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CHAPTER 19
Dimensional reduction in sensorimotor systems:
a framework for understanding muscle coordination

of posture
Lena H. Ting�
The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive,
Atlanta, GA 30332-0535, USA

Abstract: The simple act of standing up is an important and essential motor behavior that most humans and
animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations
that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to
muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of
a few global, task-level variables important to postural control, such as body center of mass (CoM) position
and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies,
reflecting preferential sets of muscle activation patterns, are used to move task-variables such as CoM
position in a predictable direction following postural perturbations. We propose a hierarchal feedback
control system that allows the nervous system the simplicity of performing goal-directed computations
in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems.
We predict that modulation of postural actions occurs in task-variable space, and in the associated
transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces.
Development of neuromechanical models that reflect these neural transformations between low- and high-
dimensional representations will reveal the organizational principles and constraints underlying sensorimotor
transformations for balance control, and perhaps motor tasks in general. This framework and accompanying
computational models could be used to formulate specific hypotheses about how specific sensory inputs and
motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation.
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integration
Postural control is a fundamental motor task ide-
ally suited for investigating questions of sensori-
motor integration and redundancy. The ability to
maintain posture and balance are precursors to
other voluntary movements such as reaching or
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walking over uneven terrain. Moreover, loss of
balance is a clinically important problem, as falls
are a primary cause of injury and accidental death
in older adults (Minino et al., 2002). Yet, we cur-
rently have little understanding of the underlying
neuromechanical principles that govern patterns of
muscle activation during postural control or other
basic motor behaviors.
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Although technological advances allow the
simultaneous measurement of multiple kinematic,
kinetic, and electromyographic (EMG) data
channels during behavioral experiments, we lack a
framework for understanding how all of these
measured variables are related to the control and
performance of a functional task. Without this
basic understanding, we cannot begin to under-
stand or predict how patterns of muscle activation
should be altered to perform novel tasks, nor can we
understand the functional impact of disordered
patterns of muscle activation in neurologically
impaired individuals. In addition to making multi-
ple measurements, advances in motor control must
reveal why a particular pattern of muscle activation
is chosen by the nervous system to achieve task
goals. A quantitative framework for understanding
the neuromechanical interactions and sensorimotor
transformations during standing postural control
is critical to unraveling the underpinnings of this
important behavior.

A general framework will be presented that can
be used to formulate specific hypotheses about sen-
sorimotor transformations, and provide an organi-
zational scheme for formulating computational
and experimental studies of postural control.
Computer simulations of the neuromechanical
transformations from sensory input to motor
output are critical for understanding the neural
mechanisms underlying spatial and temporal
patterns of muscle activation. Such simulations
can also serve as a virtual test-bed for quantifying
the functional impact of neurological disorders on
postural control. Moreover, the framework has
significant implications for understanding and eva-
luating experimentally measured changes in muscle
activation patterns due to learning, adaptation,
injury, or disease. The general principle of dimen-
sional reduction may be common to many motor
control processes and can guide our approaches to
understanding and improving motor dysfunction.

First, the fundamental ‘‘degrees of freedom’’
problem and its relevance to postural control will
be reviewed. Then, experimental evidence that esta-
blishes the critical role of task-level sensorimotor
integration processes during standing balance will
be presented. Next, findings demonstrating that
muscle activation patterns used during postural
control can be simplified to combinations of a few
muscle synergies — patterns of muscle activity used
to control task-level biomechanical variables —
will be discussed. Finally, a framework that inte-
grates these observations of dimensional reduction
in sensorimotor signals during postural control will
be presented.
Degrees of freedom problem

To maintain standing balance, the nervous system
must confront the classic ‘‘degrees of freedom’’
problem posed by Nikolai Bernstein (1967), where
many different solutions to a task are available due
to the large number of elements that need to be
controlled, or degrees of freedom, in the system. In
postural control, muscles and joints across the
limbs, trunk, and neck must be coordinated to
maintain the body’s center of mass (CoM) over the
base of support, typically formed by the feet. The
many degrees of freedom afforded by the joints
and muscles allows for multiple (i.e., redundant)
solutions, allowing the nervous system flexibility in
performing the postural task. This redundancy
poses a problem to the nervous system: it must
choose from a large set of possible solutions
because the task requirements are not sufficient to
uniquely specify how each muscle and joint must be
controlled.

Bernstein proposed a neural strategy for simpli-
fying the control of multiple degrees of freedom by
coupling, or grouping, output variables at the
kinematic level (Bernstein, 1967). This scheme was
based on experimental observations that multiple
joint angles appear to be controlled together,
rather than independently, during motor tasks.
For example, during running, the hip, knee, and
ankle joints all flex and extend at the same time,
suggesting that they are not controlled indepen-
dently. This covariation of joint angles has the
effect of moving the CoM vertically in a simple
motion that mimics the bouncing of a spring and
mass system (Blickhan, 1989; McMahon and
Cheng, 1990; Farley et al., 1993). In walking, the
lower limb joint angles covary in a different
pattern such that the overall motion of the CoM
resembles that of an inverted pendulum (Cavagna
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et al., 1977; Minetti, 2001). Therefore, the overall
effect of such joint angle covariations, or kinematic

synergies, may be to produce a predictable and
simple motion of the task-variable at hand — in
the case of locomotion, the trajectory of the CoM.

