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muscle activity can deviate from optimal solutions computed from biomechanical models is not known.
Here, we examined the range of biomechanically permitted activation levels in individual muscles during
human walking using a detailed musculoskeletal model and experimentally-measured kinetics and
kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each
muscle's activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary
their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that
were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indi-
cating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse
dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble
previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and com-
puted muscle control, that are based on the same biomechanical constraints. Our results demonstrate
that joint torque requirements from standard inverse dynamics calculations are insufficient to define the
activation of individual muscles during walking in healthy individuals. Identifying feasible muscle acti-
vation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural
constraints on possible versus actual muscle activity in both normal and impaired movements.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Musculoskeletal redundancy (Bernstein, 1967) allows for an
infinite number of combinations of muscle activation patterns for
performing a task. Current modeling approaches typically handle
this redundancy by assuming some optimization criterion, e.g.
minimizing muscle stress (Crowninshield and Brand, 1981; Thelen
et al., 2003), to select a single muscle activation pattern among
many that satisfy biomechanical constraints such as joint torques,
joint contact forces (Fregly et al., 2012; Lin et al., 2010; Walter
et al., 2014), joint impedance (Franklin and Wolpert, 2011; Hogan,
1984; Mitrovic et al., 2010), etc. The most common biomechanical
constraints on muscle activation patterns are based on experi-
mentally-measured kinematics (e.g. joint angles) and kinetics (e.g.
ground reaction forces) and found using a single optimization
criterion. Such inverse approaches identify optimal solutions that
may capture major features of experimentally-measured muscle
activation patterns (Thelen and Anderson, 2006; Thelen et al.,
ta, GA 30332-0535, United
2003), but do not inform the extent to which deviations from
optimal patterns may also satisfy the biomechanical constraints.
While some variations in muscle activity across individuals have
been attributed to different body morphology (Buchanan and
Shreeve, 1996; Liu et al., 2008; van der Krogt et al., 2012), how
much within-individual variations of muscle activity are permitted
given these biomechanical constraints has not been well studied.
Characterizing all viable deviations in muscle activity from an
optimal solution that still satisfy a set of biomechanical constraints
would facilitate interpretation of experimental variations in mus-
cle activation patterns as well as how those biomechanical con-
straints affect not just the optimal solutions, but the set of all
possible solutions.

A few attempts to define feasible muscle activation ranges for a
given movement have been made previously. These attempts have
been limited to matching net joint torques, primarily in isometric
tasks, and their results may be highly dependent on model com-
plexity. For example, Kutch and Valero-Cuevas (2011; 2012)
demonstrated a limited range of possible muscle activation patterns
for finger forces in a 4 degree-of-freedom (DoF) model with 7 mus-
cles, suggesting that biomechanics limit the set of possible muscle
activation patterns. Using a simplified planar leg model with 14

www.sciencedirect.com/science/journal/00219290
www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
http://dx.doi.org/10.1016/j.jbiomech.2015.07.037
http://dx.doi.org/10.1016/j.jbiomech.2015.07.037
http://dx.doi.org/10.1016/j.jbiomech.2015.07.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.037&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiomech.2015.07.037&domain=pdf
mailto:lting@emory.edu
http://dx.doi.org/10.1016/j.jbiomech.2015.07.037


C.S. Simpson et al. / Journal of Biomechanics 48 (2015) 2990–2997 2991
muscles and three DoFs, they demonstrated using computational
geometry that removing a single muscle greatly reduces force pro-
duction capabilities; this approach defines the complete solution
space but is limited to 14 muscles. In contrast, we demonstrated very
wide feasible muscle activation ranges using a linear programming
technique on a model of the cat hindlimb with 7 DoFs and 41
muscles (Sohn et al., 2013). Similarly, Martelli et al. showed wide
possible variations in a model of human walking (10 DoFs, 82 mus-
cles), however the Markov Chain Monte Carlo methods they used
cannot find explicit limits of activation (Martelli et al., 2015, 2013).

