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Sawers A, Allen JL, Ting LH. Long-term training modifies the
modular structure and organization of walking balance control. J
Neurophysiol 114: 3359-3373, 2015. First published October 14,
2015; doi:10.1152/jn.00758.2015.—How does long-term training af-
fect the neural control of movements? Here we tested the hypothesis
that long-term training leading to skilled motor performance alters
muscle coordination during challenging, as well as nominal everyday
motor behaviors. Using motor module (a.k.a., muscle synergy) anal-
yses, we identified differences in muscle coordination patterns be-
tween professionaly trained ballet dancers (experts) and untrained
novices that accompanied differences in walking balance proficiency
assessed using a challenging beam-walking test. During beam walk-
ing, we found that experts recruited more motor modules than nov-
ices, suggesting an increase in motor repertoire size. Motor modules
in experts had less muscle coactivity and were more consistent than in
novices, reflecting greater efficiency in muscle output. Moreover, the
pool of motor modules shared between beam and overground walking
was larger in experts compared with novices, suggesting greater
generadization of motor module function across multiple behaviors.
These differences in motor output between experts and novices could
not be explained by differences in kinematics, suggesting that they
likely reflect differencesin the neural control of movement following
years of training rather than biomechanical constraints imposed by the
activity or musculoskeletal structure and function. Our results suggest
that to learn challenging new behaviors, we may take advantage of
existing motor modules used for related behaviors and sculpt them to
meet the demands of a new behavior.

muscle synergy; motor control; motor expertise; balance control;
electromyography

YEARS OF DELIBERATE PHYSICAL practice are required for motor
actions to become truly proficient (Crossman 1959; Ericsson et
al. 1993). This proficiency is accompanied by detectable
changes in the central representations (Elbert et al. 1995;
Pascual-Leone et a. 1993) and biomechanics of trained move-
ments (Furuya et al. 2011; Furuya and Kinoshita 2008; Verrel
et al. 2013), as well as related motor behaviors (Gentner et al.
2010). Yet how such long-term training affects the neural
control of motor behaviors is not well understood. Therefore,
our goal was to determine how the structure and organization
of neuromotor outputs for walking and balance are affected by
long-term training. Identifying how long-term training affects
the construction, storage, and execution of movement may
provide valuable insight into yet unknown mechanisms of
motor coordination and motor learning that could guide future
rehabilitation efforts.
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Evidence suggests that motor modules reflect underlying
neural mechanisms for coordinating movement. Motor mod-
ules, ak.a,, muscle synergies, are groups of coactive muscles
with a fixed spatial structure that can have time-varying acti-
vation patterns (Torres-Oviedo and Ting 2007). Motor mod-
ules may transform movement goals into biomechanical out-
puts (Chvatal et a. 2011; Chvatal and Ting 2012, 2013; Hayes
et al. 2014; Lee 1984; Neptune et al. 2009), acting as building
blocks that can be scaled, shifted and recombined to coordinate
purposeful goal-directed actions (Flash and Hochner 2005;
Ting et a. 2015) across a variety of contexts (Chvatal et al.
2011; Chvatal and Ting 2013; d’ Avella and Bizzi 2005; Weiss
and Flanders 2004). It is debated whether this structure reflects
neural control mechanisms (Berger et al. 2013; Byadarhaly et
al. 2012) or emerges from biomechanical constraints imposed
by musculoskeletal structure and function (Kutch et al. 2008;
Kutch and Vaero-Cuevas 2012; Valero-Cuevas et al. 2009).
Behavioral evidence suggests that motor modules reflect the
structure of neural output, astheir spatial structure is preserved
across motor behaviors (Tresch and Jarc 2009), despite differ-
ences in sensory states (Cheung et al. 2005; Torres-Oviedo
2006), biomechanical contexts (Cappellini et al. 2006; Chvatal
et al. 2011; Chvatal and Ting 2013; d'Avella and Bizzi 2005;
Oliveira et a. 2012; Routson et al. 2014; Torres-Oviedo and
Ting 2010), and loading conditions (Cheung et al. 2009g;
Ivanenko et a. 2004; McGowan et a. 2010). Several animal
studies have combined motor module analyses with neural
recording, imaging, and stimulation techniques to identify
motor circuits in the motor cortex (Asavasopon et al. 2014;
Overduin et a. 2012, 2014), brain stem (Chvatal et al. 2013;
Roh et al. 2011), and spinal cord (Hart 2004; Hart and Giszter
2010; Tresch et al. 1999) that may be involved in expressing
motor modules and generating functional motor behaviors.

If motor modules represent neural control mechanisms to
coordinate movement, how might their structure and organiza-
tion change with long-term training? The greatest evidence for
differences in motor module structure across levels of motor
ability comes from studies of motor impairment, not expertise
(Kristiansen et al. 2013; Turpin et a. 2011). These results
suggest that the spatial structure, reflected in motor module
number and composition, as well as temporal structure or
modul e recruitment, are related to impairments in walking and
balance ability. Specifically, motor module number is generally
reduced (Clark et al. 2010; Fox et al. 2013; Rodriguez et al.
2013), the number of coactive muscles per moduleisincreased
(Clark et al. 2010; Fox et al. 2013; Gizzi et a. 2011; Hayes et
al. 2014), and temporal recruitment becomes broader (Hayes et
al. 2014) and more variable (Routson et al. 2014). However,
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just as motor module structure is altered during motor devel-
opment (Dominici et a. 2011), deficits in the spatia and
temporal structure of motor modules may be remediated via
motor rehabilitation (Routson et a. 2013). Therefore, it is
likely that long-term training in unimpaired individuals may
induce changes in the spatial and temporal structure of motor
modules. Whether these changes in structure alter the neural
control of movement across related motor behaviors is un-
known. For example, in many motor behaviors, including
walking and balance, motor modules are recruited from a
common pool (Cappellini et a. 2006; Oliveira et a. 2012;
Torres-Oviedo 2006). This versatility, or generalizability, of
motor modules in movement suggests that a change in the
control of one behavior could aso alter the neural control of a
different behavior. However, this has not yet been studied in
relation to differences in motor ability.

We hypothesized that long-term training leading to skilled
motor performance alters muscle coordination during challeng-
ing as well as nominal everyday motor behaviors. Specifically,
we examined the structure and organization of motor modules
during walking balance behaviors. We compared motor mod-
ules between professionaly trained ballet dancers and un-
trained novices while walking overground and across a narrow
beam. We predicted that experts would 1) use more motor
modules than novices; 2) have modules composed of fewer
coactive muscles; 3) recruit more distinct motor modules with
greater spatial and temporal consistency during beam walking;
and 4) share alarger pool of motor modules between beam and
overground walking, revealing greater versatility in their motor
patterns.

