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SUMMARY

Muscle coordination may be difficult or impossible to predict accurately based on biomechanical
considerations alone because of redundancy in the musculoskeletal system. Because many solutions exist
for any given movement, the role of the nervous system in further constraining muscle coordination patterns
for movement must be considered in both healthy and impaired motor control. On the basis of computational
neuromechanical analyses of experimental data combined with modeling techniques, we have demonstrated
several such neural constraints on the temporal and spatial patterns of muscle activity during both locomotion
and postural responses to balance perturbations. We hypothesize that subject-specific and trial-by-trial
differences in muscle activation can be parameterized and understood by a hierarchical and low-dimensional
framework that reflects the neural control of task-level goals. In postural control, we demonstrate that
temporal patterns of muscle activity may be governed by feedback control of task-level variables that
represent the overall goal-directed motion of the body. These temporal patterns then recruit spatially-
fixed patterns of muscle activity called muscle synergies that produce the desired task-level biomechanical
functions that require multijoint coordination. Moreover, these principles apply more generally to movement,
and in particular to locomotor tasks in both healthy and impaired individuals. Overall, understanding the
goals and organization of the neural control of movement may provide useful reduced dimension parameter
sets to address the degrees-of-freedom problem in musculoskeletal movement control. More importantly,
however, neuromechanical analyses may lend insight and provide a framework for understanding subject-
specific and trial-by-trial differences in movement across both healthy and motor-impaired populations.
Copyright © 2012 John Wiley & Sons, Ltd.

Received 15 December 2011; Revised 2 March 2012; Accepted 31 March 2012

KEY WORDS: musculoskeletal model; biomechanical model; electromyogram; balance; locomotion;
optimal control; muscle synergy; feedback

1. INTRODUCTION

Musculoskeletal modeling has been instrumental in understanding joint torque and muscle function
during movements based on the physics of the musculoskeletal system. Because generating de novo
muscle-actuated simulations of movement based on performance criteria is challenging as a result
of both muscle redundancy and the stiffness of the solution space, particularly for unstable tasks
such as walking [1], recorded movement kinetics and kinematics are often used to constrain solu-
tions. Typically, inverse dynamics is used to estimate net joint torques [2], and muscle activation
patterns sufficient to produce these net joint torques are then identified using static optimization
algorithms that minimize cost functions related to total muscle activity, energetics, or effort [3–8].
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Simulated muscle activation patterns can also be identified through data tracking approaches using
forward dynamic simulations, in which the cost function is to match recorded kinetics, kinematics,
and sometimes electromyographic (EMG) signals, perhaps approximated as on–off excitation
timing [9–12]. The resulting simulations have provided much insight into the biomechanical
basis of sometimes nonintuitive muscle activation patterns because of the multiarticular actions of
muscles and interjoint coupling [7, 13–15]. However, because of the biomechanical redundancy of
the musculoskeletal system, the same movement can be produced by different muscle coordination
patterns and may vary both across subjects [16] and across trials [17]. Whereas solutions identified
through optimization techniques typically predict the action of prime movers reasonably well, in
many cases the activity of other muscles are not well-predicted from such optimization techniques
[5, 18, 19], even if subject-specific data are successfully reproduced.

In addition to biomechanical considerations, understanding the principles by which the nervous
system selects muscle activation patterns in a redundant space of solutions is also necessary to
accurately predict muscle activity, internal forces, and the kinematics of movement. The specific
muscle coordination patterns used by an individual may depend on factors other than energetics or
even performance measures. Even after biomechanical constraints are fulfilled, the musculoskeletal
system still offers a great deal of redundancy in the selection of spatiotemporal muscle activation
patterns to achieve a task [16, 20]. Other factors such as constraints of neural circuitry, the achieve-
ment of task-level goals, prior experience, or movement training can also affect how we move.
Particularly in unstable tasks such as balance and locomotion [21], co-contraction of muscles for
joint stability may also be an important factor in determining muscle activation patterns [22–24].
While co-contraction does not contribute to net muscle joint torques, it can profoundly change the
internal loading forces acting on bones and joints. Correctly identifying joint loads is a current grand
challenge in biomechanics and clinically relevant for the progression of osteoarthritis [25]. Further-
more, muscle activation patterns can be altered independent of limb mechanics depending upon the
sensorimotor state and the implicit task-level goals of the nervous system [26, 27]. Finally, individ-
ual differences in movement may arise from preferred movement patterns or strategies based on
prior training or experience [17, 28–30] that may lead to individual differences in motor control. In
some cases the differences may be small but profound: for example, walking using a medial thrust
gait does not change global measures such as foot placement or trunk motion but significantly alters
contact forces [31] and joint torques associated with osteoarthritis progression [32]. This illustrates
the flexibility afforded to the nervous system in attaining task-level goals, and the subtle differences
in leg kinetics and kinematics that may emerge from altering muscle activation patterns.

