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Abstract

Optimal control simulations have shown that both musculoskeletal dynamics and physiologi-
cal noise are important determinants of movement. However, due to the limited efficiency of
available computational tools, deterministic simulations of movement focus on accurately
modelling the musculoskeletal system while neglecting physiological noise, and stochastic
simulations account for noise while simplifying the dynamics. We took advantage of recent
approaches where stochastic optimal control problems are approximated using determin-
istic optimal control problems, which can be solved efficiently using direct collocation. We
were thus able to extend predictions of stochastic optimal control as a theory of motor coor-
dination to includemuscle coordination and movement patterns emerging from non-linear
musculoskeletal dynamics. In stochastic optimal control simulations of human standing bal-
ance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-con-
traction as minimal effort strategy that complements sensorimotor feedback control in the
presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear
multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed
reach trajectories under a variety of task conditions to be predicted. In both behaviors, we
demonstrated how interactions between task constraint, sensory noise, and the intrinsic
properties of muscle influence optimal muscle coordination patterns, includingmuscle co-
contraction, and the resulting movement trajectories. Our approach enables a true minimum
effort solution to be identified as task constraints, such as movement accuracy, can be
explicitly imposed, rather than being approximated using penalty terms in the cost function.
Our approximate stochastic optimal control framework predicts complex features, not cap-
tured by previous simulation approaches, providing a generalizable and valuable tool to
study howmusculoskeletal dynamics and physiological noise may alter neural control of
movement in both healthy and pathological movements.
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Author summary
Model-based simulations have advanced our insight in how movement is controlled, but
computational limitations have prevented us from simultaneously considering the effects
of nonlinear musculoskeletal dynamics and noise on neural control on movement strate-
gies. Here we present a novel simulation framework that addresses this methodological
gap and demonstrate its potential to predict features of motor control that have not been
predicted previously. Our framework enables neural control mechanisms to be simulated
and the optimal control strategy in the presence of noise to be computed. We demonstrate
for the first time that muscle co-contraction–a motor strategy thought to be energetically
costly–can help to reduce the effort required to stabilize standing postural control, even
when feedback is present. We also demonstrate that multi-segmental models of the arm
actuated by muscle can predict complex reach and perturbed reach trajectories that were
not explained by simplified models. The ability to predict muscle activation patterns and
kinematics of joints extends the theory of optimal control to variables that can be used to
directly explain muscle and joint coordination. Our computational approach is broadly
applicable and may be extendable to other normal and impaired movements, as well as
aid in the design of assistive devices.

Introduction
Predictive simulations are powerful tools to study the neuromechanics of movement [1,2].
Movement simulations are typically based on optimal control as a theory of motor coordina-
tion to solve the redundancy problem, i.e. to determine which of the many possible movement
strategies is used to achieve a given movement goal [3]. Optimal control theory has also been
used to demonstrate how sensorimotor noise affects movement control strategies. However,
current approaches focus either on detailed representations of musculoskeletal dynamics while
neglecting physiological noise [4–6] or on simulating the effects of physiological noise while
simplifying musculoskeletal dynamics [7–9]. On the one hand, deterministic simulations
based on complex models have advanced our understanding of how musculoskeletal dynamics
shapes movement. On the other hand, stochastic simulations based on simple models have
shown that noise shapes movement kinematics and variability as well as underlying control
mechanisms, including modulation of feedback. Accounting for the interaction between mus-
culoskeletal dynamics and physiological noise may therefore be important to predict physio-
logically-realistic control strategies and movements. However, the limited efficiency of
available computational tools to simulate motor behavior in the presence of noise has ham-
pered the use of more accurate models of musculoskeletal dynamics in stochastic simulations
of movement [10]. Here, we present and test a generalizable computational framework to sim-
ulate the effect of sensorimotor noise on motor control and movement in nonlinear musculo-
skeletal systems.

Accounting for sensorimotor noise in movement simulations is crucial to capture move-
ment variability and sensorimotor feedback modulation. In 1998, Harris and Wolpert mini-
mized endpoint variability in the presence of signal-dependent motor noise to simulate open-
loop controlled reaching and saccadic eye movements [11]. Including signal-dependent motor
noise led to physiologically realistic bell-shaped velocity profiles and the experimentally
observed trade-off between reaching time and reaching accuracy, i.e., Fitts’ law. Although Har-
ris and Wolpert clearly demonstrated the importance of accounting for noise, their stochastic
simulations did not include feedback control. In general, feedback control improves
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performance over open-loop control in the presence of sensorimotor noise [12]. Therefore,
Todorov and Jordan introduced feedback control in stochastic simulations of movement and
tested optimal feedback control (OFC) as a theory of motor coordination [3,13]. The most
important prediction of optimal feedback control is arguably the minimum intervention prin-
ciple: “deviations from the average trajectory are only corrected when they interfere with the
task goal” [13]. Optimal feedback control has since explained many kinematic and control fea-
tures of reaching and standing balance [14–17]. However, these studies mostly used linearized
models that do not account for critical nonlinearities in movement.

Some studies have accounted for nonlinearities in musculoskeletal dynamics but relied on
limiting assumptions on the control policy. For example, Li and Todorov [18–20] introduced
iterative linear-quadratic-Gaussian control (iLQG), which solves the nonlinear stochastic opti-
mal control problem by iteratively updating feedforward and feedback controls based on a
local linearization of the dynamics around the current state trajectory. However, iLQG
requires the control law to be time-varying, which might not be physiologically realistic. In
addition, it requires a quadratic cost function and it requires specifying movement accuracy
by a penalty term in the cost function [18,21]. As a result, the weights in the cost function need
to be hand-tuned to achieve realistic results and an obligatory trade-off between accuracy and
effort that may not necessarily be physiological emerges. Stochastic optimal control simula-
tions of movement based on nonlinear models have remained rare, possibly because of their
high computational cost.

Recent computational advances have drastically improved the efficiency of deterministic
movement simulations enabling the use of complex and nonlinear musculoskeletal models
and their application to stochastic movement simulations opens perspectives to further
improve the realism of movement simulations. The introduction of direct collocation and
automatic differentiation greatly speeded up simulating deterministic movements enabling the
use of complex and nonlinear musculoskeletal models. In deterministic simulations, optimal
control can be described by open-loop control trajectories. Therefore, these simulations can be
formulated as trajectory optimization problems [5]. The introduction of direct collocation
approaches to solve trajectory optimization problems improved computational efficiency com-
pared to shooting methods by decreasing the sensitivity of the optimization objective to the
decision variables [22]. Shooting methods use time-marching integration to evaluate the cost
and constraint functions based on the current guess of the initial state and controls. Due to
time-marching integration over the entire movement horizon, shooting methods have poor
convergence and long computation times when the dynamics are stiff, as in many biological
movements. In contrast to direct shooting, direct collocation eliminates the need for time-
marching integration by adding the parameterized states to the decision variables and by add-
ing the discretized dynamic equations as constraints to the optimization problem. Computa-
tional efficiency has further been improved by implicit formulations of the system dynamics to
improve the numerical condition of the optimization problem [23] and the use of automatic
differentiation to compute derivative information needed by gradient-based solvers [24].
These methodological advances have enabled rapid predictive simulations based on complex
musculoskeletal models [2,6], which have been applied to test optimality principles underlying
human movement [4] and to study the effect of changes in the musculoskeletal system on
movement [6,25].

