et al., 2005; Kim, Iwaki, Uno, & Fujita, 2005). Interestingly, 
the elevated height perturbation context also increased self‐
reported level of anxiety and worry about falling (Adkin  
et al., 2008), which aligns with findings of higher ERN am-
plitudes in individuals with greater general anxiety and worry 
(Hajcak, McDonald, & Simons, 2003), which may modulate 
the perceived consequences of errors. These studies suggest 
that the balance N1 and ERN depend not only on the sensory 
phenomena of errors, but also on the cognitive valuation of 
the perceived consequences of balance perturbations and er-
rors, respectively.

The balance N1 is reduced in amplitude when a par-
ticipant’s attention is diverted from a balance task by per-
forming a simultaneous visuomotor tracking task (Quant, 
Adkin, Staines, Maki, & McIlroy, 2004) or visual working 
memory task (Little & Woollacott, 2015). Likewise, ERN 
amplitude is reduced when a participant’s attention is di-
verted from the primary speeded‐response task by simulta-
neous performance of an interleaved visual working memory 
task (Klawohn, Endrass, Preuss, Riesel, & Kathmann, 2016; 
Maier & Steinhauser, 2017) or while simultaneously listen-
ing to a series of numbers for a particular sequence (Pailing & 
Segalowitz, 2004b). These studies suggest that the amplitude 
of both the balance N1 and the ERN are modulated by the 
availability of cognitive resources.

When a balance perturbation is predictable in timing, 
magnitude, and direction, the balance N1 amplitude is 

substantially reduced (Mochizuki et al., 2010) or even absent 
(Adkin et al., 2008, 2006). Along similar lines, an unexpected 
balance perturbation in a different direction following a series 
of predictable perturbations elicits a large balance N1 (Adkin 
et al., 2008, 2006). Additionally, self‐initiated balance per-
turbations elicit smaller balance N1s than those initiated by 
an experimenter (Dietz, Quintern, Berger, & Schenck, 1985; 
Mochizuki, Sibley, Cheung, & McIlroy, 2009; Mochizuki, 
Sibley, Esposito, Camilleri, & McIlroy, 2008). These data 
suggest that the balance N1 scales with predictability and are 
consistent with observations that ERN amplitude is larger 
when errors are less frequent and therefore more unexpected 
(Holroyd & Coles, 2002; Santesso, Segalowitz, & Schmidt, 
2005). Collectively, these studies suggest a parallel potentia-
tion of ERN when errors are more infrequent and unexpected 
and balance N1 when perturbations are unexpected.

The balance N1 evoked by whole body perturbations in-
creases in amplitude from early childhood (Berger, Quintern, &  
Dietz, 1987) and declines in amplitude with old age (Duckrow, 
Abu‐Hasaballah, Whipple, & Wolfson, 1999). This develop-
mental trajectory is similar to that of the ERN, which has 
also been observed to increase in amplitude from childhood 
to adolescence, plateauing in adulthood (Ladouceur, Dahl, 
& Carter, 2007; Santesso & Segalowitz, 2008; Tamnes, 
Walhovd, Torstveit, Sells, & Fjell, 2013; Wiersema, van 
der Meere, & Roeyers, 2007), and declining with old age 
(Beste, Willemssen, Saft, & Falkenstein, 2009; Nieuwenhuis 
et al., 2002). However, increases in ERN amplitude from 
childhood to adulthood are often confounded by a reduc-
tion in error frequency (Ladouceur et al., 2007; Santesso & 
Segalowitz, 2008; Wiersema et al., 2007), making it unclear 
whether the increase in ERN amplitude from childhood to 
adulthood is due to age or increased unexpectedness of errors 
due to performance improvement. However, when compar-
ing younger adults to older adults, errors continue to become 
less frequent while the ERN amplitude declines (Beste et al., 
2009; Nieuwenhuis et al., 2002), suggesting there are indeed 
changes in ERN amplitude with age that do not depend on 
changes in error rate.