A neuromechanical approach is thus required to further advance our understanding of human
movement. It is important to understand both the neural basis of muscle activation patterns and
the functional consequences of such patterns in a quantitative way. Here, we present a high-level
review of some recent work demonstrating that muscle activation patterns may reflect a hierar-
chical and low-dimensional structure of neuromotor outputs that reflect control of task-level goals
(Figure 1(A)). We have chosen to study standing balance control as a movement paradigm that can
reveal general principles of how the nervous system may address muscle redundancy to achieve
task-level goals. We define a task-level goal as a motor intention that cannot be directly mapped to a
particular sensory input or a unique motor output. Rather, estimating the state of a task-level variable
requires integration of multiple sensory signals and cannot be inferred directly from local anatom-
ical variables such as joint angles. Likewise, controlling a task-level variable cannot be achieved
by controlling muscles, joint torques, or joint angles independently, but requires that they be coor-
dinated in a task-specific way [33, 34]. In balance control the task-level goal is well specified —
that is, to maintain the body center of mass (CoM) over the base of support [35] — and this goal
can be achieved by a number of different kinetic, kinematic, and EMG patterns [36]. We propose
that the nervous system is hierarchically organized such that control of task-level goals governs
the temporal patterns of muscle activity, which are then spatially distributed across many muscles
to execute the movement (Figure 1(A)). We will present a review of research demonstrating that
the temporal patterns of muscle activity in balance can be attributed to delayed neural feedback of
CoM kinematics and not joint kinematics that can be described with a few feedback parameters
(Figure 1(B)). We will then show that the temporal control of the CoM must then be translated into
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Figure 1. (A) Hierarchical neuromechanical framework for understanding muscle coordination. The low-
dimensional structure of neuromotor outputs reflect the desired control of task-level goals. A dimensional
reduction occurs in the multisensory integration mappings that use multiple afferent signals to estimate
task-variables. (B) In perturbed balance control, temporal patterns of muscle activity are governed by
delayed feedback of CoM kinematic variables. Thus, the entire timecourse of muscle activity can be com-
pactly described using three feedback gain variables and a delay term. Each component of CoM motion is
multiplied by a feedback gain at a common time delay and linearly added to produce a reconstructed
muscle activation pattern or muscle synergy recruitment pattern. (C) These temporal patterns reflecting task-
level variables must then be mapped to a spatial distribution of muscles to generate execution-level motor
commands to muscles. Muscle synergies allow task-level neural commands to be translated into execution-
level muscle activation patterns. Spatially-fixed muscle synergies with variable recruitment patterns explain
a wide variety of individual muscle activation patterns. Shown here are muscle synergies from cat responses
to translation perturbations in 12 directions. Recorded muscles include Iliopsoas (ILPS), Rectus femoris
(RFEM), Vastus intermedius (VINT), Anterior sartorius (SRTA), Medial sartorius (SRTM), Anterior
gracilis (GRAA), Posterior gracilis (GRAP), Gluteus medius (GLUT), Anterior biceps femoris (BFMA),
Posterior biceps femoris (BFMP), Semitendinosus (STEN), Anterior semimembranosus (SEMA), Posterior
semimembranosus (SEMP), and Flexor hallucis longus (FHLO). The activation of an individual muscle
results from adding the activation of each muscle synergy. For 90° perturbations, the activation of SEMP is
strictly co-activated with BFMP and STEN because of recruitment of the red muscle synergy. In contrast, for
270° activation of the same SEMP muscle is strictly coactivated with GLUT because of recruitment of the
blue muscle synergy. Together, our frameworks allow us to functionally decompose the multiple influences

shaping the spatiotemporal patterns of muscle activation for task-level motor control.

the appropriate spatial patterns of muscle activity via muscle synergies, which define fixed spatial
patterns of multimuscle activity producing consistent task-level biomechanical functions
(Figure 1(C)). We will also present some examples where such principles generalize to the control of
walking, and then illustrate the relevance of neural constraints on muscle activity in understanding
impaired walking in people with post-stroke hemiparesis.