Computational advances that have improved the efficiency of deterministic simulations
have been leveraged to stochastic optimal control simulations by reformulating stochastic sim-
ulations as approximate deterministic simulations. This approximate reformulation was origi-
nally applied for control in robotics and engineering [26]. Houska et al. [26,27] and Gillis et al.
[28] proposed to transform the stochastic optimal control problem into an approximate
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augmented deterministic optimal control problem by approximating the generally non-Gauss-
ian state trajectory distribution by a Gaussian state trajectory that can be described by the
mean state trajectory and the state covariance trajectory. The propagation of the covariance
matrix is described by Lyaponuv differential equations, which assume local invariance of the
system dynamics around the mean trajectory similar to the Extended Kalman Filter [29]. Ber-
ret et al. have applied this approach to simulations of reaching [30]. However, they only con-
sidered feedforward control [30] or added feedback control to the pre-computed optimal
feedforward control in a post-processing step using the LQG framework [31]. This does not
seem to yield an optimal solution as during the optimization of the feedforward control policy,
the presence of feedback is neglected. It is therefore likely that co-optimizing feedforward and
feedback contributions might result in better and more realistic control policies.

Here, we apply the approach based on approximating stochastic simulations as determin-
istic simulations to simultaneously compute feedforward and feedback contributions to con-
trol of nonlinear musculoskeletal dynamics in the presence of sensorimotor noise. We present
a general formulation of the approach that is applicable to a broad range of movements,
described by nonlinear dynamics, corrupted by additive and/or signal-dependent Gaussian
noise, and controlled by time-varying feedback laws with any temporal and structural design,
any type of cost function. Finally, our approach allows formulating movement accuracy as a
task constraint, which may be more representative of the actual task-level goal.

We first show how our stochastic optimal control framework enables the prediction of
interactions between muscle co-contraction and sensorimotor feedback, using human stand-
ing balance control as an example. While OFC has been used to predict sensorimotor feedback
control of balance, individual muscles and muscle dynamics have not been modeled and it is
therefore unclear whether OFC also predicts muscle co-contraction as a complementary feed-
forward control strategy. Specifically, OFC simulations based on joint torque-driven mechani-
cal models capture modulation of feedback control with changes in sensory acuity [32,33], i.e.
sensory reweighting. We hypothesized that OFC simulations will also capture modulation of
feedforward co-contraction when history dependent muscle properties such as short-range-
stiffness (SRS) [34–36] are taken into account. We simulated perturbed (platform rotations
and translations) standing balance based on a multi-sensory, muscle-driven model with both
feedforward and feedback control in the presence of sensory and motor noise. We demon-
strate that our stochastic optimal control framework predicts contributions of both feedfor-
ward, i.e. muscle co-contraction, and feedback control during standing balance that depend
on movement task, sensory acuity and muscle properties.

We next demonstrate that the stochastic optimal control framework can predict perturbed
reach trajectories as well as the underlying control policy consisting of feedforward and feed-
back contributions when nonlinear musculoskeletal dynamics are considered. Prior OFC sim-
ulations based on a point-mass model capture changes in nominal reach trajectories and
feedback control depending on target shape and the presence of obstacles (i.e. task goal) [8].
However, perturbed reach trajectories deviated considerably from experimental observations.
We hypothesized that more accurate representations of nonlinear multi-joint and muscle
mechanics would result in more realistic reach trajectories. We simulated reaching while alter-
ing target shape and stability of the environment (i.e. divergent force-field) [37,38]. We dem-
onstrate that our stochastic optimal control framework using a muscle-driven arm model
results in improved predictions of reach kinematics in perturbed conditions as well as detailed
predictions of sensorimotor feedback and muscle level control. In addition, our model pre-
dicted muscle activity in response to perturbations, which was not possible with previous sim-
ulation models, in agreement with experimental data [8].

PLOS COMPUTATIONAL BIOLOGY Stochastic simulations of neuromusculoskeletalmodels in the presence of noise

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009338 June 8, 2022 4 / 30

https://doi.org/10.1371/journal.pcbi.1009338


Results
Approximate stochastic optimal control framework
We simulated movement trajectories and movement variability based on nonlinear musculo-
skeletal dynamics driven by optimal feedforward and feedback control policies in the presence
of sensory and motor noise. For each specified task, optimal control policies were computed
by minimizing the expected effort in the presence of noise. Effort was defined as the time inte-
gral of the sum of muscle excitations squared [39], leading to the following general stochastic
optimal control problem:

min
eff ðtÞ;KðtÞ

: J ¼ E½
Ztfinal

tstart

eTðtÞeðtÞdt�

subject to : _xðtÞ ¼ f ðxðtÞ; eðtÞ;wmÞ;

gðxðtÞ; eðtÞÞ � 0

eðtÞ ¼ ef f ðtÞ þ KðtÞ � yfbðxðtÞ;wsÞ

with E[] the expected value function, x(t) the stochastic state trajectory, including joint kine-
matics and muscle activations, e(t) the stochastic muscle excitation trajectories, wm a set of
zero-mean Gaussian motor noise sources. The musculoskeletal dynamics f(x(t),e(t),wm) were
stochastic and nonlinear. To specify different task goals, we imposed task-dependent path con-
straints and bounds g(x(t),e(t)). Muscle excitations e(t) consisted of time varying deterministic
feedforward muscle excitations, eff(t), as well as feedback muscle excitations derived from a lin-
ear feedback law with deterministic time-varying feedback gains K(t) and task-dependent
feedback error signals yfb(x(t), ws). We did not separately model short- and long-latency
reflexes and considered task-level sensory feedback rather than local sensory feedback. Here,
we modeled sensory noise ws as zero-mean Gaussian noise added to the feedback error signal
yfb. These stochastic optimal control problems were approximated by deterministic optimal
control problems and then solved using direct collocation (for details, see Methods). The
deterministic approximation was based on the assumption that the stochastic state trajectories
could be modelled by a Gaussian distribution and could thus be described by their expected
value (mean trajectory) and variance (state covariance matrix).

Contributions of muscle co-contraction and feedback control in eyes-closed
perturbed standing balance depend on movement task, sensory acuity and
muscle properties
We first demonstrate that stochastic optimal control can simultaneously predict muscle co-
contraction and sensorimotor feedback contributions to motor coordination, using eyes-
closed perturbed standing balance as an example. Although OFC can capture experimentally
identified modulations of feedback contributions that depend on sensory acuity and perturba-
tion type [33,40–42], it is unclear whether OFC predicts experimentally-observed muscle co-
contraction complementing feedback during perturbed standing balance. To address limita-
tions of prior models, we simulated standing balance with eyes closed using an inverted pen-
dulum model of the body that was driven by a pair of antagonistic ankle muscles that have
activation-dependent impedance (Fig 1A). We further investigated how the predicted muscle
co-contraction depends on the model of muscle mechanical impedance, performing
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Fig 1. A) ROTATIONS. Musculoskeletal and control model. The proprioceptive (relative angle between the body and platform: qp; _qp) and vestibular
(absolute body angle: qv; _qv) cues encode different information that is corrupted by proprioceptive (wp) and vestibular noise (wv). The platform rotations are
modeled by Gaussian noise (wSS) of the platform position (qSS), velocity ( _qSS) and acceleration (€qSS). amuscle are muscle activations; eff,muscle are muscle
feedforward excitations that are constant here; K2x2

p are proprioceptive feedback gains and K2x2
v are vestibular feedback gains. Experiment and simulation.