Yet, the strict covariation of joint angles them-

selves does not appear to be the end-goal of the
nervous system computation. Task-variables such
as the CoM trajectory in postural control, or the
finger trajectory in pointing movements, appear to
be more precisely controlled by the nervous system
than individual joint angles (Scholz and Schoner,
1999; Scholz et al., 2000), suggesting that the task-
variables have special significance to the nervous
system.

The neural principles and mechanisms under-
lying our ability to control task-variables within a
high degree of freedom system are still unknown
and require further investigation into the specific
sensorimotor transformations that facilitate these
behaviors. While kinematic observations can iden-
tify important correlations and task-variables con-
trolled by the nervous system, they do not directly
specify which muscle activation patterns should be
used to produce the movements. This problem
arises because Bernstein’s degrees of freedom prob-
lem also exists in the transformation between
muscle activation patterns and kinematic patterns
of movement. This additional redundancy in the
musculature results not only because multiple
muscles cross each joint, but also because the bio-
mechanical equations of motion are such that
different temporal patterns of muscle activation
can lead to similar joint trajectories (Gottlieb,
1998). Therefore both spatial and temporal muscle
activation patterns have a degree of redundancy
that must be managed by the nervous system. To
gain a deeper understanding of the underlying
neural mechanisms for controlling task-variables,
the complex spatiotemporal coordination of multi-
ple muscles and their effect on biomechanical task
outputs must be considered.

We propose that the reduction of degrees of
freedom observed at the biomechanical level reflects
a reduction in degrees of freedom at the level of
the neural circuits that activate muscles. Muscle

synergies could be a mechanism through which the
nervous system achieves repeatable and correlated
multi-joint coordination. We define muscle syner-
gies to be a specific pattern of muscle coactivation.
Each muscle synergy is presumed to be controlled
by a single neural command signal, which modu-
lates the overall magnitude of the patterns specified
by a muscle synergy. Although muscle synergies
simplify spatial coordination of muscles, temporal
variations of the neural command signal must
still be specified to achieve a motor task. We will
address possible mechanisms for simplification
of both spatial and temporal muscle activation
patterns.

Postural responses to perturbations

The overall goal in standing equilibrium can be
simply defined as maintaining the CoM over the
base of support; however, there are multiple
strategies for accomplishing this goal. For exam-
ple, it is possible to extend the base of support by
taking a step or using the hands to hold on to a
stable object (Horak and Macpherson, 1996; Maki
et al., 2003). The ability to choose an appropriate
postural control strategy reflects complex and inte-
grative sensorimotor processes. Successful balance
control depends on having accurate knowledge of
the entire body configuration in space, as well as
the location of the body CoM relative to the line of
gravity and the base of support. The activation of
muscles in response to a perturbation results from
integration of multiple sensory signals to properly
estimate CoM displacement and Earth-vertical.
This role of local sensory signals in estimation of
critical task-level variables is also illustrated by
psychophysical experiments whereby perturbations
to a single sensory channel create illusions of
shifting Earth-vertical, or the entire body orienta-
tion (Mergner and Rosemeier, 1998; Hlavacka
et al., 2001; Scinicariello et al., 2002; Mergner
et al., 2003; Hatzitaki et al., 2004). While postural
responses themselves are thought to be integrated
in the brainstem and cannot be voluntarily sup-
pressed following a perturbation, postural strategy
selection and postural response amplitude can de-
pend on many different descending, cognitive, and
emotional influences, such as habituation, divided
attention, or fear (Keshner et al., 1987; Woollacott
and Shumway-Cook, 2002; Carpenter et al., 2006).
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Even within a specific postural response strat-
egy, the rapid activation of muscles to stabilize the
body CoM is finely tuned to the biomechanics of
the perturbation, in particular, direction. When
the support surface is translated in each of many
directions in the horizontal plane, simulating a
‘‘slip,’’ multiple muscles across the body are acti-
vated by an amount related to the direction of the
perturbation (Nashner, 1976; Macpherson, 1988;
Horak and Macpherson, 1996; Henry et al., 1998).
For example, a different set of muscles is activated
in response to a forward perturbation versus a
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begins 100ms after the onset of platform motion
in humans (Fig. 1A), well before the CoM
displacement reaches its maximum (Horak and
Macpherson, 1996).
Multisensory integration for postural control

Directional tuning in postural responses reflects
integration of multiple sensory inputs to arrive at
an estimate of the CoM displacement — the task-
variable that must be controlled by the nervous
system. This has been deduced from several studies
showing that the spatial patterns of muscle acti-
vation during the postural response cannot be con-
sistently correlated to any single sensory signal
(Keshner et al., 1988; Inglis andMacpherson, 1995;
Horak and Macpherson, 1996; Allum et al., 1998;
Runge et al., 1998; Carpenter et al., 1999; Ting and
Macpherson, 2004; Allum and Carpenter, 2005).
Only the direction of CoM displacement can accu-
rately predict the muscle activation patterns used
in response to a perturbation (Nashner, 1977;
Gollhofer et al., 1989; Carpenter et al., 1999; Ting
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body, and in some cases may be destabilizing
(Nashner, 1976; Carpenter et al., 1999). The short-
latency responses occur in muscles that are
stretched and reflect local monosynaptic spinal
circuits, whereas the long-latency APR is multisy-
naptic and reflects both the direction of impending
CoM destabilization and the postural strategy
selected. In translation perturbations, short-latency
responses occur in the same muscles as do the long-
latency postural response (Fig. 2A), but in rotation
perturbations, the short- and long-latency res-
ponses occur in opposite muscles (Fig. 2B and C).
Thus, if local variables such as muscle stretch
were used to generate postural responses an incor-
rect response would occur in the case of rotations
(Fig. 2B).