2. NEURAL CONTROL OF TASK-LEVEL VARIABLES GOVERNS TEMPORAL PATTERNS
OF MUSCLE ACTIVITY

Evidence from our laboratory suggests that temporal patterns of muscle activity reflect neural con-
trol of task-level variables during balance. During postural perturbations to standing balance control,
the temporal structure of muscle activation patterns is governed by delayed task-level feedback of
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CoM kinematics as opposed to local feedback control of joint kinematics. Thus, the entire time
course of EMG activity during recovery of balance in response to a perturbation of the support
surface can be described using three feedback gains based on CoM kinematics (displacement,
velocity, acceleration) acting at a common time delay (Figure 1(B)), which is based on the sen-
sorimotor delays inherent in neural transmission and computation [37, 38]. Further evidence that
task-level and not joint-level feedback control governs temporal patterns is the robustness of the
CoM feedback model predictions in explaining the time course of lower limb and back muscles
when differing joint-level postural strategies are employed (i.e., ‘ankle’ and ‘hip’ strategies) [39] and
across long perturbations in which joint and CoM dynamics become uncorrelated. Similarly, torque-
level feedback models have revealed that each joint torque for balance control must be derived from
sensory feedback arising from all other joints [40], such that local feedback mechanisms are insuf-
ficient to explain neural strategies for standing balance. Our feedback model describes the temporal
pattern of activation of a muscle i , ei .t/ as follows:

ei .t/D bka,i Rx.t � �/C kv,i Px.t � �/C kd ,ix.t � �/c , i D 1 WNMUS (1)

where ka,i , kv,i , and kd ,i designate feedback gains on CoM acceleration, velocity, and displacement
( Rx.t/, Px.t/, and x.t/, respectively), � designates a time delay associated with neural conduction and
processing, and floor brackets b�c designate a threshold operator defined as

bgc D

�
g, g > 0,
0, g 6 0.

(2)

The low-dimensional structure provided by the CoM feedback model allows us to characterize
variations in muscle activation patterns for balance control across individuals, trials, and levels
of impairment by varying a few parameters [37–39]. The robustness of the model in explaining
interindividual and intertrial variations suggests that the nervous system does indeed modulate the
control of task-level variables, and that such task-level representations can actually simplify compu-
tations for movement control. Across naïve subjects, intersubject differences in the temporal patterns
of muscle activation in postural responses can be characterized by variations in the magnitude of the
three feedback gain parameters when perturbations are presented in randomized order [38,39]. How-
ever, when identical perturbations are presented serially and are thus predictable, patterns of muscle
activity change [36,41]. These changes can be characterized by a gradual decrease in feedback gain
magnitudes, converging toward an optimal solution that represents a tradeoff between CoM error
and energetic cost. The delayed CoM feedback model can equally predict temporal muscle acti-
vation patterns in cats, despite differences in biomechanical configuration compared with humans.
Animals who are trained daily on a postural task over many months exhibit near-optimal temporal
patterns [37]. Moreover, following large-fiber somatosensory loss, these animals converge toward a
new optimal solution in which CoM acceleration feedback is absent. Together, these results suggest
that the muscle activation patterns for balance control are governed by low-dimensional task-level
control, but that the parameters characterizing movements within this structure may be contin-
uously modified based on various and ever-changing factors such as energetics, stability, motor
performance, or other goals.