Experimental data for body sway and feedback gains are from Peterka et al. [32]. RMS body sway, relative experimental proprioceptive feedback gains
k ~Kpropriok

k ~K propriokþk ~K vestkþk ~K visk
and relative simulated proprioceptive feedback gains kKpropriok

kKpropriokþkKvestk
, co-contraction index (CCI) and contribution of expected effort from

feedback to the total expected effort: effortFB
ðeffortFFþeffortFBÞ

for healthy and vestibular loss (VL) subjects with and without short-range-stiffness (SRS) modeled. B)
TRANSLATIONS.Musculoskeletal model. The control model is identical to the model used to simulate the response to rotation perturbations, but in the case
of translation perturbations the relative and absolute body angles are identical and vestibular and proprioceptive cues encode the same information. Platform
translations are modeled by Gaussian noise (wtrans) of the linear platform acceleration (€xSS). Simulation results. Simulation. Same outcome variables as for the
rotation perturbations are shown.

https://doi.org/10.1371/journal.pcbi.1009338.g001
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simulations using both a Hill-type muscle model that accounts for the force-length and force-
velocity properties of muscles [22], and an augmented Hill-type muscle that also accounts for
muscle short-range stiffness that was proportional to muscle activation (see Methods) [43,44].
To model baseline muscle activity during quiet standing, feedforward muscle excitations were
modeled as constants. As in prior studies using torque-driven models of perturbed standing
balance [15,32,45], feedback contributions were modelled as a linear combination of delayed
(first order approximation with time constant of 150ms, see Methods) proprioceptive and ves-
tibular cues, which encode the angle and angular velocity between the body and the platform,
and gravity, respectively (Fig 1A). Since we simulated the eyes-closed condition our model
assumes that no visual information is used for control. Gaussian sensory and motor noise was
added to feedback signals and muscle excitations respectively. In accordance with the litera-
ture, vestibular inputs were more noisy than proprioceptive inputs [46]. We specified the task
of upright standing by imposing a constant mean upright posture and a postural sway within
limits of stability. To elicit a range of feedforward and feedback control policies, we simulated
both random sagittal platform rotation (Fig 1A) and translation (Fig 1B) perturbations of dif-
ferent magnitudes. Co-contraction was quantified by the co-contraction index (CCI) intro-
duced by Rudolph et al. [47]. Comparing solutions for platform rotations and translations
allows sensory feedback and muscle co-contraction contributions to balance control to be dif-
ferentiated as rotation and translation perturbations require different ankle muscle coordina-
tion to maintain equilibrium [48] (Fig 1A and 1B).

For platform rotations, stochastic optimal control predicted changes in postural sway and
sensory reweighting with perturbation magnitude in agreement with experimental observa-
tions in healthy individuals and vestibular loss subjects (Fig 1A–simulations & experiments)
[32,49,50]. In agreement with experimental findings by Peterka for healthy adults [36] (Fig
1A–experiments, healthy) and prior OFC results, body sway in our simulations increased
quasi-linearly with increasing amplitude of platform rotations and saturated at larger ampli-
tudes where the body moved in anti-phase with the platform [32,51,52] (Fig 1A–simulations,
healthy). The simulations predicted sensory reweighting similar to that observed experimen-
tally [32,52] (Fig 1A–experiments, healthy), with increased reliance on vestibular feedback at
higher rotation magnitudes (Fig 1A–simulations, healthy). Because proprioceptive informa-
tion was modelled to be more accurate than vestibular information [48], there was a higher
reliance on proprioception and the body moved in-phase with the platform at low rotation
magnitudes. When removing vestibular sensory information to simulate vestibular loss sub-
jects, the simulation predicted a quasi-linear increase in sway with platform rotation amplitude
(Fig 1A–simulations, vestibular loss) consistent with experimental observations [52] (Fig 1A–
experiments, vestibular loss). In the case of vestibular loss, the relative weighting of proprio-
ceptive information was 100% in simulation (Fig 1A–simulations, vestibular loss) and nearly
100% in experiments (Fig 1A–experiments, vestibular loss) throughout platform rotations.
Peterka et al. [52] determined sensory weighting by identification of the feedback gains
~Kproprio;

~Kvest;
~Kvis of a linear model based on collected sway data, with ~Kvest ¼ 0 for vestibular

loss subjects. In this study [52], the identified ~Kvis in the eyes-closed condition were close to
but not exactly 0, explaining the small deviations from 100% proprioceptive weighting in this
condition. In contrast to sway for healthy subjects, sway for vestibular loss subjects was pre-
dicted to follow the platformmotion, as proprioception is the only source of sensory informa-
tion [53]. The model predicted higher total effort in vestibular loss subjects compared to
healthy subjects and loss of balance when simulated sway amplitudes became unrealistic (RMS
sway values larger than 5˚).
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During platform rotations, slightly higher, but still low levels of co-contraction were predicted
for vestibular loss subjects [54] than for healthy controls (Fig 1A–simulations, CCI in healthy with
SRS and VL, model with short-range stiffness). In rotations, increased joint impedance due to co-
contraction opposes the anti-phase movement of the ankle joint that is optimal for upright bal-
ance with minimal effort. However, co-contraction contributes to the strategy of maintaining a
constant joint angle with respect to the platform, the strategy predicted when the reference to
gravity is absent, as in vestibular loss subjects [32,49,55]. Our simulations predicted co-contrac-
tion to increase above a certain perturbation magnitude in the absence of vestibular sensory infor-
mation (Fig 1A–simulations, CCI in VL, model with short-range stiffness). Since all simulated
strategies minimize effort, our simulations predict muscles co-contraction to reduce effort with
respect to using feedback only at high perturbation magnitudes in vestibular loss subjects. How-
ever, as feedback control also increases in the absence of vestibular information, the proportion of
effort due to feedback control is nevertheless higher in vestibular loss than in healthy subjects (Fig
1A–simulations, effort in VL, model with short-range stiffness).

In contrast to rotations, during platform translations stochastic optimal control predicted
similar increases in postural sway with increasing perturbation magnitude in healthy and ves-
tibular loss simulations, also found experimentally [56] (Fig 1B—simulations). As perturbation
magnitude increased, the proportion of proprioceptive feedback used in balance control
decreased, but in contrast to rotations, shifted toward an equal contribution of proprioceptive
and vestibular feedback. In translations¸ both sensory signals encode the same information
but with different uncertainty levels, therefore this shift towards more equal contributions
with increasing perturbation magnitude may be explained by the sensory uncertainty becom-
ing increasingly small in comparison to the kinematic deviations introduced by the perturba-
tions. The decreased contribution of proprioceptive feedback with increasing translation
magnitude has not been tested experimentally and should be considered a model prediction,
allowing further validation of our simulations.