Here, our goal was to identify the feasible muscle activation
ranges during a full gait cycle of human walking by extending the
methods of Sohn et al. (2013) to a dynamic task. We identified
feasible muscle activation ranges during human walking using
experimental data (John et al., 2013) and a detailed musculoskeletal
model of the human lower extremity with 23 DoF and 92 muscles
(Delp et al., 2007; Delp et al., 1990). We extended Sohn's (2013)
method such that each time point in the gait cycle was treated as an
independent optimization problem (Anderson and Pandy, 2001b),
where each muscle's minimum and maximum possible activity
level (while allowing all others to vary independently) to satisfy
inverse dynamics based net joint torque requirements is identified
at each time point. These upper and lower bounds on muscle
activation, defining the feasible muscle activation ranges, were then
compared to optimal solutions from inverse approaches, i.e., com-
puted muscle control (CMC) (Thelen and Anderson, 2006; Thelen
et al., 2003) and static optimization (Anderson and Pandy, 2001b) as
well as experimentally recorded electromyographic (EMG) data
reported in literature (Perry, 1992; Van der Krogt et al., 2012). Our
results show that feasible muscle activation ranges can be applied
to standard inverse dynamics solutions using complex muscu-
loskeletal models to identify the degree to which muscle activation
level can vary from optimal solutions.
2. Methods

Our method for calculating feasible muscle activation ranges was based on
satisfying inverse dynamics joint torque constraints and used a combination of
built-in OpenSim analyses with custom Matlab code (Fig. 1). Experimental data in
combination with a generic OpenSim model (Scale, Inverse Kinematics, and Inverse
Dynamics Tools) were used to calculate movement kinematics and kinetics. Joint
torques and muscle parameters extracted from the model were used as inputs to
calculate feasible ranges of muscle activation. Our results were compared to solu-
tions from commonly used techniques to calculate optimal muscle activations,
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Fig. 1. Schematic of methods used to identify feasible ranges of muscle activation
degrees of freedom and 92 muscles (Delp et al. 1990, 2007) was used to perform an inve
tools (Inverse Kinematics and Inverse Dynamics) were used to calculate joint angles and
production capabilities (Thelen, 2003; John et al., 2013). Feasible muscle activation rang
muscle activation ranges can be compared with optimal or experimental (EMG) muscle
specifically static optimization (Anderson and Pandy, 2001b) and CMC (Thelen and
Anderson, 2006). We also compared our feasible muscle activation ranges to EMG
data from Perry (1992) and van der Krogt et al. (2012).

2.1. Experimental data

We used experimental marker data and ground reaction force data (Fig. 1) of a
single subject (male; height, 1.83 m; body mass, 65.9 kg) walking at self-selected
speed (1.36 m/s) on an instrumented treadmill. This data is publically available at
https://simtk.org/home/muscleprops (John et al., 2013).

2.2. Extraction of model parameters from OpenSim

A generic three-dimensional OpenSim musculoskeletal model of the human
lower extremity (gait2392.osim) with 23 DoF and 92 musculotendon actuators
(Table 1) was scaled to subject anthropometrics using the Scale Tool. The muscle
model parameters extracted for each muscle were: maximum isometric force, opti-
mal fiber length, tendon slack length, pennation angle at optimal fiber length, max-
imum eccentric force, parallel muscle fiber stiffness, active force-length, passive force-
length, and force-velocity shape factors. Joint angles were calculated using the Inverse
Kinematics Tool with the scaled model and experimental marker data. Musculo-
tendon lengths and moment arms were extracted from inverse kinematics results.
Finally, joint torques were calculated using the Inverse Dynamics Tool with the scaled
model, inverse kinematics results, and experimental ground reaction forces.

2.3. Calculating feasible muscle activation ranges

Feasible muscle activation ranges were calculated using custom Matlab code
based on a linear mapping between muscle activations (a) and the joint torques (τ )
required to produce the task calculated using OpenSim (above):

R AMF R PMFq T q T q T a T q T q T, Tτ[ ¯ ( )]∙ [ ¯ ( ) ¯ ( )]∙ ¯ ( ) = ¯ ( ) − [ ¯ ( )]∙ [ ¯ ( )]
∙

where R is the moment arm matrix dependent on joint angle, AMF is the active
muscle force contribution, and PMF is the passive muscle force contribution. Both
AMF and PMF were computed according to force-length and force-velocity rela-
tionships in a Hill-type muscle model (Thelen, 2003) from John et al. (2013).
Tendons were assumed to be inelastic (Zajac and Gordon, 1989).