3. IMPLICATIONS OF TEMPORAL DIMENSIONAL REDUCTION AND TASK-LEVEL
CONTROL IN MUSCULOSKELETAL MODELING

Task-level neural control has important implications for the musculoskeletal modeling community.
Our results demonstrate that it is possible to interpret, and to predict, complex temporal patterns of
muscle activity with only a small number of parameters based on task-level goals. This has the
obvious computational advantage of limiting the search space for muscle activation patterns in
dynamic simulations, because only a few feedback gains need to be identified for each muscle,
rather than the comparatively large number of parameters necessary to specify an entire timecourse
of muscle activation [1]. However, another implication of the predictive power of the concept of
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task-level neural control is that it suggests that bottom–up modeling approaches based only on
joint-level feedback [42, 43] may not be able to predict aspects of temporal patterns of muscle
activity during realistic motor tasks that are believed to be governed by task-level control. Even
in reactive tasks where short-latency motor responses may reflect joint-level feedback, the more
substantial long-latency response to perturbations in both the upper and lower limbs reflect the
control of task-level variables, such that muscle activity can be seen at joints that are not
explicitly perturbed [44,45]. Thus, the identification of task-level variables and the associated neural
control structures are important in reactive tasks and voluntary tasks that involve preplanning and
anticipation. For reaching, task-level goals related to endpoint kinematics have been proposed [46].
For walking, task-level goals have been proposed such as energy exchange mechanisms [47–50] or
the angular momentum of the body [51]. Understanding task-level goals can reveal the mechanisms
underlying impaired locomotion; differences in amputee gait may result from their reduced ability to
control angular momentum with a prosthetic limb [52]. Similarly, studies from computer animation
have demonstrated that task-level control frameworks can be used to predict locomotor behaviors
across a wide variety of biomechanical contexts [53].

4. TASK-LEVEL RECRUITMENT OF MUSCLE SYNERGIES GOVERNS SPATIAL
PATTERNS OF MUSCLE ACTIVITY

To produce coordinated movements, low-dimensional task-level commands specifying temporal
patterns must be mapped to multiple muscles distributed throughout the body. Spatial coordination
of muscles across the body is required to reliably produce a given biomechanical function because
individual muscles do not produce consistent biomechanical functions within the kinematically
redundant and dynamically coupled musculoskeletal system [54–56]. In balance control we have
experimentally identified muscle synergies that define fixed spatial activation patterns across
multiple muscles (Figure 1(C)), and whose temporal recruitment varies as a function of the CoM
feedback transformation described above [57]. Moreover, the structure and biomechanical functions
of spatially-fixed muscle synergies appear to be consistent across a range of motor tasks. A consis-
tent relationship between muscle synergy recruitment and endpoint force production was found in
cats during balance control [58]; this direction of force production with respect to the limb axis
was preserved across multiple postural configurations [59]. In humans, muscle synergy structure
was consistent across postural configurations including narrow, wide, crouched, and single limb
stance [60], and in a variety of postural responses such as hip, ankle, stepping, and feet in place
[61]. Similarly, simulations in which muscle synergies constrain muscle activation patterns have
reliably produced motor functions across variations in the motor task [62–64]. Moreover, altering
the temporal recruitment of muscle synergies according to task-level demands can robustly produce
a range of motor behaviors [62, 65, 66]. Thus, a range of motor behaviors may result from altering
the temporal recruitment of a set of spatially-fixed muscle synergies.

In our work, we have operationally defined muscle synergies as muscle coactivation patterns
in fixed ratios that we identify from experimental data. The use of such muscle synergies to
map task-level to execution-level motor commands thus reduces the spatial dimensionality of
muscular outputs. Therefore, any matrix representing spatiotemporal patterns of muscle activity
E.t/ D Œe1.t/I e2.t/I � � � eNMUS.t/� with dimensions NMUS � NSAMP (corresponding to the number
of muscles � the number of time samples) can be expressed as a linear combination of a matrix of
fixed muscle synergy vectors W with dimensions NMUS �NSYN (the number of muscle synergies)
and time-varying recruitment patterns C.t/.NSYN �NSAMP/ such that