In contrast to rotations, and consistent with experimental findings [57], much larger contri-
butions of muscle co-contraction were predicted with increasing translation perturbation
magnitude in both healthy and vestibular loss subjects (Fig 1A and 1B–simulations, CCI). In
translations, increased joint impedance due to co-contraction reduced body sway, which in
turn reduced the relative effort of feedback corrections as perturbation magnitude increased
(Fig 1B–simulations, effort).

Taken together, stochastic optimal control predicted muscle co-contraction as a comple-
mentary strategy to sensorimotor feedback depending on the mechanical properties of the
muscle, perturbation type and magnitude, and sensory acuity. Muscle co-contraction was only
predicted in the simulations where the Hill-type muscle model was augmented with short-
range-stiffness [43]. Although some amount of muscle co-contraction was predicted in both
rotation and translation perturbations, muscle co-contraction only considerably decreased the
proportion of muscle effort due to feedback control in high-amplitude translation perturba-
tions, where muscle co-contraction helps to maintain upright posture.

Stochastic optimal control of goal-directed reaching predicts experimental
kinematics, movement variability and feedback modulation across
different reaching tasks
In a second set of simulations, we demonstrate that stochastic optimal control using a nonlin-
ear muscle-driven arm model can predict how nominal as well as perturbed reaching trajecto-
ries change as a function of task goals and environmental dynamics. We simulated the three
point-to-point reaching tasks (Fig 2A) described in Nashed et al. [8]: reaching to a circular
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Fig 2. A: Schematic representation of the three reaching tasks and the musculoskeletal and control model. We simulated three different reaching tasks: (1)
reaching towards a small circular target (blue), (2) reaching towards a horizontal bar (red), and (3) reaching towards a circular target in the presence of an
obstacle (green). In all simulations, muscle excitations consist of feedforward and feedback contributions. The feedback controller is driven by the error
between the end-effector kinematics (EE; _EE) and the nominal end-effector kinematics (EEref ;

_EEref ) and is corrupted by sensory noise. Muscle forces are
dependent on muscle activations (amuscle), which are time-delayed muscle excitations, and resulting joint torques are corrupted by motor noise. B:Unperturbed
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target (circle), reaching to a horizontal bar (bar), and reaching to a circular target in the pres-
ence of a narrow obstacle (obstacle) (Fig 2A). Previously these reaching tasks were simulated
using a point-mass model of the arm assuming OFC. To capture nonlinear inter-segment
dynamics, we modeled the arm as a planar two-segment kinematic chain. To enable muscle
activity predictions, the arm model was driven by six Hill-type muscles with rigid tendons con-
sisting of a uni-articular agonist-antagonist pair for the shoulder (posterior and anterior del-
toid) and the elbow (brachialis and lateral triceps), and a bi-articular agonist-antagonist pair
spanning both the elbow and the shoulder (biceps and long triceps) [20]. Net muscle excita-
tions were a sum of time-varying feedforward excitations and delayed (first order approxima-
tion with time constant of 150ms, see Methods) time-varying linear feedback of the end
effector (hand) kinematic error [8,10]. Gaussian sensory noise and motor noise were added to
the feedback signals and joint torques, respectively. The three different tasks were modeled by
constraining the end effector position variability to achieve the task requirements. Optimal
feedforward controls, feedback gains and reference end effector trajectories were computed by
minimizing expected effort during unperturbed reaching, and the resulting optimal control
policies were then used to generate stochastic forward simulations of both unperturbed and
perturbed reaching. Perturbations in the perturbed reaching simulations were modelled as
external torques inducing shoulder and elbow extension (Fig 2C).

Like predictions based on the point-mass model, predictions based on our muscle-driven,
multi-segment arm model were in line with the minimum intervention principle [3,58] where
kinematic deviations are only corrected when they interfere with the task goal: horizontal devi-
ations are left uncorrected in the bar condition. All our optimal control policies met the
required reaching end-point accuracy, for both perturbed and unperturbed reaching, as
imposed for the different tasks in the stochastic optimal control problem formulations and in
accordance with experimental data [8] (Fig 2B, reaching accuracy).

In contrast to point mass simulations, our non-linear muscle-driven model predicted both
unperturbed and perturbed reaching trajectories that were more similar to experimental find-
ings [8]. In unperturbed reaches, an important improvement over predictions from a point
mass model are the slightly curved mean trajectories in the circle and bar task, as have been
experimentally observed [11] (Fig 2B, compare colored with black and grey trajectories). In
the obstacle task the reach trajectories are similar for the point mass and non-linear muscle
driven simulations. Similar to the experiments, the non-linear muscle driven simulations show
less curvature for the obstacle task compared to the circle task as the second part of the motion
the hand is constrained to be on a straight vertical line in the simulation.

Perturbed reach trajectories using our multi-segment muscle-driven arm model were in
better agreement with experimental observations than perturbed reach trajectories using a
point mass model. In agreement with experiments, and in contrast to point mass models, our
model predicted late and steep corrections in the kinematic trajectory for the circle task (Fig
2B colored lines). Our model similarly predicted later corrections occurring over a shorter
reaching distance than the point mass model for the obstacle task. Yet, these corrections hap-
pened sooner than experimentally observed. For the bar task our model did not predict the
overshoot of the hand in the vertical direction that was observed in experiments (Fig 2B per-
turbed trajectories, red and black lines). The early, symmetric corrections predicted by the

and perturbed reaching trajectories predicted by our model (colored), predicted with a point-mass model (grey) and measured (black). End-point accuracy
simulated with our model for the three different reaching tasks. Ellipses denote 95% confidence regions. C: Perturbations applied during the perturbed
reaching movements.D: Simulated muscle-level corrective actions that result from optimal feedback in response to unexpected extension perturbations. For
elbow and shoulder flexor muscles (anterior deltoid, biceps) we show experimental EMG data from Nashed et al. [9]. E: Average simulated muscle co-
contraction level for the shoulder and elbow joints for the three reaching tasks.

https://doi.org/10.1371/journal.pcbi.1009338.g002
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point-mass simulations are likely due to the decoupled control of the vertical and horizontal
degree of freedom. Given the similarity in the underlying control hypothesis between our sim-
ulations and the point-mass simulations of Nashed et al. [8], the improved agreement with
experimentally observed reach trajectories indicates the importance of accounting for nonlin-
ear dynamics when predicting reaching movements [58,59].

A novel aspect of our model is that muscle activations in response to perturbations
could also be predicted and compared to available EMG recordings. Simulated corrective
muscle activations were similar to recordings in the anterior deltoid and brachialis, with
larger corrections in the ‘circle’ than in the ‘bar’ condition (Fig 2D, blue vs red). Simulated
corrective muscle activations in the ‘obstacle’ (Fig 2D, green) condition were larger and
peaked earlier than those in the circle and bar conditions. As EMG data was only available
for the anterior deltoid and brachialis in the circle and bar conditions, simulated muscle
activity of the antagonistic muscles and in the bar condition remains to be validated
experimentally.