METHODS
Participant Recruitment

Two groups of participants were recruited: experts (professional
trained ballet dancers) and novices (no dance or gymnastic training).
Inclusion criteria for all participants was age greater than 18 yr.
Experts were required to have at least 10 yr of ballet training and were
recruited from the professional development program of the Atlanta
Ballet Center for Dance Education, as well as from the Company of
the Atlanta Ballet. Novices were required to have no formal dance or
gymnastic training. Exclusion criteria for both groups were self-
reported medical conditions that could impair walking and balance.
Written, informed consent was obtained from each subject. The
Institutional Review Board of the Georgia Institute of Technology
approved al protocols.

Experimental Procedures

All participants completed four experimental conditions (nharrow
beam-walking, wide beam-walking, overground walking at preferred
gait speed, and overground walking at slow speed). First, balance
performance was assessed with a narrow beam-walking test previ-
ously shown to detect differences in walking balance proficiency
across the spectrum of motor ability (Sawers and Ting 2015). During
beam walking, the center of pressure under the foot is restricted to a
narrow region. As a result, the lateral ankle strategy for maintaining
balance (Hof et al. 2010) cannot be of much assistance. Similarly foot
placement, another strategy to maintain balance (Hof et al. 2010;
Winter 1995) is limited by the width of the beam. Therefore, the main
balance strategy left to participants during beam walking is the lateral
hip strategy (Winter 1995); where slight lateral motions of the trunk
about the hips are used to maintain and/or restore balance. Participants
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were asked to walk in a heel-to-toe pattern along a beam that was 3.8
cm wide and 3.66 m long while keeping their arms crossed over their
chest. In an effort to reduce the effect of postural threat (Brown et al.
2006; Carpenter et a. 1999) on walking balance performance, beam
height was kept low (3.25 cm). No explicit instructions were given
regarding walking speed or stepping pattern (i.e., step length or
cadence), as previous work has demonstrated that stepping pattern has
little effect on beam-walking performance (Speers et a. 1998). Par-
ticipants attempted to walk across the beam and were instructed to
stop if they uncrossed their arms or stepped off the beam (i.e., balance
failure).

Next, as a control condition, participants were asked to walk across
a wider beam (20.3 cm) using the same heel-to-toe gait pattern. The
wider beam condition was added to examine the influence of task
difficulty on the sharing of motor modules between behaviors. Finaly,
overground walking was performed at two speeds: 1) a preferred
self-selected speed, and 2) a self-selected slow speed. The slow
overground-walking speed condition was selected to better match
beam-walking speeds. Overground motor modules were only ex-
tracted from the slow-walking condition to determine the degree to
which they were shared with the beam conditions. Electromyography
(EMG) from the preferred walking speed trials were used to normalize
beam- and slow-walking EMG data. All experimental conditions were
randomized. Participants performed six trials of each condition while
wearing standardized footwear.

Data Collection and Processing

Kinematic data. Marker coordinate data were collected at 120 Hz
using an eight-camera motion capture system (Vicon, Centennial, CO)
and a 25-marker set that included head-arms-trunk, pelvis, thigh,
shank, and foot segments based on the Vicon Plug-in-Gait model.
Marker coordinate data were interpolated using a cubic spline inter-
polation to remove gaps from the data, filtered with a low-pass
Butterworth filter (third-order) at 20 Hz, and combined with subject-
specific anthropometric data to build an eight-segment whole body
model. Whole body center-of-mass (CoM) position was estimated
using a weighted sum approach.

Electromyographic data. Surface EMG activity was recorded at
1,080 Hz from 16 muscles on the right leg and trunk of each
participant. The muscles that were recorded included the following:
tibialis anterior, peroneus longus, medial gastrocnemius, soleus, vas-
tus medialis, vastus lateralis, biceps femoris long head, semimembra-
nosus, gluteus maximus, gluteus medius, rectus femoris, tensor fas-
ciae latae, adductor magnus, rectus abdominus, external obliques, and
erector spinae. EMG signals were high-pass filtered at 35 Hz (third-
order Butterworth), de-meaned, rectified, and low-pass filtered at 40
Hz (third-order Butterworth) using custom Matlab routines (Figs. 1A
and 2A).

Subject-specific EMG data matrices were generated for each walk-
ing condition. All trials were cropped to exclude the first and last
strides (i.e., initiation and termination), aswell as any balance failures.
Next, EMG data were downsampled by averaging the data in 50-ms
timebins (Chvatal and Ting 2012; Hayes et al. 2014). Previous studies
have shown that using 50-ms time bins is sufficient to identify the
number and composition of the motor modules during walking (Ch-
vatal and Ting 2012). EMG datafrom all trials were then concatenated
rather than averaged to create data matrices that were 16 (number of
muscles) X n (number of time bins) in size for each participant. Ten
to twelve gait cycles, identified using vertical heel marker position,
were included in the analysis for each participant (Oliveira et al.
2014). No time normalization procedures were performed on the
EMG data. Asaresult, the size of the data matrices (i.e., the length of
n) varied between participants. A minimum of 321 data points was
used in each EMG matrix. The EMG data matrices were then
normalized to the maximum activation observed during overground
walking at preferred walking speed, and each row in the data matrices
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(i.e., muscle vector) was scaled to have unit variance so that equal
weighting was applied to each muscle in the extraction process. The
unit variance was removed after module extraction to restore the
original scaling and facilitate comparison of motor modules (Hayes et
al. 2014; Torres-Oviedo and Ting 2007).

Motor module extraction. To test our prediction that experts would
have a larger pool of motor modules that are shared across motor
behaviors, we extracted motor modules from the EMG data in two
stages (Cheung et a. 2005; Roh et a. 2011). In the first stage, motor
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modules were extracted from the EMG data of each behavior inde-
pendently. The objective of this stage was to determine the number of
motor modules used in each behavior. In the second stage, the EMG
data from each behavior were pooled, and motor modules were
extracted from both behaviors simultaneously. The goal of this second
stage was to determine the number of shared and behavior-specific
motor modules.