E.t/DW �C.t/ (3)

where element wij of W corresponds to the recruitment of the i th muscle in the j th synergy,
and all elements of W and C are non-negative. To identify a set of muscle synergies .W /
from experimental data, we use non-negative matrix factorization (NMF) [67]. NMF produces
additive components that are more physiologically interpretable than alternative approaches such
as PCA [68]. For a detailed tutorial on extracting muscle synergies using NMF, please see
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http://www.neuro.gatech.edu/labs/ting/neuromechanics-tools/matlab-tutorial/ [68]. Although it is
likely that muscle synergy structure could change over a period of training, we have demonstrated
muscle synergies to be stable in the short-term, over days or weeks [17,59]. The temporal patterns of
activation of each muscle synergy is determined by delayed feedback of CoM acceleration, velocity,
and displacement

cWj .t/D
�
ka,Wj Rx.t � �/C kv,Wj Px.t � �/C kd ,Wj x.t � �/

˘
(4)

as in Equation (1). We identify the feedback gains based on measured CoM kinematics [38, 39, 57].
Although there are varying ideas about the nature and organization of modularity in the nervous

system, some of the alternate schemes cannot be feasibly implemented for reactive postural control.
Reactions to perturbations are shaped by online feedback signals that are dependent upon the
characteristics of the perturbation, and thus temporal patterns of muscle synergy recruitment
cannot be generated using feedforward mechanisms that have been postulated in alternate
hypotheses that may be more appropriate for locomotor tasks. For example, some studies examining
modularity during locomotion have suggested that temporally-fixed patterns of muscle recruit-
ment are coupled to spatially-varying muscle weightings [69–71]. Alternatively, in reaching, both
spatiotemporal aspects have been proposed to be coupled such that preplanned temporal patterns are
scaled to the desired reach amplitude and duration [72–75]. In contrast, studying reactive feedback
tasks has allowed us to dissociate the control of spatial and temporal features of muscle activity, and
we have explicitly demonstrated that temporally-fixed structures are insufficient to reproduce mus-
cular variability in balance control [57]. Whereas the fixed temporal patterns for locomotion must
be scaled as a whole, precluding online modification, in our scheme, the temporal structure is based
on a low-dimensional sensorimotor feedback transformation for task-level feedback control of the
CoM, which shapes motor patterns based on recent kinematic states. We propose that the control of
temporal and spatial features of muscle activity are hierarchically controlled, each by independent
low-dimensional control structures. This hypothesis is consistent with current models of locomo-
tor central pattern generator circuits in which temporal rhythm generation is independent of and
recruits structures that specify the spatial patterning of muscle activity [76]. Likewise, locomotor
data has been robustly explained using spatially-fixed patterns of muscle activation, while allowing
the temporal recruitment to vary according to the task demands [77,78]. Neurophysiological studies
also support the hypothesis that fixed muscle synergies encoded in the spinal cord are differentially
recruited by temporal patterns from higher neural centers [79–81].

Evidence that muscle synergies can characterize intersubject and intertrial variations in balance
control further supports the idea that muscle synergies reflect the lowest level of functional organiza-
tion in the motor repertoire. The spatially-fixed muscle synergies we have identified are specific to
individual subjects, and also constrain the trial-by-trial variability observed within an individual
[17, 60]. Thus, using muscle synergies does not preclude variability in motor output or motor
performance, but rather suggests that the variability reflects variations at the level of task-level neural
control [82] rather than random noise in the excitation of individual muscles. Intertrial variability in
muscle activation patterns provides important information that is critical to identifying the common
underlying structure in muscle synergies across movements. Averaging trials may thus obscure the
underlying structure of motor outputs. Additionally, we observe different muscle activation patterns
across individuals that may produce similar functions [59, 61]. Each individual uses a unique set of
muscle synergies that varies in both structure and number of muscle synergies; however, this set is
consistent across motor tasks and over a period of at least days and weeks [17, 59–61]. Although
differences in anatomy may contribute to such differences in muscle synergies, it is likely that
prior training and motor skill also influence subject-specific muscle synergies, which may lead to
dissimilar kinetic and kinematic patterns for achieving an equivalent task-level goal. Using muscle
synergies may contribute toward understanding intersubject differences in movement, and explain a
common motor structure governing intrasubject differences in motor performance.