Neurophysiological, psychophysical, and biome-
chanical studies all demonstrate that estimates of
body position and motion in space are achieved by
combining multiple sensory information through
an internal model and not through a simple sum-
mation of sensory inputs (Merfeld et al., 1999;
Zupan et al., 2002; Mergner et al., 2003; Kuo,
2005). Supporting this idea, perturbations to a
particular sensory organ through experimental
manipulations tend to alter the global perception
of vertical rather than the more local variables of
head orientation in space, or ankle angle, respec-
tively (Popov et al., 1986; Gurfinkel and Levick,
1991; Bisdorff et al., 1996; Tardy-Gervet and
Severac-Cauquil, 1998; Lackner et al., 2000;
Maurer et al., 2001; Sorensen et al., 2002; Park
et al., 2006). It is not clear where in the nervous
system multisensory integration occurs. There is
evidence that task-level variables such as leg length,
orientation, velocity, and end-point force are
already represented in ascending afferent pathways
originating from the spinal cord (Bosco et al., 1996;
Bosco and Poppele, 1997, 2001; Lemay and Grill,
2004).
Synergy organization of motor outputs in posture

While each muscle’s directional tuning curve is
unique, the control of muscles for posture appears
to be simplified by the activation of a limited set of
muscle synergies. We define a muscle synergy to be
a muscle activation pattern with consistent spatial
and temporal characteristics. Each muscle synergy
is presumed to be controlled by a single neural
command signal that modulates the magnitude
of the muscle activation pattern specified by the
synergy.

Older concepts of muscle synergies were restric-
tive in specifying a small set of fixed postural
response patterns. Clinically, the term synergy
sometimes refers to an inflexibility in motor pat-
terns, such as the abnormal coactivation of flexors
or of extensors seen in hemiplegia associated with
stroke (Bourbonnais et al., 1989). In postural
control, the idea of muscle synergies arose from
the observation of distinct and mutually exclusive
muscle activation patterns in response to two
opposite directions of perturbation of the support
surface, forward and backward (Fig. 1A, after
Nashner, 1977). In this early conception, the two
identified muscle synergies define just two possible
muscle activation patterns that specify strict corre-
lations across multiple muscles (Figs. 3A and 4).
Moreover, each muscle belongs to only one syn-
ergy, and only a single synergy can be activated
during any given postural response. However,
when the experimental paradigms for investigating
postural control were expanded to include mult-
iple perturbation directions in the horizontal
plane, muscle activation patterns were not found
to be strictly correlated across all directions in
both cats and humans (e.g., Figs. 1B and 3B,
Macpherson, 1988; Henry et al., 1998), and the
question of whether muscle synergies were a use-
ful or physiological concept was debated
(Macpherson, 1991).

In more recent formulations, it has been recog-
nized that a limited number of muscle synergies
can give rise to a continuum of postural responses.
Although muscle activation patterns may not be
strictly correlated across all perturbation direc-
tions, the set of postural responses has a lower
dimension than the number of perturbation direc-
tions or muscles controlled, and can be accounted
for by the flexible ‘‘mixing’’ of a limited set of
muscle synergies (Fig. 3B), as well as the fact that
muscles can participate in more than one muscle
synergy. In the example shown, the amplitudes
of neural commands C1 and C2 can be varied
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independently, resulting in three different muscle
tuning curves (Fig. 3B).

When analyzing a set of muscle activation
patterns measured experimentally, the muscle
synergies used to generate that set can be identi-
fied using matrix factorization techniques (Tresch
et al., 1999, 2006). Mathematically, each muscle
activation pattern is hypothesized to be a linear
combination of a few (n) muscle synergies Wi,
whose elements, wij, specify the pattern of muscle
activity defined by that muscle synergy (Fig. 3B,
bar plots). Each muscle synergy is activated by one
neural command, ci, which can vary as a function
of experimental condition such as perturbation
direction, y. Ci(y) is a vector where each element
specifies the level of the neural command over a
range of perturbation directions, y (Fig. 3B, top).
The net muscle activation pattern vector for any
muscle over a range of perturbation direction, mi is
therefore hypothesized to take the form:

miðyÞ ¼ C1ðyÞw1i þ C2ðyÞw2i þ � � � þ CnðyÞwni (1)

where w1i is the i’th element of synergy 1, W1 and
so on. Similarly, the overall muscle activation
pattern for any given perturbation direction can
be expressed a vector where each element is the
resulting level of activation in each muscle:

mðykÞ ¼ c1kW1 þ c2kW2 þ � � � þ cnkWn (2)

where c1k represents the k’th element of C1(y),
corresponding to the particular perturbation yk.