STAGE 1: INDEPENDENT MOTOR MODULE EXTRACTION. Motor
modules were initially extracted from overground- and beam-walking
EMG data matrices separately using nonnegative matrix factorization
(NNMF) (Lee and Seung 1999). Importantly, motor modules were
extracted from the whole data set of EMG for each participant rather
than an averaged stride cycle. This is important because it helps to
capture the consistent patterns underlying step-to-step variability of
the EMG data better than averaged data (Oliveira et a. 2014). NNMF
is a computational technique that has been used extensively for motor
module analysis (Cheung et al. 2009b; Chvatal and Ting 2013; Clark
et a. 2010; Ting and Macpherson 2005). NNMF extracts motor
modules assuming that each recorded muscle activation pattern, M, is
the product of a small number of modules, W, that are each activated
by a module recruitment coefficient, c;. In this formulation a given
muscle activation pattern, M, would be represented by:

M =Wy + CWy + - - - +¢,W,

where W, indicates the relative contributions of each muscle in
module i. In this model, each motor module is considered to be a
spatially fixed time-invariant pattern with recruitment coefficients that
vary over time (Hart 2004; Torres-Oviedo 2006). This alows for
modules to be flexibly combined and produce a variety of different
motor behaviors (Ting and McKay 2007).

To determine the number of motor modules needed to account for
the recorded EMG data in each walking condition, we first extracted
1 to 16 modules. The goodness of fit of the data reconstruction for
each number of motor modules was then quantified by the variance
accounted for (VAF). The VAF describes how much of the variability
in the original EMG data is accounted for by the EMG reconstructed
from the motor modules and their recruitment coefficients (Zar 1999).
To help ensure consistency in selecting the number of motor modules
embedded within the EMG data sets, we calculated the 95% confi-
dence interval (Cl) for the VAF of the reconstructed EMG at each
module number (1-16) (Cheung et al. 2009a; Hayes et a. 2014). This
was accomplished by implementing a bootstrapping procedure where
the EMG data sets were resampled 500 times with replacement, and
the VAF of the reconstructed EMG was recalculated after each

Fig. 1. Example electromyography (EMG) and motor modules during over-
ground and beam walking of a professionally trained ballet dancer (expert). A:
examples of EMG recordings from select muscles during overground and
beam walking (dashed lines denote ipsilateral heel-strikes). EMG data for each
individual and behavior were binned into 50-ms windows and used for
subject-specific and behavior-specific motor module analysis, capturing step-
to-step variations in muscle activity. EMG data were not averaged across steps
or individuals. B: examples of motor module weights which illustrate spatial
structure, and recruitment coefficients that denote temporal structure extracted
from overground and beam walking. Shared motor modules are indicated in the
white box, and behavior-specific motor modules are indicated in the gray box.
In this expert, all motor modules used in beam walking were also recruited
during overground walking, with one extra module for overground walking.
Motor module recruitment coefficients increased in magnitude and variation
during beam walking, yet showed little to no change in shape. Thick lines
represent average recruitment coefficient across steps (dashed for overground
walking, solid for beam walking), and thin lines are cycle-by-cycle coeffi-
cients. TA, tibialis anterior; PERO, peroneus longus, MGAS, medial gastroc-
nemius; SOL, soleus; VMED, vastus medialis; VLAT, vastus lateralis, BFLH,
biceps femoris long head; SEMM, semimembranosus; RFEM, rectus femoris;
TFL, tensor fasciae latae; GMAX, gluteus maximus; GMED, gluteus medius,
REAB, rectus abdominus; EXOB, external obliques; ADMG, adductor mag-
nus; ERSP, erector spinae.
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resampling. 95% Cls were then constructed from the bootstrapped
VAF values at each module number, and the number of modules was
selected as the minimum number of modules at which the lower
bound of the 95% CI exceeded 90% VAF (Cheung et a. 2009g;
Chvatal et al. 2011).

STAGE 2: SHARED AND SPECIFIC MOTOR MODULE EXTRACTION. TO
determine the number of shared and behavior-specific motor modules,
we used a modified version of the NNMF algorithm (Cheung et al.
2005; Roh et al. 2011) that simultaneously extracts motor modules
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that are shared across beam and overground walking and those that are
specific to each behavior from a data matrix containing EMG from
both conditions. A shared motor module is defined as one that is
recruited in both behaviors, and therefore has non-zero recruitment
coefficients, C in both behaviors. To identify behavior-specific motor
modules, the coefficients, C, corresponding to beam walking are set to
zero, and vice versa for overground walking. This modification takes
advantage of the multiplicative update rule such that any components
of W or C that are set to zero prior to NNMF will remain at zero after
extraction

First, for each subject, EMG data from beam and overground
walking was concatenated into a single matrix so that both behaviors
could be analyzed simultaneously. This alowed for the extraction of
motor modulesthat are shared between behaviors, aswell as those that
are specific to beam or overground walking. For the first iteration of
the algorithm, the total number of motor modules to be extracted was
set to the sum of the number of motor modules extracted from each
behavior independently in stage 1. This iteration assumes no shared
motor modules. For example, if five motor modules were extracted in
stage 1 for beam walking and six were extracted for overground
walking, the total number of modules initially extracted in stage 2
would be 11. During the initial iteration of the algorithm, the recruit-
ment coefficients specific to beam walking were set to zero for
overground walking and vice versa. The total number of motor
modules extracted is then iteratively reduced by one, which increases
and decreases the number of shared motor modules and behavior-
specific motor modules by one, respectively. This iterative process of
increasing the number of shared motor modules was continued until
the total number of modules was equal to the minimum number of
motor modules for the individual behavior that was found to have the
fewest modulesin the independent extraction (i.e., all modulesfor one
behavior are shared with the other behavior).

Asin stage 1, the number of shared vs. specific motor modules for
each participant was determined by the minimum number of total
motor modules that were required so that the lower bound of the 95%
Cl of the overall reconstructed EMG V AF exceeded 90%. We defined
the percentage of shared motor modules between beam and over-
ground walking as the ratio of the number of shared modules over the
number of total motor modules across the two behaviors (Figs. 1B and
2B). This approach to identify shared and behavior-specific motor
modules was selected because it addresses a number of the shortcom-
ings when comparing the similarity of motor modules extracted
independently from data sets of different behaviors, such as underes-
timating the number of modules in either condition (Cheung et al.
2005).