The proposed hierarchical and modular organization of muscle activity may also underlie more
dynamic behaviors such as walking and reaching. Cycle-by-cycle variations in walking patterns
across walking speeds can be accounted for by four muscle synergies [78]. The recruitment of
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these muscle synergies appears to be related to function rather than a specific phase of the gait cycle
[63,78]. For instance, each muscle synergy contributes to a function such as weight support, forward
propulsion of the body, and deceleration of the leg [62, 63]. Locomotor muscle synergies have also
been found to be consistent across postural configurations and loading in cycling [77]. Similarly, in
reaching tasks, muscle synergies are consistent across reaching directions [72,73] and differentially
modulated during movements with changing target directions [74]. The same muscle synergies may
also underlie reactive and voluntary tasks. During perturbed walking, muscle synergies for walking
were recruited in atypical phases of the gait cycle in both a feedback manner in response to the
perturbation and in anticipation of the perturbation. This is consistent with neurophysiological evi-
dence that spinally-encoded muscle synergies can be flexibly recruited from a variety of pathways,
including the central pattern generator for walking, brainstem-mediated pathways used for balance
control, and higher descending influences [79, 80, 83, 84].

5. IMPLICATIONS OF SPATIAL DIMENSIONAL REDUCTION AND TASK-LEVEL
CONTROL IN MUSCULOSKELETAL MODELING

Muscle synergies represent a feasible, neurally plausible control strategy for control of muscu-
loskeletal models that may provide increased computational efficiency and improve predictions of
muscle activity in simulations. Although the possibility exists that reducing the number of controlled
variables from the number of muscles to the number of muscle synergies could limit the repertoire
of possible motor behaviors [85], the feasibility of muscle synergy-based control strategies has
been demonstrated in simulations of multiple motor tasks [62–64, 66, 86]. Moreover, the behavioral
repertoire afforded by muscle synergy control has been shown to be similar to that provided by
individual muscle control [65, 87, 88], although additional muscle synergies, or subdividing of
muscle synergies may be necessary if task biomechanics diverge significantly [62,63]. These results
are encouraging for modeling because they suggest that the search space of controlled variables for
predicting natural movements may be reduced from the number of muscles to the number of muscle
synergies, leading to speedups in computation time [65, 88], particularly in the search for feasible,
rather than optimal recruitment patterns [62]. Furthermore, results from our laboratory suggest that
muscle synergy control may also improve predictions of muscle coactivation in optimizations based
on minimization of energetic cost [88]. However, it is also likely that true neural control of task-
level variables is conditioned on degree of intrinsic stability of the musculoskeletal system from both
muscle properties and local joint feedback circuits, which must be added to existing musculoskeletal
models [21, 89].

Although modeling and experimental work define muscle synergies that are qualitatively similar,
practical limitations complicate quantitative comparisons of modeled and experimentally deter-
mined muscle synergies. The muscles included in each muscle synergy are usually similar between
models and experiments, particularly in the case of large, ‘prime mover’ muscles [64, 65]. In some
cases, the muscles included in a modeled muscle synergy can be adjusted manually to better match
experimentally identified muscle synergies [66], or experimentally-identified muscle synergies can
be used as initial guesses in optimization procedures and modified somewhat to achieve simulation
constraints [63]. However, muscle synergies in musculoskeletal models cannot typically be quanti-
tatively compared with muscle synergies identified in EMG data because (1) the number of recorded
muscles is typically fewer than the number of modeled muscles and (2) normalization of EMG data,
for example using maximum voluntary contraction, may be error-prone, and is often unavailable in
studies involving animal models.

Because of these difficulties, simulating muscle synergy control presents additional challenges
for musculoskeletal modeling in that muscle synergy vectors must often still be estimated using
optimization approaches in concert with experimental kinetic and EMG data. Two main approaches
have been used to address this problem. Some studies have estimated muscle synergies without
relying on experimental data, for example, by approximating optimal solutions for the control
of individual muscles with NMF [87] or by identifying muscle synergies that can best span the
input–output relationship of a musculoskeletal model identified through model order reduction
techniques [65]. The disadvantage of these approaches is that they essentially suffer from the
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same complexities and weaknesses as using optimality principles to predict muscle activity, for
example, requiring large-scale searches and other sophisticated computational techniques [1]. An
alternative approach used in studies from our laboratory and others is to estimate muscle syner-
gies by using experimentally-recorded force data as constraints in static optimization procedures
[64, 66, 88, 89]. We have found this approach to be advantageous because it is straightforward and
predicts experimental data well. However, as described abov, it may be important to avoid averaging
experimental data, because we have found that sets of muscle synergies identified in different exper-
imental animals may make different predictions, even when an identical musculoskeletal model is
used [88].