We found only limited muscle co-contraction with an average co-contraction index
that was always below 0.006 (where 0 indicates no co-contraction and 2 indicates maximal
co-contraction). The mean muscle co-contraction index was similar across task conditions
for the uni-articular shoulder muscles and bi-articular muscles (Fig 2E). For the uni-artic-
ular elbow muscles co-contraction increased in the obstacle task. This was observed exper-
imentally as well [8]. Note that we did not include short-range stiffness in our muscle
model, which was necessary in the balance simulations to predict co-contraction, since
short-range-stiffness contributions are negligible during movements over large ranges of
motion [46]. The increase in co-contraction observed in the ‘obstacle’ condition will there-
fore have a small effect on joint impedance, suggesting that it follows from the altered feed-
forward trajectory needed to avoid the obstacle rather than from a shift towards feedback
control to increase joint impedance.

Stiffness is modulated during goal-directed reaching in a divergent force
field through changes in feedback but not feedforward control
To explore how the dynamics of the environment influences predicted contributions of muscle
co-contraction and feedback control, we simulated reaching to a circular target in the presence
of a divergent force field (Fig 3). Although co-contraction has been observed during reaching
in a force field, the relative contribution of muscle co-contraction and sensorimotor feedback
control to increased endpoint stiffness is not known [38,60,61]. We computed end-point stiff-
ness as is done experimentally [62], i.e., by perturbing the hand in a specific direction in simu-
lation and by dividing the resulting change in endpoint force by endpoint displacement at the
end of a short-time interval (150ms).

In agreement with experimental data [37,61], simulated reaching accuracies in a force field
were similar to reaching accuracies in the absence of the force field (Fig 3A). Our multi-seg-
ment, muscle driven model predicted straighter reaching trajectories in a divergent force field
than in the absence of a force field, which can be explained by the additional effort required to
counteract the force field when not on a straight line (Fig 3A). Next, after a perturbation, cor-
rections were performed more rapidly as the hand was moved sooner towards the nominal tra-
jectory in the presence of a force field than in the absence of a force field. This strategy reduces
effort compared to slower corrections in the presence of the force field.

Similar to the experiments performed by Burdet et al. [37] and Franklin et al. [38] our sto-
chastic optimal control model predicted increased stiffness in the horizontal direction but not
in the reaching direction in the presence of a horizontal divergent force field of 200 N/m (Fig
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3C). The simulated orientation of the stiffness ellipses, with main axes tilted with respect to the
horizontal and reaching directions, in both the presence and absence of a force field is in
agreement with experimental observations [37,38] but differs from simulations based on a
point-mass model, where the main axes of the stiffness ellipse are aligned with respect to the
horizontal and reaching directions respectively [30].

In our model, the optimal strategy to increase stiffness in the presence of a divergent force
field was to upregulate feedback control to all muscles without increasing co-contraction,
while in experiments co-contraction increased significantly [38,58,60,61] (Fig 3B and 3D). The
small increase in simulated co-contraction around the elbow in the divergent force field (Fig
3D) likely resulted from small changes in the mean kinematic trajectory and hence feedfor-
ward excitations when the force field was applied.

The simulated corrective activity of all muscles in response to perturbations was higher
when reaching in a divergent force field than in a stable environment (Fig 3B). These pre-
dictions on corrective muscle activity in environments with different stability as well as
perturbed reach trajectories in a divergent force field remain to be validated in future
experiments.

Fig 3. A:Unperturbed and perturbed reaching trajectories predicted in the presence (‘force field’) and absence (‘circle’) of a 200N/m divergent force field.
Simulated end-point accuracy ellipses denote 95% confidence regions. B: Simulated muscle-level corrective actions that result from optimal feedback in
response to unexpected extension perturbations. C:Horizontal and vertical end-effector stiffness throughout the reaching movement for the optimal
controllers in the absence and presence of the divergent force field, and for the other reaching tasks (in absence of the force field).D: Average muscle co-
contraction level for the uni-articular shoulder and elbow muscles and the bi-articular muscles in the presence and absence of the force field while reaching to
the circle.

https://doi.org/10.1371/journal.pcbi.1009338.g003
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Discussion
Our major contribution was to apply a recently developed efficient approximate stochastic
optimal control framework to simulations of motion enabling us to predict, for the first time,
realistic movement trajectories and muscle coordination patterns emerging from nonlinear
musculoskeletal dynamics, feedforward, and feedback neural control in the presence of noise.
We used a generally applicable method to approximate the true stochastic optimal control
problems by deterministic optimal control problems, which could be solved efficiently. The
use of direct collocation and gradient-based optimization to solve the approximate determin-
istic problems facilitated the use of constraints, allowing us to distinguish effort optimization
and task-level goals, such as accuracy, rather than to trade them off in the cost function. The
framework allowed us to considerably extend the predictions of stochastic optimal control as a
theory of motor coordination to relative contributions of feedforward and feedback control of
non-linear musculoskeletal systems. The use of nonlinear mechanical models that captured
multiple joints and muscles enabled detailed comparison to experimental kinematic and EMG
data. In particular, the addition of muscle models in stochastic optimal control simulations,
demonstrated that muscle co-contraction can—in the presence of uncertainty in sensory infor-
mation—minimize muscle effort required for a task. In balance control simulations, we dem-
onstrated that benefits of increased impedance from muscle co-contraction depend on the
intrinsic properties of the muscle and the interaction with delayed sensorimotor feedback
mechanisms. Similarly, in reaching simulations, we demonstrated that multi-segment muscu-
loskeletal dynamics are key to predicting complex perturbed and unperturbed reach trajecto-
ries under different task conditions, resulting from interactions between feedforward and
feedback sensorimotor control mechanisms. Taken together, our results showed that complex
features of motor control and movement that were not captured by previous optimal control
simulations can emerge from nonlinear stochastic optimal control processes. As such, our
approximate stochastic optimal control framework provides a valuable tool to providing
insight in neuromechanics of normal and possibly impaired movement that incorporates the
complexities of the neuromusculoskeletal system and the effects of physiological noise.