Data Analysis

Beam-walking performance. Normalized distance walked was used
to quantify beam-walking proficiency (Sawers and Ting 2015). The

Fig. 2. Example EMG and motor modules during overground and beam
walking of an untrained participant (novice). A: examples of EMG recordings
from select muscles during overground and beam walking (dashed lines denote
ipsilateral heel-strikes). EMG data for each individual and behavior were
binned into 50-ms windows and used for subject-specific and behavior-specific
motor module analysis, capturing step-to-step variations in muscle activity.
EMG data were not averaged across steps or individuals. B: examples of motor
modules weights (spatial structure) and recruitment coefficients (temporal
structure) extracted from overground and beam walking. Shared motor mod-
ules are indicated in the white box, and behavior-specific motor modules are
indicated in the gray box. In this novice, 50% of the motor modules were
shared between beam and overground walking. Temporal structure increased
in magnitude and variation, with more notable differences in the shape of the
recruitment coefficient between overground and beam walking compared with
experts. Thick lines represents average recruitment coefficient (dashed for
overground walking, solid for beam walking), and thin lines are cycle-by-cycle
coefficients.
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normalized distance walked is calculated as the ratio of the sum of
the distance walked across al six-beam trials and the total possible
distance (i.e., 6 trials X 3.68 m/trial = 22.08 m). A normalized
distance of 1.0 would be reported for perfect performance on all beam
trials. To test our prediction that experts would have better walking
balance proficiency than novices, differences in normalized distance
walked were compared with a two-sided t-test (« = 0.05).

Walking speed for beam and overground trials were calculated
from processed C7 marker coordinate data and trial time. Whole body
medial-lateral CoM control was characterized using the margin of
stability. The margin of stability quantifies the distance between the
extrapolated CoM and the lateral base of support (Hof et al. 2005).
The variable b, is the minimum margin of stability within a gait
cycle. The extrapolated CoM is calculated as the vertical projection of
the CoM plus its horizontal velocity, divided by a constant related to
stature. The lateral base of support was estimated using the position of
the lateral malleolus marker, a technique that has been previously
utilized when center-of-pressure data are not available (Gates et al.
2013). Since the lateral malleolus was used as the limit of the base of
support and not the center-of-pressure or the edges of the beam, the
margin of stability that was calculated may be dlightly larger than it
otherwise would be. The effect of group (expert vs. novice) and
condition (beam vs. overground) on walking speed and margin of
stability (b,,i,) Was examined with a two-way mixed-design ANOVA
(e = 0.05) for each variable. Step width was also calculated during
overground walking as the distance between the lateral malleoli at
right heel-strike. Differences in step width were examined using a
two-sided t-test (a = 0.05).

Kinematics. To characterize the kinematic movement patterns of
experts and novices during beam and overground walking, sagittal and
frontal plane segment angle trajectories of the leg and trunk were
calculated with respect to the horizontal from processed marker
coordinate data. These trgjectories were compared between and within
groups using a wavelet functional ANOVA, which compares the
shape and magnitude of a signal rather than discrete time points
without sacrificing statistical power (McKay et a. 2013). To describe
the variability of the kinematic movement patterns, the root mean
square error (RMSE) of each segment angle trajectory was calculated.
RM SE values were compared between experts and novices, aswell as
between beam and overground walking using a two-way mixed-
design ANOVA (a = 0.05).

Spatial patterns of muscle coactivity. To test our prediction that
experts would use more motor modules than novices, the number of
motor modules that were independently extracted for each behavior
was compared between experts and novices as well as between beam
and overground walking using a two-way mixed-design ANOVA
(e = 0.05). To test our prediction that experts would have a larger
pool of common motor modules between beam and overground
walking, we compared the percentage of motor modules that were
identified as shared between walking behaviors from the shared/
specific extraction using a two-sided t-test (« = 0.05).

Motor module composition was quantified with two metrics of
muscle coactivity, W,,,c and Wq,,,- Wy.s is the number of signifi-
cantly active muscles per module (Hayes et al. 2014). Significantly
active muscles were computed by establishing 95% Cls for the
contribution, i.e., the values of the elements w;;, to each muscle i in
each module j extracted from the bootstrapped versions of the EMG
datasets created in stage 1. Significantly active muscles were consid-
ered those whose 95% CI did not include zero. Wg,,, measures the
overal level of muscle activity in a module, calculated as the sum of
the contributions, w;;, of significantly active muscle within a module
(Hayes et a. 2014). W, and W,,,,. may reflect the efficiency of the
motor modules, providing a description of module sparseness. To test
our prediction that experts would exhibit less coactivity than novices,
W, us @d W, were compared between experts and novices, as well
as between beam and overground walking using a two-way mixed-
design ANOVA (a = 0.05).
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Cluster analysis techniques were utilized to characterize motor
module separation, consistency, and distinctness. Sammon’ s mapping,
atwo-dimensional nonlinear mapping technique, was used to map and
plot each subject’'s 16 dimensiona modules (i.e., 16 muscles) in
two-dimensional space (De Marchis et al. 2013). This procedure
generates a new set of k N-dimensional vectors (N = 2 dimensions)
from a set of k M-dimensional vectors (M = 16 dimensional space of
the motor modules), while conserving the structure (point-to-point
Euclidean distance) of the original data set by minimizing differences
in the distance between points from the two data sets (Sammon 1969).
Sammon’s mapping was applied to a matrix that contained all of the
data: specifically, al of the motor modules from the bootstrapped
EMG data sets of beam and overground walking of all participants.
This alowed us to compare Euclidean distances in the two-dimen-
sional maps across individuals and behaviors. K-means clustering was
then used to organize the resulting two-dimensiona Sammon’'s map
vauesinto clusters and identify the centroid location of each cluster. For
each participant and behavior, the number of clusters was set equal to the
number of modules that were identified in the independent module
extraction (stage 1). Each data point in a cluster is a two-dimensiona
representation of one of the bootstrapped motor modules. Module sepa-
ration (s) was quantified as the average distance between the centroids
corresponding to each motor module, module consistency (R95) was
quantified as the radius of a circle that encompassed all of the cluster
points in that module to 95% confidence, while module distinctness (d)
was defined as the mean distance between R95 circles:

d= %2”5 — (R95; + R95))

To test our prediction that experts would have greater spatial consis-
tency and distinctness in their motor module structure, each of these
metrics were compared between experts and novices, as well as
between beam and overground walking using a two-way mixed-
design ANOVA (a = 0.05).

Temporal patterns of muscle coactivity. To characterize the tem-
poral patterns of muscle coactivity, we calculated three metrics from
the motor module recruitment coefficients (see Fig. 9A). Module
recruitment magnitude (C,,.,) Was defined as the area under the curve
of the mean recruitment coefficient, the duration of module recruit-
ment (C,,,) Was defined as the percentage of the gait cycle for which
the recruitment coefficient was above a given threshold (15% of max
activation) (Hayes et al. 2014), and the consistency of module recruit-
ment (C, ) Was measured as the RMSE of each recruitment coeffi-
cient. To test our prediction that experts would have smaller, shorter,
and more consistent module recruitment, Ccq, Cauty» @d C,pppee Were
compared between experts and novices, as well as between beam and
overground walking using a two-way mixed-design ANOVA (a =
0.05). All statistical analyses were conducted using SPSS (version 21;
SPSS, Chicago, IL).