6. HIERARCHICAL CONTROL OF MUSCLE SYNERGIES: APPLICATIONS TO MOTOR
DEFICITS

Understanding the control of muscle synergies may be critical to understanding movement deficits
that originate from within the nervous system, such as stroke, cerebral palsy, and Parkinson’s
disease. In particular, hemiparesis following stroke is due to disruption of descending neural path-
ways, with no direct effects on the musculoskeletal system or spinal circuitry. We found that the
number of muscle synergies identified in muscle activation patterns during walking was reduced
in the paretic limb compared with controls [78]. In both healthy subjects and in the nonparetic
limb of stroke subjects, an average of four muscle synergies were recruited during forward walking
across a range of speeds. In contrast, the number of muscle synergies identified in the paretic limb
varied between two and four across subjects (n D 55). Moreover, the number of muscle synergies,
a measure of the complexity of the neural output signal, was directly correlated to biomechanical
measures of walking capacity, including walking speed, propulsive force, and gait asymmetry. The
muscle synergies identified were frequently merged versions of those identified in the nonparetic
limb and in control subjects. These results support the idea that muscle synergies allow the nervous
system to robustly perform distinct biomechanical functions, and that independent recruitment of
those functions are lost following stroke. Furthermore, examining the structure and recruitment of
muscle synergies may also be useful for understanding peripheral deficits (i.e., amputation, loads,
braces, orthotics, implants), because adaptation may be constrained by the muscle synergies.

The control of muscle synergies may be particularly relevant in musculoskeletal modeling
of movement deficits because neural constraints on muscle activation may play an even larger
comparative role in determining movements than the optimal control of the physics of the
musculoskeletal system. Multiple modeling studies have found that in considering healthy popu-
lations, muscle synergy control may provide a good approximation of the primary features of the
optimal control of individual muscles [65, 88, 90, 91]. These studies suggest that approaches based
on musculoskeletal modeling and optimization can predict muscle synergy structures and resulting
behaviors. However, in stroke or other conditions with motor deficits, although the same underlying
task-level control and muscle synergy structures may exist, evidence suggests that abnormal recruit-
ment of muscle synergies may result in movements that are far from optimal. Because the same
muscle synergies have been identified in conditions with motor deficits [78–80, 92] it may not be
possible to predict spatial muscle activation patterns in pathological movements based on optimiza-
tion. However, it may be possible to simulate pathological movements by reducing the number of
independently recruited muscle synergies. For example, reducing the number of independent muscle
synergies in simulations of forward pedaling results in patterns of crank motion that emulate those
seen in hemiparesis where the crank may be advanced but the motion lacks smoothness [62]. Using
muscle synergy analyses to better understand motor deficits is an emerging field and an ongoing
priority in our research.

7. CONCLUSION

Because biological movement results from neuromechanical interactions, furthering our under-
standing of subject-specific movements in healthy and motor-impaired individuals requires that
both biomechanical and neural constraints governing movement be adequately represented in our
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models. While neural and biomechanical models have independently provided insights into the
principles governing movement control that are common across subjects, future challenges
require that we understand subject-specific differences in musculoskeletal anatomy, neural control
mechanisms, and their interactions. Understanding generative mechanisms for movement will
probably require the addition of (1) top–down approaches that consider task-level goals as the
primary determinant of kinematic and kinetic variables [51, 53, 93] and (2) constraints on
independent production of joint torques that mirror the divergent anatomy of interneurons that
coactivate motoneurons [94, 95]. Recent studies have demonstrated the potential power of such
approaches in explaining and simulating movement during normal and impaired motor tasks; these
studies emphasize the need for simulation platforms that facilitate exploration of the interactions
between neural, muscular, and skeletal dynamics (see Bunderson et al. this issue and [96]). Once
such mechanisms are in place, subject-specific and trial-by-trial differences in movement may be
explored based on parametric differences in the costs and constraints associated with attainment
of task-level goals. Such advances will be critical in understanding both healthy and impaired
movements, and techniques for restitution of function via rehabilitation, prosthetics and orthotics,
or assistive devices.
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