Implementing a direct collocation approach to the solution of nonlinear stochastic optimal
control problems increased computational efficiency and modelling flexibility, allowing
neuro-musculoskeletal model complexity, and thereby fidelity, to be increased. Most prior
methods have only allowed efficient solutions of linear, but not nonlinear, stochastic optimal
control problems [7–9,63], and were therefore not capable of predicting many important
movement features. Stochastic optimal control simulations based on nonlinear dynamics have
previously been performed using iterative Linear-Quadratic-Gaussian (iLQG) methods for
reaching tasks [18]. However, such methods require a time-marching integration of the system
dynamics under the current guess of the control law at each iteration to evaluate the nominal
controls and state trajectories. Such shooting methods might be less suitable than collocation
methods for movement tasks with less stable system dynamics, such as standing or walking.
Further, the LQG approach assumes a quadratic cost function and a linear and continuously
time-varying feedback control law, which might not always represent the biological system.
Finally, LQG methods require constraints on the mean state and state covariance (e.g. limiting
the standard deviation of the end-point position of the hand in a reaching task) to be imposed
through penalty terms in the cost function, whose weights require tedious tuning. In contrast,
the approach based on collocation and gradient-based optimization we used here allows
imposing such constraints in a direct and intuitive manner. A few previous studies [64,65]
have relied on direct collocation methods as well to solve stochastic optimal control problems
but they evaluated the stochastic cost function and path constraints based on the simulation of
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a limited number of noisy episodes rather than describing the state distribution. For nonlinear
systems with a limited number of degrees of freedom, such a sampling based approach appears
tractable. However, with increasing degrees of freedom, the number of noisy episodes that is
required to capture the underlying stochastic dynamics might become computationally intrac-
table. Simulations based on too few episodes might result in problematic unstable and sub-
optimal solutions. We overcame the limitations of prior methods by applying a recently pro-
posed method to approximate stochastic optimal control problems by deterministic optimal
control problems [26,27]. The proposed approach is based on the assumption that the state
distribution can be approximated by a Gaussian distribution and that the propagation of the
state covariance can be described by the Lyapunov equation [66]. This framework is applicable
to optimal control problem formulations with any cost function design while feedback laws
with any temporal and structural design are possible. Here, we used it to simultaneously solve
for feedforward and feedback control laws.

Our novel framework allows task-goals to be specified as constraints allowing us to evaluate
the minimal effort solution for a given task. It is still debated to what extent optimality assump-
tions capture human movement and what the optimality criteria underlying human move-
ment are [67]. Previous stochastic optimal control simulations have typically been based on a
multi-objective cost function reflecting a trade off in effort and accuracy [3,11,33]. In such sim-
ulations, the weights in the cost function must be tuned to produce simulations that match the
desired accuracy. By using constraints to impose accuracy requirements and other task goals,
task requirements can be separated from optimality principles that govern task execution
within these requirements. We reproduced key features of movement kinematics and control
by using expected effort as the sole performance criterion. Not only does the approximate sto-
chastic optimal control framework remove the need of building multi-objective cost functions,
which might require considerable user intuition, minimizing effort within the solution space
allowed by the task requirements might also be more representative of how humans approach
a task. Rather than minimizing variability, humans might pick a control strategy that is ‘good
enough’ [68]. For example, in standing a ‘good enough’ control strategy prevents a fall and for
reaching a ‘good enough’ control strategy brings the hand in the target. The framework, based
on direct collocation, can efficiently handle constraints offering flexibility in formulating the
optimal control problem by for example imposing control bounds and constraining kinematic
variability throughout movement execution in agreement with task requirements. Our
approach thus allowed us to further test effort minimization as the optimality criterion under-
lying human movement.

Our stochastic optimal control framework predicted co-contraction as a minimal effort
strategy during perturbed standing balance, suggesting that a combination of co-contraction
and feedback corrections is energetically more efficient than feedback corrections only. Our
simulations suggest that muscle co-contraction might be a minimal effort strategy to achieve
movement goals whereas it has often been seen as an energetically costly strategy to maximize
accuracy. Co-contraction reduces effort when task performance benefits from increased joint
impedance and activation-dependent muscle properties allow to increase intrinsic mechanical
impedance at reasonable costs. This seems to be the case in healthy subjects for translational
but not rotational perturbations and in vestibular loss subjects for both translational and rota-
tional perturbations but only when muscle short-range stiffness was taken into account. Prior
models also predicted feedback modulation with changing sensory acuity, but did not include
muscles that allowed for co-contraction as a complementary strategy [15,45]. Modeling
assumptions might have influenced the simulated levels of co-contraction in standing balance
control. We used an all or nothing approach to model short-range-stiffness whereas short-
range-stiffness disappears when muscle stretch exceeds a certain threshold [44]. Therefore,
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short-range-stiffness might only contribute during low amplitude sway up to 3˚ [35,44], and
we might have overestimated its contribution when platform perturbations were high enough
to induce large sway. Similarly, we might have overestimated contributions from co-contrac-
tion by modeling rigid tendon, especially when accounting for short-range stiffness (see also
S1 Text).

Muscle co-contraction has been observed experimentally during reaching [69], espe-
cially in a divergent force field [58,60,61], but was not predicted by our stochastic optimal
control simulations. Berret et al. only considered feedforward control in their simulations
of reaching and found higher levels of co-contraction [30] as in the absence of feedback
control, co-contraction is the only mechanism to increase joint impedance and hence
robustness against perturbations during reaching. Our simulations suggest that muscle co-
contraction is an energetically costly strategy when feedback is present resulting in very
low simulated levels of co-contraction. Hence, both the simulations of Berret et al. [30]
and our simulations are in conflict with the experimental observation of both co-contrac-
tion and feedback corrections during reaching. We might have failed to find co-contrac-
tion in our simulations because our framework does not allow predictions of the agonist-
antagonist dual control strategy depending on muscle co-contraction [10]. By co-contract-
ing antagonistic muscles, it is possible to increase agonist activity and decrease antagonist
activity simultaneously yielding a more efficient response to a perturbation. Although our
approach to stochastic optimal control accounts for nonlinear state dynamics, it was still
based on a linear approximation around the mean state trajectory to propagate the state
covariance matrix. An important nonlinearity arises from muscle activity being bound
between zero and one and hence, reductions in muscle activity are only possible when
muscle activity is larger than zero. Yet this nonlinearity is not reflected in our approxima-
tion of the state covariance dynamics, which resulted in predicted reductions in muscle
excitations even when this would result in muscle excitations becoming smaller than zero.
Hence, there was no need to increase baseline activity in our simulations to exploit the
agonist-antagonist dual control strategy, which likely resulted in overly large contributions
of this strategy as they came at no cost. To further improve the realism of our simulations,
we thus need to more accurately describe the nonlinearities in the dynamics of the state
covariance.