RESULTS
Participants

Thirteen experts (professionally-trained ballet dancers) and
10 untrained novices participated in the experiment. Dance
experience among the experts ranged from 12 to 20 yr. Aver-
age height (mean = 1 SD) (experts. 1.64 = 0.07 m; novices:
1.66 + 0.05 m), weight (experts: 55 + 7 kg; novices: 64 = 10
kg), and age (experts: 24 + 2 yr; novices: 22 + 3 yr) did not
differ between the cohorts (P > 0.05). All participants were
women.
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We Measured Differences in Performance on the Balance
Beam between Experts and Novices

Consistent with our expectation that experts would have
better walking balance proficiency, experts walked farther than
novices on the balance beam (Fig. 3A, experts: 0.91 = 0.06;
novices: 0.71 = 0.09; P = 0.03). This difference in balance
proficiency was not accompanied by a difference in beam- or
overground-walking speed between cohorts (Fig. 3B, expert
overground: 0.59 * 0.11 m/s; novice overground: 0.57 = 0.05
m/s; expert beam: 0.43 + 0.03 m/s; novice beam: 0.34 *= 0.06
m/s; P > 0.05). However, within both groups, beam-walking
speed was significantly reduced compared with overground-
walking speed (Fig. 3B, experts: P = 0.02; novices. P =
0.003). These results confirmed that experts had distinguish-
able differences in balance proficiency compared with novices,
justifying further analysis of EMG data.

Experts had a significantly smaller margin of stability com-
pared with novices during overground walking (Fig. 3C, ex-
perts: 3.91 = 0.9 cm; novices. 4.89 = 0.5 cm; P = 0.02), but
not beam walking (Fig. 3C, experts: 3.70 = 1.2 cm; novices:
4.06 = 0.9 cm; P > 0.05) (Fig. 3C). However, within either
group, the margin of stability did not differ significantly
between beam and overground walking (Fig. 3C, experts. P >
0.05; novices: P > 0.05). Therefore, the margin of stability in
beam walking did not reflect differences in balance profi-
ciency, but may reflect the smaller available base of support in
beam walking. Experts had a smaller step width during over-
ground walking compared with novices (Fig. 3D, experts:
17.3 = 275 cm; novices. 21.8 = 4.3 cm; P = 0.006),
indicating that the reduced margin of stability that was ob-
served during overground walking among experts was due the
smaller base of support.

Leg and Trunk Kinematics Were Similar in Experts and
Novices during Overground and Beam Walking

Segment angle trajectories of the leg and trunk in the sagittal
and frontal plane were not significantly different between
experts and novices during beam (P > 0.05) or overground
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walking (P > 0.05) (Fig. 4, A and B). However, within both
groups, significant differences in segment angle trajectories
were observed between overground and beam walking (ex-
perts:. P < 0.005; novices. P < 0.005) (Fig. 4, A and B).
Similarly, segment kinematic variability, evaluated by RMSE,
did not differ between experts and novices during beam (P >
0.05) or overground walking (P > 0.05), but was significantly
greater during beam vs. overground walking for all but the
sagittal plane trunk angle in both groups (experts and novices:
P < 0.04) (Fig. 4C).

Experts Used More Motor Modules in Beam Walking than
Novices

Consistent with our prediction that more motor modules
would accompany long-term training, experts had more mod-
ules than novices during beam walking [Fig. 5B, expert:
6.69 + 0.60 (range: 6—8); novice: 5.60 = 1.15 (range: 4—8);
P = 0.009]. However, there were no differences in the number
of modules used by experts and novices during overground
walking [Fig. 5A; expert overground: 7.00 = 0.82 (range:
6-8); novice overground: 6.30 + 1.16 (range: 5-8); P >
0.05]. Moreover, within each group, there were no significant
differences in the number of modules used in beam vs. over-
ground walking (Fig. 5, A and B, P > 0.05). Example VAF
plots in Fig. 5 illustrate that there was no overlap between
origina data and random data, demonstrating that there was
significant structure in the EMG data that was characterized by
motor modules. Moreover, trial-by-trial variability in the EMG
data was well accounted for when reconstructed using motor
modules (original vs. reconstructed EMG in Fig. 5).

Experts Shared More Modules across Overground and Beam
Walking than Novices

Not only did experts use more motor modules than novices
during beam walking, but as predicted, experts also had a
larger pool of subject-specific motor modules that were shared
across walking behaviors. Specifically, a larger percentage of
motor modules were shared across overground and narrow
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Fig. 3. Motor performance metrics for beam and overground walking. A: normalized distance walked on the narrow beam was greater among experts (red bar,
solid border) than novices (gray bar, dashed border). Individual averages across 6 attempts are denoted by the circles (experts: gray-filled circles; novices, open
circles). B: walking speed did not differ between experts and novices during beam or overground walking. However, walking speed was lower in beam compared
with overground walking among experts and novices (experts: P = 0.02; novices. P = 0.003). C: margin of stability was significantly smaller among experts
compared with novices during overground walking (P = 0.04), but not during beam walking. There were no differences in the margin of stability across walking
conditions within either group. D: step width was significantly smaller among experts compared with novices during overground walking (P = 0.006). Vaues
are means = SD.
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beam walking in experts compared with novices (Fig. 6A,
experts: 82 = 18%; novices: 54 + 22%; P = 0.02). To explore
whether this overlap in motor modules would also be observed
in novices when performing a less challenging balance behav-
ior, we evaluated the percentage of motor modules common to
overground and wide-beam walking. We found that both ex-
perts and novices shared a considerable percentage of motor
modules between the two behaviors (>85%), with no differ-
ence between groups (Fig. 6B, experts: 85 + 18%; novices:
96 = 9%; P > 0.05).
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Fig. 6. Percentage of motor modules shared between overground- and
beam-walking conditions. A: experts (red bar, solid border) shared a larger
percentage of motor modules than novices (gray bar, dashed border)
between narrow beam and overground walking (P = 0.02). Average
number of shared motor modules per subject are denoted by the circles
(experrather than creating de novo, behavior-specificts: gray-filled circles;
novices, open circles). B: experts and novices shared an equal percentage
of motor modules between wide beam and overground walking. Values are
means = SD.