The matrix M is a concatenation of responses
in all muscles across different experimental
conditions, where each row represents a muscle,
and each column an experimental condition such
that:

M ¼ C1ðyÞW1 þ C2ðyÞW2 þ � � � þ CnðyÞWn (3)

Each element of Wi takes a value between 0 and
1, representing the relative contribution of each
muscle to that muscle synergy. In postural res-
ponses, this analysis has been used to investigate
the initial response in a single time window, where
the columns of M represent different perturbation
directions. However, the muscle synergies can also
be viewed as being modulated by a set of inde-
pendent time-varying neural commands, ci(t),
where each time point is treated as a condition in
the columns of M (Ivanenko et al., 2003, 2004,
2005). Several mathematical analysis techniques
such as principal components analysis (PCA), in-
dependent components analysis (ICA), and factor
analysis (FA) can be used to find muscle synergies
(Tresch et al., 2006). Another such technique,
non-negative matrix factorization (NMF), allows
complex data sets to be more successfully parti-
tioned into meaningful parts (Lee and Seung, 1999;
Ting and Macpherson, 2005; Tresch et al., 2006).

Because the number of muscle synergies is
smaller than the number of muscles, the spectrum
of muscle activation patterns that can be generated
using muscle synergies is still more limited than the
case where muscles are controlled independently.
Multiple muscle synergies may exist even for a sin-
gle postural perturbation. In backward translation
of the support surface in humans, two types of res-
ponses can be elicited (Nashner, 1976). One is called
the ‘‘ankle strategy,’’ where the body remains up-
right and most of the motion occurs around the
ankle joint. The other is called the ‘‘hip strategy,’’
where the trunk tilts forward and the hip angle
motion is most predominant (Fig. 4). Each strategy
can be defined by a distinct spatiotemporal pattern
of muscle activation (Fig. 4) and a specific pattern
of joint torques (Runge et al., 1999; Alexandrov
et al., 2001a, b, 2005). Muscle synergy analysis of
human postural responses demonstrates that each
strategy corresponds to an independently modu-
lated muscle synergy (Torres-Oviedo and Ting,
2007). This is consistent with studies at the joint
torque and joint motion level suggesting that hip
and ankle strategies represent two biomechanical
response modes which are combined to form a
continuum of postural responses (Runge et al.,
1999; Creath et al., 2005). The flexible combination
of two different synergies may underlie variations
in the APR that have been shown to occur with
perturbation amplitude, prior experience, and anti-
cipation (Keshner et al., 1987; Maki et al., 1991;
Brown et al., 2002; Woollacott and Shumway-
Cook, 2002; Carpenter et al., 2004, 2006). Muscle
synergy analysis might therefore provide a method
to quantitatively compare postural responses with
variable contributions from the two strategies. If so,
this would suggest that muscle synergies are mecha-
nisms by which descending influences can affect
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postural strategy selection (Kuo, 1995; Horak et al.,
1997; Park et al., 2004).

The robustness of muscle synergies has been
most thoroughly demonstrated in cat postural res-
ponses using different experimental conditions
(Torres-Oviedo et al., 2006). The muscle synergies
extracted from translation perturbation responses
represent coordinated patterns of muscle activity
across the entire limb (Fig. 5A). These patterns are
roughly grouped by anatomical function, but the
patterns are not strictly predictable from muscle
moment arms alone. In quiet standing, only one
muscle synergy, dominated by extensor muscles, is
active (Fig. 5B, red). Following a perturbation,
each muscle synergy has a distinctive tuning curve,
which represents the purported neural command,
ci, to each muscle synergy for each perturbation
direction (Fig. 5B, lower). These muscle synergies
are robust in that they are used under multiple
biomechanical configurations that produce
changes in the muscle tuning curves (Fig. 5) as
well as the active forces for stabilization. For ex-
ample, when stance distance is changed, the neural
commands to some of the muscle synergies change,
while others remain relatively constant (Fig. 5B).
These changes can explain the variations in muscle
tuning curves in the hindlimb muscles (Fig. 6,
black lines). Each muscle tuning curve is the sum
of all the synergies activating a given muscle.
Therefore, a change in any of the synergy com-
mands will result in a change in the overall muscle
tuning curve. Thus, the contribution of each
muscle synergy to each tuning curve can explain
the different tuning curve changes with stance
distance in each muscle (Fig. 6, colored lines). The
robustness of the synergy structure is further
demonstrated by the fact that the same muscle
synergies can account for the postural responses
to two very different types of perturbation. For
example, the same set of synergies account for
muscle tuning curves from postural responses to
both translations and rotations, where, as ex-
plained in the previous section, the sensory inputs
from the two types of perturbation vary dramati-
cally. This further demonstrates that the muscle
synergies reflect a motor output mechanism that is
distinct from local or central processing of afferent
information.
Muscle synergies have a direct functional effect,
as demonstrated in cats where modulation of the
neural commands to each muscle synergy changes
the biomechanical output produced during postural
responses. Each muscle synergy was correlated to
the production of a specific active force vector at
the endpoint of the hindlimb (Fig. 5C); this rela-
tionship is consistent across all of the different
postural conditions discussed above. Therefore
changes in muscle activation and forces produced
during postural response in different stance config-
urations (Macpherson, 1994; Torres-Oviedo et al.,
2006) can be explained by simply changing the
proportion of contribution of each muscle synergy.