Time‐frequency analyses of the ERN (Luu, Tucker, & 
Makeig, 2004) and balance N1 (Peterson & Ferris, 2018; 
Varghese et al., 2014) have been used to suggest that both of 
these ERPs may reflect a transient synchronization of theta 
frequency (4–7 Hz) brain activity. However, in simulated data 
sets, such analyses are unable to distinguish synchronization 
of oscillatory components from discrete component peaks 
(Yeung, Bogacz, Holroyd, Nieuwenhuis, & Cohen, 2007). 
The extent to which these ERPs relate to theta frequency brain 
activity observed in other contexts remains unclear. Although 
theta power and ERN amplitudes are similarly modulated 
by novelty, conflict, and error within subjects (Cavanagh, 
Zambrano‐Vazquez, & Allen, 2012), theta power and ERN 
amplitude can be relatively independent individual difference 
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measures (Cavanagh, Meyer, & Hajcak, 2017). Whether the 
balance N1 evoked by postural perturbations is mechanis-
tically related to continuous theta frequency brain activity 
observed in continuous balance tasks (Hulsdunker, Mierau, 
Neeb, Kleinoder, & Struder, 2015; Sipp, Gwin, Makeig, & 
Ferris, 2013) remains unclear but presents another interesting 
area of future investigation and integration.

On the basis of these parallels, we propose that the bal-
ance N1 and the ERN reflect similar functions of the action 
monitoring system and suggest that balance and other senso-
rimotor perturbation paradigms could be leveraged to probe 
neural mechanisms of error detection and behavioral adapta-
tion. While anatomical studies have suggested that the ERN 
reflects activity within a cortical node of cortico‐basal gan-
glia‐thalamocortical circuits (Ullsperger et al., 2014), the bal-
ance N1 may likewise reflect activity within a cortical node of 
parallel or overlapping cortico‐basal ganglia‐thalamocortical 
circuits, which are known to be highly parallel in nature and 
are suspected to perform similar functions based on detailed 
anatomical studies in animals (Alexander, DeLong, & Strick, 
1986). In particular, the possible differences in localization 
of the ERN to the anterior cingulate cortex and the balance 
N1 to the supplementary motor area (Marlin et al., 2014) pro-
vides further support for the possibility that these ERPs may 
arise from the aforementioned parallel circuits, as the anterior 
cingulate cortex represents the cortical node of the so‐called 
cognitive loop of the cortico‐basal ganglia‐thalamocortical 
circuit, and the supplementary motor area represents the cor-
tical node of the so‐called motor loop of the cortico‐basal 
ganglia‐thalamocortical circuit (Alexander et al., 1986). 
However, these differences in localization may also be influ-
enced by differences in overlap between the ERN or balance 
N1 and associated stimulus‐locked visual or proprioceptive 
and vestibular ERPs, respectively (Hajcak, Vidal, & Simons, 
2004). If the balance N1 is a perturbation‐elicited ERN, the 
experimental control and robust adaptation within balance 
paradigms could be leveraged to test adaptive hypotheses of 
the ERN, and theoretical and computational models of the 
ERN could be leveraged to design mechanistic investigations 
of the balance N1. Further, collaboration across fields could 
reveal interactions between motor and cognitive impairments 
as well as cross‐modal and synergistic benefits seen in com-
bined motor and cognitive rehabilitation interventions.

4  |   SUMMARY AND FUTURE 
DIRECTIONS

Detecting and correcting errors is essential to successful be-
havior. By error, we refer to any deviation from a desired 
or expected goal or bodily state, which can be recognized 
by the nervous system as the impetus to modify behavior to 
achieve the desired state or goal. Although a perturbation 

does not reflect commission of a motor error, it produces a 
deviation from the desired upright posture that must be rapidly 
detected and corrected to prevent bodily harm. In this way, we 
believe that balance perturbations recruit many of the same con-
trol processes that are recruited by commission of motor errors, 
which is supported by a range of parallel influences on scalp 
ERPs described in the preceding section. Because of the simi-
larities between error‐correcting motor responses to balance 
perturbations and error‐correcting motor responses in perturba-
tions to the arms during voluntary movement (Crevecoeur &  
Kurtzer, 2018), it is possible that these cortical responses 
would generalize more broadly across sensorimotor control 
paradigms.