Motor Module Spatial Structure Was More Sparse,
Consistent, and Distinct in Experts Compared with Novices

As predicted, the W, (Fig. 7C, experts: 450 = 1.13;
novices. 6.30 £ 1.65; P = 0.005) and the W,,, (Fig. 7D,
experts: 2.21 = 0.37; novices: 2.82 = 0.57; P = 0.006) was
lower among experts compared with novices during beam
walking. Interestingly, in the less skilled, more automatic
overground-walking activity, W, (Fig. 7C, experts: 4.76 =
0.92; novices: 5.84 + 1.36; P = 0.034) and W, (Fig. 7, C and
D, experts: 2.35 = 0.40; novices: 2.73 £ 0.46; P = 0.048)
were also significantly lower among experts compared with
novices. Within either group, W, and W, did not differ
between overground and beam waking (Fig. 7, C and D,
experts P > 0.05; novices P > 0.05).

Lending further support to differences between experts and
novices in motor module spatial structure, greater consistency
and distinctness were observed in expert module clusters (Fig.
8, A and B). Specifically, while the separation between clusters
(i.e., mean centroid-to-centroid distance, s) was larger among
novices than experts during beam walking (Fig. 8C, experts:
151 = 0.11; novices. 1.65 = 0.18; P = 0.04), their consis-
tency (i.e., lower mean radius of the 95% CI, R95) was
significantly greater in experts compared with novices during
beam walking (Fig. 8D, experts. 0.49 = 0.05; novices. 0.60 =

Fig. 5. Number and goodness of fit for motor modulesin overground and beam
walking for experts and novices. A, top left: the number of motor modules
(mean = SD) used during overground walking did not differ between experts
(red bar, solid border) and novices (gray bar, dashed border). Average number
of motor modules per subject are denoted by the circles (experts: gray-filled
circles; novices, open circles). A and B, top right: the number of motor modules
selected accounted for =90% of the overall variability accounted for (VAF)
during overground beam walking as depicted by plots from an example
subject. Bottom: the extracted motor modules reconstructed the original over-
ground EMG data (example from single individual; red: original EMG, blue:
reconstructed EMG). B, top left: the number of motor modules (mean = SD)
used during beam walking was significantly greater among experts than
novices (P = 0.009). Bottom: as with overground waking, EMG signals
during beam walking were well reconstructed using the extracted motor
modules as depicted in the example original vs. reconstructed EMG plots from
a single subject. Cl, confidence interval.
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Fig. 7. Motor module coactivity for experts and novices during overground and beam walking. A and B: example expert (A) and novice (B) motor modules.
Coactivity was quantified as the average number of significantly active muscles per module (W,,,.o), as well as the average sum of those significantly active
muscles per module (Wg,.,). Significantly active muscles (filled bars, solid border) represent those whose activation was consistently greater than zero, despite
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dashed border) had 95% Cls that included zero. C: W,,, s Was lower among experts (red bar, solid border) than novices (gray bar, dashed border) in overground
and beam walking (overground: P = 0.034, beam: P = 0.005). W,,, did not differ between overground and beam walking for experts or novices. Average W,,, ¢
per subject is denoted by the circles (experts: gray-filled circles; novices, open circles). D: Wg,,, was also lower among experts compared with novices during
overground and beam walking (overground: P = 0.048, beam: P = 0.006). In both experts and novices, Wy, did not differ between overground and beam

walking. Values are means = SD.

0.08; P = 0.001). Asaresult, experts had more distinct clusters
than novices during beam walking (Fig. 8E, experts. 0.57 =+
0.09; novices: 0.45 + 0.18; P = 0.039). No significant differ-
ences in any of the cluster metrics were observed for over-
ground walking. Within either group, only cluster consistency
(R95) was significantly different between overground and
beam walking for novices (Fig. 8D, beam: 0.60 * 0.08;
overground: 0.49 + 0.09; P = 0.01). The error, or Sammon’s
stress, in conserving the original point-to-point distances in the
projected data set from Sammon’s mapping was 0.042, indi-
cating that the structure of the origina data was adequately
preserved in the transformation from 16 to two-dimensional
space.

Temporal Recruitment of Motor Modules Was More
Consistent in Experts Compared with Novices

Among the metrics used to quantify the temporal recruit-
ment of motor modules, only the variability in module recruit-
ment (C, ) Was found to differ between experts and novices.
Crmse Was lower among experts compared with novices, but
only during beam (Fig. 9D, experts: 0.138 = 0.04; novices:
0.193 *+ 0.06; P = 0.01), not overground, walking (Fig. 9D,
experts: 0.0.082 =+ 0.02; novices: 0.063 = 0.01; P > 0.05). In
contrast to our prediction, there was no significant difference
between experts and novices in the magnitude (C¢,) Or dura-
tion (Cgyy) Over which modules were recruited during beam or

overground walking (Fig. 9, B and C; P > 0.05). In compar-
ison, the magnitude (C,.,), duration (Cyyy), and variability
(Cimee) Were all greater during beam vs. overground walking in
experts (P < 0.001) and novices (P < 0.001) (Fig. 9, B-D).

DISCUSSION

Here we demonstrate that years of ballet training altered the
structure of muscle coordination patterns in walking and bal-
ance behaviors. The differences in motor modules between
experts and novices could not be explained by differences in
kinematics, and, therefore, may reflect changes in the neural
control of movement following years of training, rather than
biomechanical constraints imposed by the activity or muscu-
loskeletal structure and function. This supports our hypothesis
that long-term training leading to skilled motor performance
alters muscle coordination during challenging as well as nom-
inal everyday motor behaviors. Moreover, the greater overlap
of motor modules between beam and overground walking in
experts suggests that, to learn challenging new behaviors, we
may take advantage of existing motor modules used for related
behaviors (e.g., overground walking) and sculpt them to meet
the demands of a new behavior (e.g., beam walking). Addi-
tionally, since ballet dancers do not train on balance beams, the
observed differences in muscle coordination are unlikely to be
task-specific modifications to the neural control of movement.
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Fig. 8. Cluster analysis of motor module spatia structure during overground and beam walking for experts and novices. A and B: example expert (A) and novice
(B) motor modules and cluster plots depicting motor module separation (s), consistency (R95), and distinctness (d). Each data point in a cluster is a
two-dimensional representation of one of the bootstrapped motor modules. C: motor module separation was greater among novices (gray bar, dashed border) than
experts (red bar, solid border) during beam (P = 0.009) but not overground walking. Average motor module separation per subject is denoted by the circles
(experts: gray-filled circles; novices, open circles). D: motor module consistency was greater among experts than novices during beam (P = 0.001) but not
overground walking. Module consistency was lower during beam vs. overground walking among novices (P = 0.001) but not experts. E: motor module
distinctness was greater among experts than novices during beam (P = 0.039) but not overground walking. Values are means + SD.