Several other modeling assumptions might have influenced the simulated levels of co-con-
traction. First, we did not model that co-contraction increases short-latency reflexes through
gain scaling [70,71], thereby underestimating the contribution of co-contraction to reflexes.
Second, due to the first order approximation to model feedback delays, sensory information–
although attenuated—is available immediately. This might have increased the efficiency of
feedback corrections, which in turn might have reduced the need for muscle co-contraction to
increase joint impedance and provide instantaneous resistance against perturbations. Note,
however, that the presence of sensorimotor noise prevented simulated feedback gains and
therefore ‘early’ feedback contributions from becoming too large. Including an exact delay
within the framework is important future work, and approximating delays by a low-pass filter
must be done with caution when drawing conclusions. Third, feedback gains were uncon-
strained in how they could change as a function of time. Such infinite bandwidth is probably
unrealistic and more realistic models of control dynamics might reduce the efficiency of feed-
back control and thereby increase simulated levels of co-contraction. Although the level of co-
contraction might be sensitive to each of the above modeling assumptions, our simulations
that simultaneously solved for optimal feedforward and feedback control contributions dem-
onstrated that both muscle co-contraction and feedback gains varied as a function of the task,
mechanical properties of the muscles, and sensory acuity.
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Amajor contribution of our work was to create a framework for predicting how stochastic
optimal control principles apply at the level of individual joints and muscles, which is difficult
to impossible with currently available tools. Generating simulations that predict execution-
level physiological variables that can be compared to experimental measures requires the sub-
systems, i.e. joints and muscles, from which those measures are obtained to be modeled. As
such the ability of stochastic optimal control to predict movement cannot be accurately vali-
dated using simple models. While it is known that using different levels of detail to represent
the musculoskeletal dynamics leads to different simulated responses to perturbations if motor
commands remained unchanged [72], optimal control predictions can inform us on how the
nervous system can exploit the nonlinear dynamics of the musculoskeletal system. For exam-
ple, our two-segment, muscle-driven arm model yielded more realistic reach trajectories when
reaching to different targets, when compared to prior predictions based on a point mass [8].
We further explored the sensitivity of predicted reach trajectories to the presence of bi-articu-
lar muscles and muscle properties (see S1 Text for details). Interestingly, simulated reach tra-
jectories were robust against the removal of bi-articular muscles but sensitive to how mono-
articular muscles were modeled. Using an alternative, physiologically plausible set of muscle
properties yielded perturbed reach trajectories in the ‘bar’ condition that captured the experi-
mentally observed overshoot. However, the overshoot was also predicted for perturbed reach
trajectories in the ‘circle’ condition, where it was not observed experimentally. These explor-
atory results demonstrate both the potential of our framework to explore the effect of musculo-
skeletal properties on (perturbed) movement and the importance of accurate musculoskeletal
models.

Simulations of endpoint stiffness in an unstable force field show, similar to experimen-
tal observations [58,60], that stiffness is modulated depending on the environment and
that the orientation of the main axes of the stiffness ellipses are tilted with respect to the
reaching direction as a result of musculoskeletal dynamics. Berret et al. [31] combined a
similar musculoskeletal model with a different control strategy, i.e. feedforward control in
the absence of feedback control, and found a similar tilt of the stiffness ellipses, suggesting
that musculoskeletal dynamics is a determining factor. These examples demonstrate how
stochastic optimal control applied to muscle-driven models can be used to interpret com-
plex motor coordination at the muscle level and to study control of redundant sets of mus-
cles in the presence of noise.

Leveraging computational advances from deterministic movement simulations to
enable predictions for stochastic movement simulations may yield much insight into both
normal and pathological movement control, as well as human-robot interactions. Under
the assumption of stochastic optimal control, our movement predictions became more
realistic when modelling neuro-musculoskeletal dynamics in more detail. Moving beyond
deterministic simulations may enable coupled changes in complex, whole body movement
and its neural control to be studied in both healthy and impaired movement. It is critical
to consider interactions of feedforward and feedback neural control mechanisms with
musculoskeletal mechanics in a highly redundant space of feasible neuromusculoskeletal
solutions for movement, particularly in the presence of noise. Optimal control processes
may also explain compensatory changes in neural control of movement in impaired motor
control [73]. Moreover, the role of nonlinear musculoskeletal dynamics has been recently
demonstrated to play a significant role in impaired motor control such as in spasticity [6].
Further, movement variability might complicate the control and design of exoskeletons
and other assistive devices. Incorporating uncertainty and movement variability in simula-
tions that are often used to generate and test ideas before implementing these in reality,
could facilitate the design process of assistive devices.
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Methods
Approximating the stochastic optimal control problem by a deterministic
optimal control problem
We formulate simulations of movement in the presence of noise as stochastic optimal control
problems. The system dynamics are stochastic: _xðtÞ ¼ f ðxðtÞ; eðtÞ;wsysÞ; with x the state trajec-
tories, e the control trajectories and wsys a set of stochastic disturbances with zero-mean Gauss-
ian distribution (noise) acting on the system. The control trajectories e(t) are determined by
the control policy:

eðtÞ ¼ eff ðtÞ þ KðtÞ � yfbðxðtÞ;wpolicyÞ;

which consists of a deterministic feedforward term eff(t) and a linear feedback term with the
deterministic feedback matrix K(t) that is multiplied with the feedback signal yfb(x(t), wpolicy).
wpolicy is a set of stochastic disturbances, with a zero-mean Gaussian distribution, acting within
the control policy. Note that when K(t) is non-zero, the control trajectories e(t) are stochastic,
and depend on the state.

To solve the stochastic optimal control problems, we approximate the stochastic state tra-
jectories, which are in general non-normally distributed, by normally distributed trajectories.
As a result, we can describe the stochastic state trajectory by the mean state trajectory xmean(t)
and state covariance trajectory P(t). The dynamics of the mean state can be described by a
deterministic approximation of the stochastic dynamics obtained by setting the disturbances
to their mean value, which is zero (w = [wsys, wpolicy] = 0):

_xmeanðtÞ ¼ f ðxmeanðtÞ; eðtÞ;w ¼ 0Þ: ð1Þ

The dynamics of the state covariance can be described by the continuous Lyapunov differ-
ential equations based on a local first-order approximation of the nonlinear system dynamics
around the mean state, corresponding to the propagation rules used in the extended Kalman
Filter ([29,74]):

_PðtÞ ¼ AðtÞPðtÞ þ PðtÞAðtÞT þ CðtÞS0wCðtÞ
T

ð2Þ

AðtÞ ¼
@f
@x
ðt; xðtÞ; eðtÞ;wÞ

� �

xðtÞ¼xmeanðtÞ

ð3Þ

CðtÞ ¼
@f
@w
ðt; xðtÞ; eðtÞ;wÞ

� �

xðtÞ¼xmeanðtÞ

ð4Þ

with S0w the continuous time covariance matrix describing the noise sources. Eqs (1–4) form a
deterministic approximation of the stochastic dynamics. Similarly, we can approximate the
stochastic constraint functions g(x(t)) by a normal distribution with mean μg(x) = g(xmean), and

standard deviation sgðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g
@x PðtÞ

@g
@x

T
q

. Using this approach, we can transform the stochastic
optimal control problem into an approximate deterministic optimal control problem:

min
eff ðtÞ;KðtÞ

R tfinal
tstart

JcostðxmeanðtÞ; eff ðtÞ;KðtÞ; PðtÞÞdt cost ð5Þ

subject to _xmeanðtÞ ¼ f ðxmeanðtÞ; eðtÞ;w ¼ 0Þ mean state dynamics ð6Þ
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_PðtÞ ¼ AðtÞPðtÞ þ PðtÞAðtÞT þ CðtÞS0wCðtÞ
T covariance dynamics ð7Þ

giðxmeanðtÞ; uðtÞÞ þ gi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@gi
@x

PðtÞ
@gTi
@x

r

� 0 i ¼ 1; . . . ng path constraints ð8Þ

with γi a parameter determining the probability that the state trajectory fulfills the constraint
and ng the number of path constraints. Given the Gaussian approximation of the state distribu-
tion, γi would need to be infinitely large to impose the constraint over the whole distribution.
In practice, we choose finite values for γi, where the chance of fulfilling the constraints is 95%
when γi = 2, and 99.7% when γi = 3.