In contrast to cognitive paradigms that rely on subjects 
to sporadically commit errors, perturbation devices can be 
used to precisely control the type, frequency, extent, and se-
quencing of errors, which can be repeated both within and 
across subjects (Adkin et al., 2006; Welch & Ting, 2008, 
2009, 2014) across a wide range of ages (Berger et al., 1987; 
Duckrow et al., 1999). Prediction or expectation errors can 
also be controlled in sensorimotor paradigms by altering ver-
bal instructions or sequencing of perturbations, for example, 
by providing a series of perturbations that are predictable 
in timing, direction, and magnitude and manipulating any 
of these dimensions on selected “catch” trials (Adkin et al., 
2006; Welch & Ting, 2014). In addition, it is also possible to 
examine outcome errors (e.g., by instructing a subject to re-
cover balance without stepping in perturbations large enough 
to guarantee stepping reactions; Chvatal & Ting, 2012; 
McIlroy & Maki, 1993). It is therefore possible to leverage 
precise control over sensorimotor errors to experimentally 
isolate factors for a more detailed understanding of how each 
aspect of errors influences cortical activity. In turn, leverag-
ing knowledge of the ERN to design sensorimotor perturba-
tion experiments could be a major step toward identifying the 
functional role of cortical action monitoring on adaptation of 
sensorimotor behaviors.

Given the parallel outcomes of investigations of the ERN 
and the balance N1, several questions arise from the ERN 
literature that have yet to be tested of the balance N1. First, 
if the balance N1 and ERN share neural circuitry, then drugs 
that influence the ERN should also influence the balance N1. 
In particular, do dopamine agonists and antagonists, which 
increase (de Bruijn, Hulstijn, Verkes, Ruigt, & Sabbe, 2004) 
and decrease (de Bruijn, Sabbe, Hulstijn, Ruigt, & Verkes, 
2006; Zirnheld et al., 2004) the amplitude of the ERN in 
healthy young adults, likewise influence the amplitude of the 
balance N1? Second, if the balance N1 and ERN share neu-
ral circuitry, then disorders that influence the ERN should 
also influence the balance N1. In particular, do individuals 
with Parkinson’s disease who present with reduced ERN am-
plitudes (Seer, Lange, Georgiev, Jahanshahi, & Kopp, 2016) 
likewise show reduced balance N1s? And could this relate to 



      |  7 of 12PAYNE et al.

balance impairment in Parkinson’s disease? Do individuals 
with obsessive‐compulsive disorder who present with larger 
ERN amplitudes (Endrass et al., 2010; Klawohn, Riesel, 
Grutzmann, Kathmann, & Endrass, 2014) also display larger 
balance N1s? And could this relate to reduced postural 
sway in obsessive‐compulsive disorder (Kemoun, Carette, 
Watelain, & Floirat, 2008)? Further, can reward and punish-
ment, which can cause a lasting increase in ERN amplitude 
(Riesel, Weinberg, Endrass, Kathmann, & Hajcak, 2012), 
likewise cause lasting changes in the balance N1 amplitude? 
Or, if the balance N1 and ERN share underlying circuitry, can 
the effect of punishment on ERN amplitude cross domains 
to increase the balance N1 in the absence of punishment in 
balance tasks? While such correlational investigations are 
interesting and may provide insight into the neural underpin-
nings of performance monitoring, a much greater challenge 
will be leveraging such insight to benefit people with altered 
performance monitoring.