Feasible muscle activation ranges were computed for each muscle at each time
point for one complete gait cycle (1.2 s at 72 Hz) and define the upper and lower
bounds of each muscle's activation while allowing all other muscles to vary inde-
pendently. The upper and lower bounds were found using linear programming
(linprog.m in Matlab). For each muscle and each time point, the lower ( aM

LB) and
upper ( aM

UB) bounds of muscle activation were identified as follows (Sohn et al.,
2013):

a a a: Find such that is minimized, whileM
LB m | |

R AMF R PMFq T q T q T a T q T q T, Tτ[ ¯ ( )]∙ [ ¯ ( ) ¯ ( )]∙ ¯ ( ) = ¯ ( ) − [ ¯ ( )]∙ [ ¯ ( )]
∙
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Table 1
Muscles included in the OpenSim 2392 musculoskeletal model and their
abbreviations.

Name Abbreviation Name Abbreviation

Adductor brevis ADB Peroneus brevis PB
Adductor longus ADL Peroneus longus PL
Adductor magnus ADM Peroneus tertius PT
Biceps femoris long head BFLH Piriformis PIR
Biceps femoris short head BFSH Iliopsoas PSOAS
Extensor digitorum ED Quadratus femoris QF
Extensor hallucis EH Rectus femoris RF
Flexor digitorum FD Sartorius SAR
Flexor hallicus FH Semimembranossus SM
Gemellus GEM Soleus SOL
Gluteus maximus GMAX Semitendinosus ST
Gluteus medius GMED Tibialis anterior TA
Gluteus minimus GMIN Tibialis posterior TP
Gracilis GRAC Tensor fasciae latae TFL
Illiacus ILI Vastus intermedius VI
Lateral gastrocnemius LG Vastus lateralis VL
Medial gastrocnemius MG Vastus medialis VM
Pectineus PEC
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a a a: Find such that is maximized, whileM
UB m | |

R AMF R PMFq T q T q T a T q T q T, Tτ[ ¯ ( )∙ [ ¯ ( ) ¯ ( )]∙ ¯ ( ) = ¯ ( ) − [ ¯ ( )]∙ ¯ ( )
∙

while satisfying the constraint: 0ramr1. We examined the feasible muscle acti-
vation ranges for 86 leg muscles.

2.4. Comparison to optimal muscle activation patterns

We compared feasible muscle activation ranges to optimal muscle activations
based on measured kinetics and kinematics using:

1. Static optimization: Optimal muscle activations based on minimizing a aT were
found using quadratic programming in Matlab (quadprog.m).

2. Computed Muscle Control (CMC): Optimal muscle activations from CMC (The-
len and Anderson, 2006; Thelen et al., 2003) were found using the OpenSim
CMC tool with settings provided by John et al. (2013).

Both techniques use a cost function that minimizes the sum of squared muscle
activations (Crowninshield and Brand,1981). However, CMC explicitly accounts for delays
in muscle force production due to muscle activation and musculotendon contraction
dynamics, while static optimization does not.

2.5. Comparison to experimental muscle activity

We compared feasible muscle activation ranges to observed muscle activity
previously recorded by others. First, we identified time-points when each muscle is
typically “active” versus “inactive” based on previously published timing of muscle
activity during human walking (Perry, 1992). We then compared whether the value
of each muscle's upper bound was different when the muscle is typically active
versus inactive using single-tailed two-sample t-tests with 95% confidence levels.