These findings suggest that muscle synergies
could be a functional mechanism by which des-
cending neural commands related to the desired
control of task-level variables are transformed into
specific patterns of muscle activation that affect
those task-level variables. This type of direct mech-
anism for motor coordination is appealing in that
high-level computations in the nervous system can
occur in the context of task-level variables rather
than in local afferent or efferent signals. Moreover,
selection of muscle synergies would not require
online forward or inverse computation of the mus-
cle activation to motor output transformation. The
muscle synergy pattern itself can be thought of as
an element in a look-up table of the muscle acti-
vation to motor output transformation. Therefore
each person’s motor outputs would be defined by
the repertoire of muscle synergies available, which
could exceed the number of muscles or degrees of
freedom in the body.
Hierarchal feedback model of postural control

How can the many experimental and theoretical
findings in postural control be unified in a coherent
framework? By studying the nature of the dimen-
sional reduction in sensorimotor systems, it may be
possible to explain the apparent tension between the
commonalities and variations in postural behaviors
observed across individuals. Frequently, individual
variations deviate from general characterizations
of muscle activation patterns during postural
responses to perturbation. Are there common
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organizational themes underlying muscle activation
patterns across tasks and individuals that can be
used to guide our approaches to understanding
postural control?
Rather than using the muscle activation patterns
themselves as the primary determinant of postural
strategies, we propose that the nature of the dimen-
sional reduction within an experimental data set
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can be better used to characterize and compare
motor outputs across trials and across individuals.
Because of redundancy in the musculoskeletal sys-
tem, even muscle activation patterns associated with
a common task-variable can differ across indivi-
duals. For example, in cat postural control, the
same number of muscle synergies were found across
several cats (Torres-Oviedo et al., 2006). These
muscle synergies were found to have similar tuning
curves and produce similar force directions in
different animals (Fig. 7). This suggests that the
neural commands to the muscle synergies and the
motor output generated by the muscle synergies in
response to perturbations are similar across cats.
Postural responses in different individuals are prob-
ably modulated by disturbances in similar task-level
variables, which by definition are independent of
individual variations in morphometry, or postural
configuration. But, muscle synergy composition
differs significantly across individuals (Fig. 7).
Therefore, the exact muscle synergy mapping from
task-variable to muscle activation patterns appears
to be specific to each individual. Likewise, the
sensory mappings leading to the estimation of
the relevant task-variables are also likely to be
individual-specific. Therefore, individuals are more
similar in terms of the task-variables that are con-
trolled, and not to specific sensorimotor patterns.

In this view, the number of muscle synergies and
their corresponding neural commands carry more
information than the activation pattern of indivi-
dual muscles because they reflect the task-variables
that are sensed and regulated by the nervous sys-
tem. Changes in muscle activation patterns might
then be thought of in terms of either changes in the
activation patterns of a consistent set of muscle
synergies, changes in the number of muscle
synergies recruited, or changes in the composition
of muscle synergies. This leads to a general frame-
work in which processes causing variability due to
influences at all levels of the nervous system can be
explained using concepts of dimensional reduction
in sensorimotor transformations during postural
control (Fig. 8).

The general framework for understanding muscle
coordination is presented in terms of understanding
sensorimotor transformations in postural responses,
but can also be applied to most sensorimotor
processes. The framework consists of a nested set of
hierarchal feedback loops with much lower dimen-
sionality at the higher levels than the lower levels.
At the highest level, the relevant task-variables
depend on the goal-level decisions in the nervous
system (Fig. 8A and B). For successful task per-
formance, these goals must also be nominally
matched to biomechanical constraints, and can be
regulated in a feedback manner (Fig. 8B). The
estimate of the relevant task-variables depends
upon sensory transformations that integrate high-
dimensional multisensory signals; these transforma-
tions can also be influenced by behavioral goals
(Fig. 8C). Muscle synergies perform the symmetric
function of transforming the desired control of task-
variables into high-dimensional multiple muscle
activations (Fig. 8C). Muscle synergy activation
patterns ultimately interact with spinal circuits and
intrinsic muscle properties to produce biomechani-
cal outputs (Fig. 8D). Simultaneously, these
biomechanical outputs induce sensory signals in
afferents across the body that are then mapped onto
task-variable estimates in the nervous system
(Fig. 8D and C). While the role of descending in-
fluences is primarily at the level of the relatively
low-dimensional task-variable space, they can also
affect the state of low-level circuits in the spinal
cord that ultimately will affect task performance
(Fig. 8D). This framework can be used to make
predictions about how changes in muscle activation
patterns are regulated by the nervous system and
then suggest how computational studies can be used
to substantiate the hypothesis.

In this framework, descending influences prima-
rily modulate the relatively low-dimensional task-
variable space. It has been hypothesized that a
simple, linear neural control mechanism might sit
at the top of a complex hierarchy of sensorimot
or feedback loops used for movement control
q(Todorov, 2000; Scott, 2004). The control of
task-level variables ultimately has to be considered
and implemented in a high-dimensional space. It is
possible that the role of the motor cortex is to
perform this translation between task-level and
local variables, perhaps by selecting the appropri-
ate muscle synergies. Neuronal populations in the
motor cortex reflect a wide array of both task-level
and local variables (Scott, 2003). Moreover, long
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train stimulation of sites in the motor cortex gene-
rates coordinated movement of the limb to a com-
mon, final posture regardless of initial position,
suggesting encoding of higher order movement
parameters (Graziano, 2006).
Changes in motor output due to descending,
goal-level control affecting postural strategy selec-
tion can be thought of as changes in muscle synergy
selection. For example, behavior-dependent modu-
lation could influence the selection and modulation
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of appropriate sensory and motor mappings,
consistent with the ‘‘strategy selection centers’’ pro-
posed for postural control (Kuo, 1995, 2005; Horak
et al., 1997; Park et al., 2004). Different postural
strategies could be preferentially selected by altering
the selection of muscle synergies. Changes in
postural responses due to descending influences
could therefore be due to changing the threshold
for selection of an ankle or hip synergy. Such
changes would be represented in terms of variations
in the neural commands to muscle synergies, or
preferential activation of particular muscle syner-
gies within a given set, rather than changes in the
muscle synergy patterns themselves. It has been
shown that variability in locomotor behaviors can
be explained by differences in the activation of
muscle synergies and not random variability in the
activation of each muscle (Tresch et al., 1999;
d’Avella and Bizzi, 2005). We predict that varia-
bility in postural response also arises due to
variations in the relatively low-dimensional set of
neural commands.