ERN amplitude is characteristically altered in multiple 
patient populations that seek rehabilitation from persistent 
pathological behaviors and thought processes, including 
those with obsessive‐compulsive disorder (Gehring, Himle, &  
Nisenson, 2000; Klawohn et al., 2014), generalized anxi-
ety disorder (Weinberg, Klein, & Hajcak, 2012; Weinberg, 
Olvet, & Hajcak, 2010), substance abuse (Franken, van 
Strien, Franzek, & van de Wetering, 2007; Schellekens et al.,  
2010), old age, Parkinson’s disease (Seer et al., 2016), and 
Huntington’s disease (Beste et al., 2009). While such be-
tween‐population differences can be leveraged as a risk factor 
to predict the development of certain neuropsychiatric dis-
orders (Meyer, Hajcak, Torpey‐Newman, Kujawa, & Klein, 
2015), attempts to leverage knowledge about altered cortical 
action monitoring and error processing to devise treatment 
strategies are just beginning. Potential rehabilitation strate-
gies targeting the action monitoring system include, but are 
not limited to, strategic reorienting of attention from over-
valued errors in individuals with obsessive‐compulsive dis-
order (Klawohn et al., 2016) or anxiety (Waters et al., 2018) 
or toward undervalued or unrecognized errors in individuals 
with Parkinson’s disease, habituation of maladaptive error 
responses or training of alternative behavioral responses to 
compete with pathological behaviors (Jacoby & Abramowitz, 
2016), or targeted noninvasive electrical stimulation of the ac-
tion monitoring system (Bellaiche, Asthana, Ehlis, Polak, &  
Herrmann, 2013; Reinhart & Woodman, 2014). A better un-
derstanding of the action monitoring system could therefore 
be advantageous for treating a range of neuropsychiatric dis-
orders and could even extend into balance rehabilitation if ac-
tion monitoring spans behavior more broadly. Although the 
brainstem‐mediated involuntary balance‐correcting motor 
responses can adapt rapidly within a single experimental 
session in healthy young adults (Horak & Nashner, 1986; 
Welch & Ting, 2014), understanding brain involvement is 

critical for rehabilitation of balance recovery behavior in 
individuals with balance impairments due to Parkinson’s 
disease (Grimbergen, Munneke, & Bloem, 2004), cerebellar 
dysfunction (Horak & Diener, 1994), or cognitive impair-
ment (Herman, Mirelman, Giladi, Schweiger, & Hausdorff, 
2010). Further, the rapid behavioral adaptation observable in 
balance paradigms could provide an experimental model in 
which to test hypotheses about error‐driven changes in be-
havior more broadly and may prove particularly helpful in 
the context of comorbidities between motor and psychiatric 
disorders.

Finally, we suggest that collaboration across fields could 
clarify poorly understood interactions between motor, cog-
nitive, and psychiatric disorders, leading to more integrated 
models of the ERN and balance N1, as well as potential 
treatment strategies. Many populations with altered error 
responses also display differences in balance behavior, 
including frequent comorbidities between anxiety dis-
orders and balance disorders (Balaban, 2002; Balaban & 
Thayer, 2001; Bolmont, Gangloff, Vouriot, & Perrin, 2002;  
Yardley & Redfern, 2001), and substantially reduced pos-
tural sway in individuals with obsessive‐compulsive dis-
order (Kemoun et al., 2008). Further, balance impairment 
is strongly associated with cognitive impairment in older 
adults with (Allcock et al., 2009; Mak, Wong, & Pang, 
2014; McKay, Lang, Ting, & Hackney, 2018) and with-
out (Camicioli & Majumdar, 2010; Gleason, Gangnon,  
Fischer, & Mahoney, 2009; Herman et al., 2010; Mirelman 
et al., 2012) Parkinson’s disease, and rehabilitation in-
terventions that simultaneously target cognitive engage-
ment show greater improvement in motor function in 
healthy aging (Kraft, 2012; Wu, Chan, & Yan, 2016) and 
in Parkinson’s disease (McKay, Ting, & Hackney, 2016; 
Petzinger et al., 2013) than interventions that target motor 
function alone. Collaboration across fields could provide 
new insight into these synergistic benefits of combined in-
terventions and may help explain counterintuitive findings 
that balance training can ameliorate anxiety disorders (Bart 
et al., 2009) or that cognitive training can improve balance 
and gait (Smith‐Ray et al., 2015), leading to the develop-
ment of more integrated treatment strategies for comorbid 
motor, cognitive, and psychiatric disorders.
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