We overlaid EMG signals from six muscles to qualitatively compare feasible
muscle activation ranges defined by joint torques to experimental muscle activity
patterns. Since EMG data was not available for the subject from whom the kinetic,
kinematic, and scaling data came (John et al., 2013), EMG data (scaled to the peak
optimal muscle activations from CMC (Thelen and Anderson, 2006)) from van der
Krogt et al. (2012) were used. Data from van der Krogt et al. (2012) were presented as
average7standard deviation over 5 healthy subjects (1671 years; 6875 kg;
17579 cm height) walking at self-selected speed 1.0870.06 m/s.
3. Results

3.1. Feasible muscle activation ranges

Feasible activation ranges for individual muscles were largely
unconstrained during walking based on inverse dynamics joint tor-
ques (Fig. 3) where each muscle's feasible activation range was
computed independently, allowing all other muscle activations to
vary as necessary. Seventy-three percent (63/86) of muscles had fully
unconstrained feasible muscle activation ranges with upper bounds
of 1 and lower bounds of 0 over the entire gait cycle. Feasible muscle
activation ranges in the right leg were slightly larger than those of
the left leg due to differences in kinematics and kinetics (Fig. 2).

Almost no muscles were “necessary”, defined as having non-zero
lower bounds (Fig. 3, black lower traces). All muscles in the right leg
had a lower bound of zero throughout the gait cycle (Fig. 3, solid
black lower traces). Only two left-leg muscles, the tibialis anterior
(TA) and the anterior compartment of gluteus medius (GMED1), had
non-zero lower bounds at some point during the gait cycle (Fig. 3,
dotted black lower traces). The left TA lower bound increased above
zero in early stance, consistent with controlling the descent of the
toe. The left GMED1 was necessary in late stance, where hip
abduction torque was larger in the left versus right leg (Fig. 2C, black
dotted versus solid line). However, GMED has not typically been
reported to be active (Fig. 3, orange lines) in late stance.

Overall, 73% (63 out of 86) of muscles were “unlimited” in their
feasible level of activity, defined as having an upper bound of 1 at
every time point in the gait cycle (Fig. 3, black upper traces). Several
muscles about the hip were limited in their upper bounds in late
stance, e.g. gluteus maximus (GMAX) and gluteus medius (GMED),
but never in swing phase. Several ankle plantarflexors, e.g. medial
gastrocnemius (MG) and lateral gastrocnemius (LG), were con-
strained in early stance and late swing phase. The soleus (SOL), the
strongest muscle in the model, was the most limited muscle.

3.2. Comparison to optimal muscle activation patterns

Different optimal muscle activation patterns were found using
static optimization and CMC (Fig. 3, blue and green traces). CMC
solutions required all muscles to be active at some point during
the gait cycle. In contrast, static optimization activated fewer
muscles, with about 46% (20 of 43) silent throughout the gait
cycle, requiring larger activation of some muscles compared to
CMC (e.g. GMAX2 and VI). Despite these differences, the solutions
from both methods for almost all muscles fell within the feasible
muscle activation ranges (Fig. 3, compare blue and black traces).
One muscle in the CMC solution, right soleus, exceeded the upper
bound of the feasible muscle activation range due to the activity of
reserve actuators used in CMC. Finally, optimal muscle activations
for some plantarflexor muscles (SOL and MG) appear to be lower
when the corresponding upper bounds of feasible activation are
constrained (less than one, Fig. 3).

3.3. Comparison to experimental muscle activity

Overall, 44% (8 out of 18) of “limited” muscles, defined as having
upper bound of less than 1 at some point during the gait cycle, had
smaller upper bounds at time points when the muscle is typically
inactive during gait, and higher upper bounds when the muscle is
typically active during gait. For example, upper bounds on GMED3
were higher in early stance where it is typically active (Fig. 3, orange
bars) compared to late stance where it is typically inactive. Only 11%
(2 out of 18, left LG and left ADL) of “limited” muscles showed the
opposite pattern in which upper bounds were smaller when they
are typically active compared to when they are typically inactive.
Finally, variability in the sample experimental EMG data was much
smaller than the feasible muscle activation ranges (Fig. 4).
4. Discussion