The dimensional reductions occurring in the sen-
sory and motor systems appear to be symmetric
processes that serve the function of controlling
task-level variables for motor behaviors. The ability
to sense and to control relevant task-variables must
match in order for feedback regulation of task-
variables to occur. The sensory and motor map-
pings are independent but related processes in that
both must resolve similar issues of sensorimotor
redundancy in mapping between low-dimensional
task-variables and high-dimensional anatomical
details (Fig. 8D). The redundancy allows flexibility
in the mappings, ensuring that the control of task-
level variables is not directly or immutably linked to
any particular afferent or efferent pathway. This is
consistent with recent studies demonstrating sub-
stantial non-uniqueness in neural circuits mapping
sensory inputs into sparse neural representations in
the production of motor outputs (Prinz et al., 2004;
Leonardo, 2005).

In postural control, this concept is consistent
with the fact that CoM kinematics cannot be reli-
ably derived from any single sensory afferent pop-
ulation (Nashner, 1977) and that direct feedback of
sensory signals does not explain human postural
behaviors, particularly in situations of sensory
conflict where an erroneous sensory signal must
be ignored (Nashner, 1977; Kuo, 2005). The sense
of verticality can be derived from multiple sensory
systems, and the contributions of each sensory
organ can be dynamically reweighted under various
experimental conditions (Peterka, 2002; Mergner
et al., 2003; Peterka and Loughlin, 2004; Carver
et al., 2006; Jeka et al., 2006).

Conversely, the control of task-variables is
achieved through the inverse transformation to
muscle activations encoded by the muscle synergies.
In this case the muscle synergy defines one of many
possible muscle activation patterns that has the
desired effect on the task-variable at hand. Despite
the numerous possibilities for affecting task-
variables, it has been shown that individuals use
the same muscle synergies across a wide range of
tasks across days and weeks (Torres-Oviedo et al.,
2006). Therefore, while the sensory and motor
transformations are roughly optimal in the sense
that they are comparable to solutions derived
from optimization techniques (Kuo, 1995, 2005;
Todorov and Jordan, 2002; Scott, 2004; Todorov,
2004; Kurtzer et al., 2006), these mappings do not
appear to be updated on a rapid trial-by-trial time
scale. In tasks that are relatively uncommon in the
experience of an individual, the nominal set of
muscle synergies may not be optimal, and can result
in less effective biomechanical outputs. This
appears to be the case in the relaxation of the force
constraint strategy for postural control at shorter
stance distances (Macpherson, 1994; McKay et al.,
2007; Torres-Oviedo et al., 2006).

Thus, the formation of muscle synergies and sen-
sory transformations is considered to be a separate
process from the goal-level decisions influencing
their regulation and selection. In this framework,
the sensory transformations and muscle synergies
represent a relatively fixed set of preferred map-
pings, influenced by each individual’s experiences
and motor training as well as the biomechanics
of the task. If the formation of these mappings
is influenced by experience, it may not be possible
to directly compare muscle synergies across indi-
viduals in terms of their exact composition, but
only on the task-level variables they encode. Simi-
larities are inevitable because of the constraints im-
posed by task biomechanical constraints; however,
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redundancies in the sensory and motor systems
allow for substantial individual variation. It is pos-
sible that such variations give rise to individual
movement characteristics, as movement styles that
nonetheless conform to physical constraints can be
encapsulated through patterns of joint torque
weightings in computer simulations for animation
(Liu and Popovic, 2002; Liu et al., 2005).

Most individuals have reasonably consistent
movement patterns, but muscle synergy number
or composition could be altered through experience
and training, in particular due to neural or mus-
culoskeletal injury or disease. New muscle syner-
gies might form after extended experience with a
new motor task — such as with skiing or bicycling.
It has also been shown that dancers have postural
responses that tend to emphasize the orientation
and alignment of the body, as compared to non-
dancers who simply maintain the CoM within the
base of support (Mouchnino et al., 1992, 1993).
Likewise, the environment in which an individual is
raised also affects sensory integration mappings
(Wallace and Stein, 2006; Wallace et al., 2006).
Orienting responses to a stimulus are enhanced
when visual and auditory cues are congruent.
However, animals raised in the dark experience
no such enhancement (Wallace et al., 2004).