Rather they may reflect general changes to handle balance
challenges.

Motor Modules Reflect Differences in Neural Control of
Movement

The observed differences in motor modules between experts
and novices may reflect changesin neural control of movement
(Ting et al. 2015). This interpretation is strengthened by two
observations. First, among experts similar motor modules were
used during beam and overground walking, despite differences
in their kinematic movement trajectories and increased kine-
matic variability in the frontal plane during beam walking. The
increased lateral trunk variability during beam walking sug-
gests that there was an increased reliance on a lateral hip
strategy to maintain balance during beam walking. Therefore,
the similarity in motor modules cannot be attributed to similar
movement kinematics, implicating differences in the underly-
ing neural control (Tresch and Jarc 2009). Second, motor
modules were different in experts and novices during beam
walking, even though kinematic movement trajectories and the
variability in those movement trgectories were similar be-
tween groups. Surprisingly, the variability in lateral trunk
movements during beam walking did not differ between ex-
perts and novices, although presumably experts would have
had to make those lateral movements more effectively, given

the greater distance they walked on the beam. Thus the differ-
ences in motor modul es between groups cannot be attributed to
differences in movement kinematics, once again implicating
changes in the neural control of movement after years of
training. Note that we did not observe kinematic differencesin
beam or overground walking between experts and novices,
whereas prior work has demonstrated differencesin kinematics
between expert and novice musicians (Furuya and Altenmiller
2013; Verrel et a. 2013). One reason may be that prior studies
have specifically observed trained movements, i.e., playing an
instrument, whereas we examined a behavior that experts had
not specifically practiced, but was likely to be affected by
ballet training, i.e., walking across a narrow beam. In contrast
to fine motor skills (McNemar 1933), balance proficiency is
affected more by training than hereditary factors (Williams and
Hearfield 1973), highlighting the need for a mechanistic un-
derstanding of improvements in balance control that can be
implemented in rehabilitation. Differences in motor modules
between experts and novices may thus underlie the differences
in balance proficiency as a result of changes in the neura
control of movement owing to long-term training.

Long-term Training May Create a Larger Motor Repertoire

Long-term motor training may expand the size of one's
motor repertoire, increasing the set of available motor actions.
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While motor training during rehabilitation has been shown to
increase the number of motor modules in individuals with
sensorimotor deficits (Routson et al. 2013), ours is the first
demonstration that long-term training may increase the number
of motor modules in unimpaired adults. Prior studies have not
found differences in motor module number between experts
and novices, likely because they were focused on constrained
athletic activities requiring high power output (e.g., cycling,
weightlifting) (Kristiansen et al. 2013; Turpin et al. 2011). In
contrast, beam walking is a challenging balance behavior that
reguires precise control of movement. Moreover, the body is
upright and not kinematically constrained, allowing more mo-
tor variability in the coordination of the body’s degrees of
freedom (Steele et a. 2015; Ting and Chvatal 2010). Experts
may, therefore, have more flexibility in achieving motor goals
because of a larger motor repertoire, something that may be
particularly useful under such challenging conditions. For
example, an expanded motor repertoire may have alowed
experts to produce additional biomechanical functions that
novices could not produce, and which serve a particular (or
important) function in maintaining balance on the beam. An-
other explanation is that experts may decompose a behavior
into more precise biomechanical functions than novices, such
that they use multiple motor modules for executing a biome-
chanical function that novices would execute with a single
motor module. Finally, experts may have multiple motor mod-
ules for executing the same function in different movement
contexts. However, distinguishing between these interpreta-
tions would require more detailed biomechanical analyses
involving ground reaction forces, and possibly more experi-
mental conditions and/or musculoskeletal modeling tech-
niques.

At present we are unable to comment on possible differences
in the neural control of interlimb coordination as it relates to

balance proficiency, and how that may influence our under-
standing of the size of the motor repertoire. While interlimb
coordination is critical to maintaining balance (Berger et a.
1984; Dietz et al. 1989; Moyer et a. 2009; Oliveira et a.
2012), the present study only examined motor modules in a
single leg to collect and analyze a sufficient number of muscles
to capture the complexity of limb control during such an
intricate behavior as beam walking. While it is unlikely that
this affected the number of motor modules and their compo-
sition during overground walking, this may have reduced the
number of motor modules extracted during beam walking, as
the left leg may have been involved in executing unique
neuromotor patterns that were not performed by the right leg.
Such differences may be critical to understanding neuromotor
mechanisms of balance impairment.

Motor Module Efficiency Increases with Long-Term Training

Our results suggest that long-term training leading to skilled
motor performance results in more efficient muscle coordina-
tion, such that fewer muscles are coactive during challenging
as well as everyday motor behaviors. Specifically, we found
that the spatial structure of muscle activity was sparser in
experts compared with novices during beam and overground
walking. Interestingly, it was only the sparseness of the muscle
activity per module that differed between experts and novice
during the overground walking, not the number of motor
modules. However, the number of motor modules is more
likely to reflect the task mechanics of a motor behavior (Steele
et al. 2015; Ting et a. 2015) than the efficiency of the muscle
coordination used in the execution of those motor behaviors.
Therefore, the differences in the efficiency of everyday move-
ments may be reflected in the coactivity of muscle coordination
patterns, not the number of motor modules that are recruited.
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This efficiency in the structure of the motor output is consistent
with studies demonstrating that long-term training results in
more efficient generation of neuronal activity in primary motor
cortex (Picard et al. 2013), more efficient use of cortical
resources (Jancke et al. 2000; Naito and Hirose 2014), and
contraction of motor maps (Krings et a. 2000; Molina-Luna et
al. 2008; Pascual-Leone et al. 1994; Tennant et al. 2012) that
initially expand with skill learning (Nudo et al. 1996; Pascual-
Leone et al. 1995). Additionally, with extended physical prac-
tice, subcortical circuits may take on greater independence for
coordinating motor patterns, suggesting a role for the motor
cortex as a tutor to subcortical circuits (Kawai et al. 2015), a
development that would be consistent with increased automa-
ticity and movement efficiency among experts (Leavitt 1979).
Training due to rehabilitation may also improve spatial effi-
ciency of muscle activity (Routson et al. 2013), which is
degraded among individuals with sensorimotor impairments
(Clark et al. 2010; Fox et al. 2013; Gizzi et a. 2011; Hayes et
al. 2014; Routson et a. 2013). In contrast, improvements in
walking with mechanical assistive devices (e.g., cane, walker)
do not affect motor module efficiency, only temporal recruit-
ment (Hayes et al. 2014). Patients with notable performance
deficits may also have impaired temporal recruitment of motor
modules, suggesting they are unable to appropriately recruit
motor modules to meet task demands. As our participants were
young and hedlthy, we did not observe differences in the
temporal efficiency of motor module recruitment.