Our results demonstrate joint torque requirements from stan-
dard inverse dynamics analysis are not sufficient to define the
activation level of individual muscles during walking in healthy
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Fig. 2. Experimental data used for computing feasible ranges during walking. (A) Ground reaction forces data for one gait cycle taken from John et al. (2013) and available
on www.simtk.org. The shaded grey region indicates the stance phase of the gait cycle. (B) Joint angles computed using the Inverse Kinematics Tool in OpenSim using marker
data from John et al. (2013). Joint angles were used for computing kinematic properties of muscles, i.e. force–length and force–velocity relationships. (C) Joint torques
computed using the Inverse Dynamics Tool in OpenSim with the ground reaction forces shown in A and the joint angles shown in B. These joint torques were used as task
requirements for which feasible muscle activation ranges were identified.
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to the web version of this article.)
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individuals. Based on torque-producing properties of muscles
(moment arms, force–length and force-velocity relationships) and
joint torque requirements across the entire gait cycle, we identified
feasible muscle activation ranges that define the upper and lower
bounds onmuscle activation levels (Sohn et al., 2013; Valero-Cuevas
et al., 2015) from which a particular solution may be selected for a
task. The largely unconstrained feasible muscle activation ranges
reflect a large degree of musculoskeletal redundancy in human
walking, allowing a wide range of deviations from optimal muscle
activation patterns in the activation of any individual muscle while
satisfying joint torque requirements. Variability in experimental
muscle activation patterns appear to be much more restricted than
the feasible muscle activation ranges. In the future, feasible muscle
activation ranges may be a useful tool for examining the effects of
model complexity as well as additional biomechanical or neural
constraints on the set of possible muscle activation patterns for gait
and other movements.

We found virtually no limitations on activation of individual
muscles during walking, suggesting a great deal of robustness to
deviations in motor patterns from optimal solutions identified using
inverse approaches. The general shape and features of optimal solu-
tions were not evident in the wide feasible muscle activation ranges
(Crowninshield and Brand, 1981; Thelen and Anderson, 2006; Thelen
et al., 2003). The zero-valued lower bounds found in virtually all
muscles shows that almost any individual muscle can be completely
silenced in walking without reducing the ability to meet the joint
torque demands. Accordingly, simulations of healthy subjects in nor-
mal gait show surprising robustness to muscle weakness (van der
Krogt et al., 2012). In contrast, prior experiments on cadaveric human
hands and a simplified leg model have demonstrated limited robust-
ness to muscle dysfunction that suggests very little musculoskeletal
redundancy (Kutch and Valero-Cuevas, 2011; Valero-Cuevas and
Hentz, 2002); a primary difference is the relatively large number of
muscles we used (43 per leg) compared to those studies. It is likely
that feasible muscle activation ranges are wide at self-selected walking
speed because it is a relatively easy task for the human leg compared
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Fig. 4. Feasible muscle activation ranges superimposed on experimental EMG
data and CMC muscle activations. Feasible muscle activation ranges defined by
upper and lower bounds of muscle activation are shown as black traces. Orange
lines indicate when muscles are known to be active during gait from normative
data (Perry, 1992). The shaded grey region indicates the stance phase of the gait
cycle. Red lines and shading show experimental EMG data (mean and standard
error) from 5 subjects during self-selected walking speed (van der Krogt et al.,
2012). (For interpretation of the references to color in this figure legend,the reader
is referred to the web version of this article.)
more demanding tasks such as jumping or sprinting, where feasible
muscle activation ranges are likely more restricted.

Examining the further restriction of feasible muscle activation
ranges based on additional biomechanical and/or neural con-
straints may be an effective way to evaluate the impact of other
physiological considerations on muscle activity. Here, as proof of
concept, we considered only the minimal set of biomechanical
constraints used in a standard inverse dynamics approach, based
primarily on net joint torque requirements and muscle properties.
Other biomechanical constraints not considered in this study may
potentially affect the results. For example, including compliant
tendons and ligaments may increase feasible muscle activation
ranges. While evidence suggests this would not greatly alter ana-
lysis of walking (Arnold and Delp, 2011; Arnold et al., 2013), more
dynamic tasks such as running or jumping may be more affected.
Consideration of joint mobility or physiological joint contact forces
may provide further constraints and decrease feasible muscle
activation ranges. It is likely that an interplay of both neural and
biomechanical constraints determines muscle activation patterns
(Fregly et al., 2012; Lin et al., 2010; Walter et al., 2014). Feasible
muscle activation ranges can be a useful tool for investigating how
various constraints affect possible variations in muscle activity.