In speech, an instructive example can be found
that demonstrates a process of dimensional reduc-
tion in sensorimotor systems that can be thought of
as an experience-dependent ‘‘interpretation’’ of the
relevant task-variables (Kuhl, 1994, 2004). A simi-
lar phenomenon of matched dimensional reduction
in sensory and motor processing occurs in the
perception and production of speech sounds. The
native language of each individual shapes his or her
ability to both distinguish and produce speech
sounds (Kuhl et al., 1997; Zhang et al., 2005).
Essentially, a reduction in dimension occurs that
is based on the native language of an individual.
Idealized templates of speech sounds are formed
in the nervous system that can be thought of as
‘‘sensorimotor synergies’’ — these synergies under-
lie the characteristic accents of individuals speaking
a foreign language. Sensorimotor synergies in
language are so strong that sounds considered to
be very distinct in one language may not be per-
ceivable, much less producible by native speakers
of a different language. While there are similar
characteristics of these synergies across a native-
language population, they are also specific to each
individual and can change through experience-
dependent processes like intensive speech training.
Therefore, sensorimotor transformations that map
between low-dimensional task-variables and
high-dimensional anatomical variables underlie
individual speech or movement characteristics
allowing us to recognize distinctive features of a
person even when performing a novel task because
of each individual’s distinctive set of ‘‘building
blocks,’’ or sensorimotor synergies. Clearly we
have dedicated circuits for language production, as
well as motor behaviors, and yet these structures
do not specify the exact synergy patterns in indi-
viduals, but facilitate the formation and general
applicability of sensorimotor synergies in sensori-
motor processes.

While the use of reduced dimension task-level
control is appealing, the reality is that movements
must be implemented in complex, nonlinear dyna-
mic systems that are not easily controlled. The long
latencies that exist between descending commands
and peripheral action add further challenges to
task performance, particularly for standing post-
ural control in an unstable, bipedal postural con-
figuration. It has been proposed that physiological
‘‘linearization’’ mechanisms may exist that allow a
low-dimensional hierarchal feedback architecture
to work, but the nature of this mechanism has not
been discussed. However, there are many candidate
components of the neuromuscular system that are
modifiable through descending and neuromodula-
tory influences. Intrinsic muscle properties provide
instantaneous stabilizing influences, which can
be influenced by activation level, or the motion
history of the muscles. Spinal heterogenic stretch
reflex circuits coordinate the limb (Nichols, 1994;
Nichols et al., 1999; Wilmink and Nichols, 2003),
but more importantly their strength can be altered
by the state of the spinal network such that the
online processing of afferent and efferent signals
is altered. Neuromodulatory effects on moto-
neuron excitability can be affected by joint angle
(Hyngstrom et al., 2007). But, influence of these
state-dependent changes in the spinal cord extends
far beyond mono- or poly-synaptic reflex loops,
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and can alter the influence of descending com-
mands on the activation of single muscles, as well
as the strength of ascending afferent signals. It is
therefore likely that the context-dependent modu-
lation of spinal circuits through descending control
as well as neuromodulator release works in tandem
with descending muscle synergy commands in
order to produce predictable, stable movements.
Therefore the spinal circuitry is an essential
component of the implementation of the ‘‘simple’’
hierarchal control architecture, although it may
not be responsible for specifying the muscle
synergies used in postural control.
Future directions

This framework that links low- and high-
dimensional representations of movement is an
overarching hypothesis that lends itself to testing
through computer simulations. Our philosophy is
that neither a simple conceptual model nor a com-
plex anatomical model in isolation can effectively
elucidate principles of motor coordination. Current
models of posture and movement are formulated
either in the low-dimensional task-space, or in the
high-dimensional anatomical details where indivi-
dual muscles and joints are considered. Each has its
strengths and weaknesses that cannot alone be used
to understand neural mechanisms of movement.
The neural mechanisms through which musculo-
skeletal systems exhibit ‘‘collapses in dimension’’
must be explicitly studied (Holmes et al., 2006). But
to date, the sensorimotor transformations between
low- and high-dimensional spaces have only been
addressed by a few studies demonstrating that a
muscle synergy organization is sufficient to control
the task-variables (Valero-Cuevas et al., 1998;
Raasch and Zajac, 1999; Loeb et al., 2000;
Valero-Cuevas, 2000).

In posture, simplified feedback control models of
posture have been used to explain how task-level
variables are regulated by sensorimotor mecha-
nisms (Kuo, 1995; van der Kooij et al., 1999;
Peterka, 2000, 2002; Bortolami et al., 2003). These
models have been instructive in understanding the
importance of various sensory channels on post-
ural control (Kuo et al., 1998; van der Kooij et al.,
2001; Peterka, 2002) but are not sufficient for
understanding muscle activation patterns. On the
other hand, current musculoskeletal models can
explain individual muscle activations in a specific
motor task (Neptune, 2000; Pandy, 2001; Zajac
et al., 2003). But, in the absence of feedback loops,
a small change in the pattern of muscle activation
can completely destabilize the simulated system
(Risher et al., 1997), allowing only the analysis
of explicitly modeled conditions. Because these
models lack sensorimotor mechanisms that allow
them to respond to perturbations, they cannot
yet be used to understand the neuromechanical
principles coordinating muscles.