Experts Are More Consistent

Experts may have better balance proficiency than novices
due to the consistency with which they can transform move-
ment goals into motor actions (Schmidt 1975). Our results
show that experts had high temporal and spatial consistency in
the structure of their muscle activity during challenging beam-
walking conditions. Trial-by-trial consistency in the spatial
structure of motor modules was higher during beam walking in
experts than novices, but similar in experts and novices during
overground walking. Experts also exhibited greater consis-
tency in the temporal recruitment of motor modules during
beam walking compared with novices. The lower spatial and
temporal consistency in motor modules among novices during
beam walking may result from exploring the space of potential
actions (Haith and Krakauer 2013) to find more effective motor
solutions (Loeb 2012). It is aso possible the lower consistency
among novices may be due to the novel beam-walking activity
requiring motor patterns that lie outside of the range of motor
modules available to novices, or that novices were required to
engage in more corrections to near losses of balance than
experts. By having to engage in more discrete corrections to
prevent a loss of balance during beam walking, novices may
have relied more heavily on the recruitment of aperiodic
muscle activity. This aperiodic muscle activity may be quan-
tified by the greater variation in the recruitment coefficients
(i.e., temporal variability) of the motor modules of novices
during beam walking. Such aperiodic muscle activity in motor
modules for the control of walking balance has been observed
previously in response to discrete perturbations to walking
(Chvatal and Ting 2012), but has not been well characterized.
Since the activation of motor modules can be influenced by
sensory inflow (Cheung et al. 2005), the differences in tempo-
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ral consistency between experts and novices may be due to
differences in how sensory information is processed to recruit
motor modules. The consistency of motor module spatial
structure among experts resulted in more distinct motor mod-
ules compared with novices during beam walking. This dis-
tinctness suggests that experts were allocating unique muscle
combinations to each motor module, which may have in-
creased the consistency and efficacy with which related bio-
mechanical subtasks were executed, leading to better walking
balance proficiency.

Shared Motor Modules Suggest a Backward-Compatible
Motor Learning Mechanism

To learn challenging new behaviors, we may take advantage
of existing motor modules used for related behaviors and scul pt
them to meet the demands of a new behavior (Georgopoulos
and Grillner 1989; Grillner and Wallén 2004). These modified
motor modules may be “backward compatible” in that they
continue to be recruited when performing previously learned
behavior(s), extending the capabilities of the motor repertoire
without increasing its size. The difference between experts and
novices may be the degree of practice-dependent tuning of
existing motor modules that extends their versatility from
nominal to more chalenging behaviors. For example, ballet
dancers used a common set of motor modules across narrow-
beam, wide-beam, and overground walking. In contrast, nov-
ices exhibited common motor modules only between wide-
beam and overground-walking conditions, suggesting that their
motor modules are also robust and backward compatible, but
across a smaller range of task difficulty. Therefore, long-term
ballet training may sculpt existing overground-walking motor
modules for use during challenging balance tasks (represented
in our study by beam walking), and these modified motor
modules then continue to be used for overground walking,
thereby creating the greater overlap in motor modul es observed
in experts. Conversely, if experts had less overlap (i.e., more
balance challenge-specific motor modules), this would have
suggested that, rather than modifying existing motor modules
which then continue to be used for overground walking, new
balance challenge-specific (i.e., beam walking) motor modules
would be created with long-term training. Consistent with the
idea of sculpting existing motor modules to improve perfor-
mance, early stages of skill learning in animals also involve
reconfiguring existing rather than creating de novo, behavior-
specific motor patterns (Kargo and Nitz 2003; Nudo et al.
1996). Sharing motor modules across behaviors may facilitate
learning (Clune et al. 2013; McKay and Ting 2012) by per-
mitting new motor behaviors to be performed with a nominal
level of proficiency and allow motor modules to be shaped over
the course of training to improve performance (Mussa-lvaldi
and Bizzi 2000). This would bias learning toward behaviors
that are compatible with the existing motor repertoire (Berger
et al. 2013; Sadtler et al. 2014), which may explain why some
individuals appear to be “naturals’ or have an affinity for a
particular sport or activity. This selection and repetition of
successful motor modules from the motor repertoire may
strengthen the connectivity between certain sets of neurons
while others are weakened, altering synaptic efficacy. This may
result in a biasing of neura circuitry, such that trained motor
patterns become more robust and are recruited more consis-
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tently (Monfils 2005) to execute common biomechanical sub-
tasks, regardless of context. The effect of training for one
behavior on the control of another (Gentner et a. 2010;
Mouchnino et al. 1993; Pedotti et al. 1989) may be an impor-
tant consideration in rehabilitation, as remediating specific
movement deficits could influence the control of other motor
behaviors (Fox et al. 2013).

The small pool of motor behaviors that are typically studied
limits our understanding of the role motor modularity playsin
the control of movement. While modularity is often considered
a strategy to simplify the control of movement by reducing the
degrees of freedom (d’Avella et a. 2003; Ting and Macpher-
son 2005), this is only true within the context of the motor
behaviors examined during an experiment, and not necessarily
representative of the expansive range of behaviors that we
regularly perform (Ting et a. 2015; Zelik et al. 2014). It isalso
possible that the motor modules that were considered beam
specific may actually be shared with other motor behaviors that
were not examined in the present study. A thorough charac-
terization of the scope of the motor repertoire used for loco-
motor behaviors would be required to test this idea. Addition-
aly, rather than modifying existing motor modules, new be-
havior-specific motor modules may develop, particularly
during training for specific athletic or artistic activities, in-
creasing the size of the motor repertoire to extend its capabil-
ities. Therefore, the number of motor modules that make up
each individual’s motor repertoire may be much larger than we
have traditionally considered. Rather than reducing the dimen-
sions of all possible movements, modularity may only reduce
dimension in the context of specific behaviors by mapping
motor intentions into motor patterns.
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