The linear programming method used here to find feasible
muscle activation ranges can be applied to musculoskeletal models of
any level of complexity and identify explicit bounds on the activity of
single muscles; however, it does not identify multi-muscle activation
patterns for a given movement. The primary contribution of this
work was to extend methods developed by Sohn et al. (2013) for
static force production to a dynamic task by including inertial and
velocity-dependent forces in the equations of motion. While we did
not account for muscle activation dynamics, e.g. timing of fiber-type
differences, prior work has demonstrated that independent static
optimization at each time point can produce similar results to
dynamic optimization in sub-maximal tasks such as human walking
(Anderson and Pandy, 2001b). Our method, based on linear pro-
gramming, can be applied to models of any complexity whereas
computational geometry algorithms (Kutch and Valero-Cuevas 2011;
2012) can only be applied to systems that have a relatively low
number (o14 of muscles). One advantage of the computational
geometry approach is that the entire solution space is defined,
allowing correlations across multiple muscles that are imposed by
task constraints to be identified. In contrast, our bounds represent
only the extreme points on the solution space for each muscle con-
sidered independently. However, further analysis using feasible
muscle activation ranges may be possible to reveal explicit relation-
ships between muscles for satisfying joint torques. In contrast to the
stochastic search methods of Martelli et al. (2015; 2013) that do not
guarantee identification of the true bounds of the solution space
even when a large number of samples (e.g. 200,000) is used, our
linear programming methods finds explicit upper and lower bounds
for each muscle independently. Our results are similar to those of
Martelli et al. (2015), except that their method constrained certain
muscles to adhere to measured EMG levels, defining plausible
muscle force patterns in the muscles that were not measured. Similar
constraints can easily be implemented in the methods presented
here.

A limitation of all of the methods used to identify feasible muscle
activation ranges is that only specified movements can be analyzed.
Thus the effect of removing a muscle on changes in movement
dynamics cannot be found, yet changes in movement dynamics
would likely result from removing or weakening a muscle. Optimal
control models that simulate human walking (Ackermann and van
den Bogert, 2010; Anderson and Pandy, 2001a) could be used to
identify changes in the dynamics of walking due to muscle weakness,
but also rely on an objective function to identify a single muscle
activation pattern from among many possible. Considerable advances
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in computational methods are necessary to combine feasible ranges
of muscle activation analyses with dynamic optimization to predict
movement patterns. However, it is likely that even more latitude in
muscle activation patterns would be revealed using optimal control
methods due to the ability of the model to select dynamics most
suitable to its force producing capabilities instead of having to
replicate a specified motion.

Nevertheless, feasible muscle activation ranges may be useful for
investigating how muscle activation patterns are influenced by var-
ious biomechanical and/or neural constraints, including clinical
impairments. For example, the lower bound shows the minimum
activation, and by extension, the minimum strength permissible for
each individual muscle to perform a movement. Other studies using
similar models and constraints have examined musculoskeletal
redundancy using trial and error methods of weakening or elim-
inating muscles or muscle groups to show whether deficits in task
performance occur (Arnold et al., 2005; Correa et al., 2012; Hicks
et al., 2008; Steele et al., 2012). These studies use computed muscle
control (CMC) (Thelen and Anderson, 2006; Thelen et al., 2003) to
identify optimal compensation for muscle weakness, whereas fea-
sible muscle activation ranges can identify the set of possible com-
pensations. Although we did not include neural constraints in our
analysis, feasible ranges of muscle activations could be further nar-
rowed by including neurally-inspired constraints that constrain the
timing or recruitment of multiple muscles (Ivanenko et al., 2004;
Ting and Macpherson, 2005), impose multiple task constraints
(Keenan et al., 2009; Racz et al., 2012), or include stability con-
siderations (Bunderson et al., 2008). Feasible muscle activation ran-
ges may also be useful for understanding the impact of neuromus-
cular impairments such as stroke (Dewald et al., 1995; McCrea et al.,
2005), spinal-cord injury (Chvatal et al., 2013; Hayes et al., 2014), or
limb loss (Prinsen et al., 2011; Soares et al., 2009; Vrieling et al.,
2008; Waters and Mulroy, 1999). Understanding actual versus pos-
sible variations in muscle activity using feasible muscle activation
ranges may provide an important foundation in understanding both
healthy and impaired motor control.
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