To bridge the gap between concepts about task-
variable control and its implementation at the level
of individual muscle activation patterns, novel
methods for complementary and parallel develop-
ment of simple and complex musculoskeletal
models of posture must be developed (Full and
Koditschek, 1999). The framework presented
demonstrates why both low-dimensional and
high-dimensional models alone can be used to
produce reasonable simulations of movement.
However, the functional relevance of a simple
model of postural control to multiple joint motions
depends critically on its integration with more
complex musculoskeletal models. The future chal-
lenges in computational studies will be to incorpo-
rate relevant dimensional reduction mechanisms in
the control of multiple muscles. As an example, six
muscle synergies can be used to produce a range of
natural pedaling behaviors in simulations, such as
slow, fast, smooth, jerky, and backwards pedaling
(Raasch et al., 1997; Raasch and Zajac, 1999; Zajac
et al., 2003). These simulations were found to pre-
dict phase changes in muscle activation patterns
that were unexpected based on prior hypotheses
(Ting et al., 1999). Moreover, when the model used
only flexor and extensor synergies it was unable to
advance the limb through the transition from
extension to flexion (Raasch and Zajac, 1999).
Similarly, stroke patients limited to flexion and
extension synergies (Bourbonnais et al., 1989) have
difficulties through the same phase transition
(Brown et al., 1997). A similar model for under-
standing postural control would be critical to un-
derstanding the functional consequences of neural
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impairments that lead to balance disorders. Recent
steps in this direction include models demonstrat-
ing reduced dimension in feedback control of
posture. ‘‘Eigenmovements’’ that couple joint
motions in multiarticular models of standing pos-
ture, can be used to reduce the dimension of the
feedback parameters required for postural control
(Alexandrov et al., 2005). Consistent with the
eigenmovement hypothesis, at the level of muscle
activation patterns, simulations demonstrate the
need for coordinated control of multiple muscles to
achieve task-variable control (Bunderson et al.,
2007; Van Antwerp et al., 2007). Moreover, it has
been shown that multiple muscle activation pat-
terns in both cats and humans are regulated by
simple feedback control laws (Lockhart, 2005;
Welch and Ting, 2005), suggesting that a feedback
control system might act at the level of the neural
commands to muscle synergies.

The integration of simple and complex models
may also be clinically relevant. The ability of pa-
tients to conform to overall control principles may
be more important than the enforcement of specific
synergies or detailed movement patterns. In
cerebral palsy subjects with hemiplegia, different
patterns of joint angle changes and EMGs are
observed in each leg. These differences are difficult
to interpret through direct comparison of the mul-
tiple variables. However, the overall mechanics and
energy exchange mechanisms in the unaffected and
affected limbs can be characterized by two simple
models of gait: an inverted pendulum and a spring-
mass model, respectively (Fonseca et al., 2001,
2004). Therefore, more insight is gained from un-
derstanding the control of task-level variables ver-
sus local variables. These conceptual frameworks
can inform the analysis of data and design of new
experiments and complex models, and may explain
why prior attempts to enforce specific muscle
activation patterns in clinical rehabilitation were
unsuccessful. Development of computational
models that can predict the functional consequences
of muscle activation patterns in postural control
may be more effective at predicting how postural
function could improve in individuals with specific
impairments. The resulting muscle activation pat-
terns may not resemble a ‘‘normal’’ pattern, but
take advantage of the capabilities of the individual.
Finally, the framework presented calls for more
computationally sophisticated methods of data
analysis that reflect the hypothesized neural organi-
zation principles. The framework suggests that a
relatively low number of parameters can be used to
describe complex changes in muscle activation pat-
terns. Therefore, understanding low-dimensional
task-level variables can lead to a better understand-
ing of changes in local variables. For example, cats
with large-fiber peripheral sensory neuropathy that
destroys afferents from muscle spindles and Golgi
tendon organs exhibit postural instability and
delayed postural responses (Stapley et al., 2002).
Application of a simple feedback model demon-
strates that changes in the entire timecourse of mul-
tiple muscle activations can be described as a
decrease in the feedback gain associated with CoM
acceleration (Lockhart et al., 2005; Ting et al.,
2005). This change can explain the apparent delay in
the response through a change in only one of four
feedback parameters. Further, since muscle direc-
tional tuning remains intact (Stapley et al., 2002), it
is likely that the muscle synergy patterns in these
animals is unaffected by the sensory loss. The frame-
work further predicts that nominal changes in post-
ural behaviors from goal- or task-level control due
to changes in mental state, such as anticipation,
adaptation, fear, or divided attention (Keshner
et al., 1987; Maki et al., 1991; Brown et al., 2002;
Woollacott and Shumway-Cook, 2002; Carpenter
et al., 2004, 2006), would occur only in the modula-
tion and selection of postural synergies. However,
more changes due to disease or injury might result in
the inability to activate particular muscle synergies,
such as in Parkinson’s disease (Dimitrova et al.,
2004), or an inappropriate activation of muscle
synergies, as in cerebellar loss (Timmann and Horak,
1997), or a reorganization of muscle synergies them-
selves.Theability todifferentiate thesedifferentmech-
anisms of changes may lead to greater insight into the
neurological underpinnings of motor dysfunctions
and the development of potential interventions.

Abbreviations

APR automatic postural response
CoM center of mass
EMG electromyographic
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Muscle abbreviations used in figures

BFMA anterior biceps femoris
BFMM medial biceps femoris
BFMP posterior biceps femoris
EDL extensor digitorum longus
FDL flexor digitorum longus
GLUA anterior gluteus medius
GLUP posterior gluteus medius
GLUT gluteus medius
GRAA anterior gracilis
GRAP posterior gracilis
ILPS iliopsoas
LGAS lateral gastrocnemius
MGAS medial gastrocnemius
PLAN plantaris
REFM rectus femoris
SEMA anterior semimembranosus
SEMP posterior semimembranosus
SOL soleus
SRTA anterior sartorius
SRTM medial sartorius
STEN semitendinosus
TFL tensor fasciae lata
TIBA tibialis anterior
VLAT vastus lateralis
VMED vastus medialis
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