We solve the approximate deterministic optimal control problems using direct collocation
with a trapezoidal integration scheme and mesh intervals of 10ms and solve the resulting large,
but sparse nonlinear programming problems (NLP) with IPOPT [75]. We formulate all
dynamics implicitly (details in S1 Text) to improve the numerical condition of the NLP
[6,23,76]. We use CasADi [77] to perform automatic differentiation, which improves the accu-
racy of the derivative computations and might reduce the number of operations to compute
gradients through use of its reverse mode [24]. For details on the numerical implementation of
the optimal control problems, we refer to S1 Text. The code for simulating the presented mod-
els is publicly available at: https://github.com/tomvanwouwe1992/SOC_Paper.

Stochastic optimal control simulations of movement
We applied our stochastic optimal control framework to two fundamental movements that
have been studied extensively: standing balance and goal-directed reaching. An overview of
the musculoskeletal and motor control models is provided in Figs 1 and 2. In general, we
solved for both feedforward (i.e., open-loop) and feedback components (i.e. feedback gains) of
the control law to perform the prescribed movement task robustly with minimal expected
effort. For standing balance, we imposed task robustness by requiring the solution to be mar-
ginally stable, i.e. the state covariance was constant. For reaching, we imposed the required
accuracy of the reaching movement depending on the target shape.

Standing balance
We first give a general description of the optimal control problem, simulations and outcome
measures. Dynamic equations and model parameters are described in more detail below.

General description of standing balance simulations and outcome
measures
Wemodeled standing in the presence of platform perturbations based on an inverted pendu-
lum (IP) model (mass: 70kg, length: 1m) linked to a rotatable and translational platform (Fig
1). Two antagonistic Hill-type muscles with rigid tendons actuated the ankle joint, i.e., the
joint connecting the pendulum to the platform. The muscle properties (maximal isometric
force FISO, tendon slack length lsT , optimal fiber length loM, optimal pennation angle α, damping
coefficient β; described in Table 1) were taken from the soleus and tibialis anterior muscle of
the OpenSim3.3 gait10dof18musc model [78]. Input to the Hill-type muscles were muscle acti-
vations (aSOL, aTA). Activations resulted from excitations through first-order dynamics with a
time constant (τ) of 150ms lumping together sensory and motor delays [79]. These muscle
excitations resulted from excitations that were composed of feedforward (eSOL,ff, eTA,ff) and
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feedback excitations (eSOL,fb, eTA,fb = K�yfb). The feedback excitations were a linear combina-
tion of the angle and angular velocity of the inverted pendulum with respect to the gravita-
tional field, representing vestibular information, and of the angle and angular velocity of the
inverted pendulum with respect to the platform, representing proprioceptive information. All
feedback gains were constant in time. The policy noise (wpolicy) consisted of Gaussian vestibu-
lar (wv;q;wv; _q) and proprioceptive noise (wp;q;wp; _q) with respective variance s2

v;q; s
2
v; _q and

s2
p;q; s

2
p; _q that was added to both the vestibular and proprioceptive cues. Motor noise, which

was part of the system noise (wsys), consisted of additive motor noise (wSOL, wTA) with variance
(s2

SOL; s
2
TA) that corrupted the muscle activations. All sensory and motor noise sources were

independent and values for the noise source variances are provided in Table 2.
We modeled random rotation and translation perturbations through adding additional

sources of system noise (wsys). The random platform angular position and velocity were mod-
eled as zero mean Gaussian noise ðwSS;q;wSS; _qÞ with constant variance (s2

SS;q; s
2
SS; _q). We intro-

duce the subscript ‘ss’ to indicate the variables related to the platform or support-surface and
to avoid confusion with subscript ‘p’ for proprioception. To simulate random translation per-
turbations, we only needed to describe the platform translational acceleration as zero mean
Gaussian noise (wSS,trans) with variance (s2

SS;trans). We could ignore the random translational
position and velocity of the platform as these affect neither the dynamics of the pendulum nor
the proprioceptive and vestibular information (relative and absolute pendulum angles). Values
for the noise source variances are provided in Table 2.

The task-goal during standing was to maintain a stable upright posture (marginal stability).
Postural marginal stability, in the presence of noise, was modeled by constraining the mean
angle of the pendulum to be upright with zero angular velocity, the mean state derivatives to
be zero (mean pendulum position and velocity and muscle activations are constant in time),
and the state covariance derivatives to be zero: _P ¼ 0 (state covariance matrix was constant in
time). We thus solved for a single state, rather than a state trajectory, and the corresponding
control policy to maintain a stable upright posture in the presence of noise. We solved for the
constant feedforward muscle excitations and feedback gains given the described constraints
while minimizing expected effort. Expected effort was modeled as the expected value of the
sum of muscle excitations squared:

E½ðeSOL;ff þ eSOL;fbÞ
2
þ ðeTA;ff þ eTA;fbÞ

2
� ð9Þ

which is equivalent to

eSOL;ff
2 þ eTA;ff

2 þ Var½eSOL;fb� þ Var½eTA;fb� ð10Þ

since the deterministic feedforward terms are uncorrelated to the stochastic feedback terms

Table 1. Muscle properties of model for perturbed standing simulations.

Muscle properties

soleus tibialis anterior

FISO[N] 5137 3000

lsT ½m� 0.2514 0.2228

loM½m� 0.0528 0.1028

α [rad] 0.4364 0.0873
β 0.01 0.01

https://doi.org/10.1371/journal.pcbi.1009338.t001
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and because the stochastic feedback terms (eSOL,fb, eTA,fb) have an expected value of zero (a der-
ivation can be found in the S1 Text).

We performed simulations based on four different models. We performed simulations with
the full feedback model, representing healthy subjects, and simulations with only propriocep-
tive feedback, representing vestibular loss subjects. We performed these simulations based on
two muscle models, a Hill-type muscle model and a Hill-type model that was extended with
short-range-stiffness (SRS). Short-range stiffness was modeled by adding a spring with activa-
tion dependent stiffness in parallel to the contractile element producing a force

FSRS ¼ kSRS � FiSo;max � a �
lm � lm;mean

lm;opt

 !

; ð11Þ

with a the muscle baseline activation,~lm the muscle fiber length,~lm;mean the muscle fiber length
in mean (upright) position,~lm;opt the optimal muscle fiber length and kSRS the short-range-stiff-
ness scaling factor, which was set to 1 [34]. We thus have four models: healthy (‘healthy’),
healthy with muscles including short-range-stiffness (‘healthy—SRS’), vestibular loss (‘VL’),
vestibular loss with muscles including short-range-stiffness (‘VL—SRS’).

Our outcome measures were (1) body sway–described by the standard deviation of the nor-
mally distributed pendulum angle, (2) the relative contribution of proprioceptive feedback,
kKpropriok

kKpropriokþkKvestk
, (3) the co-contraction index (CCI), computed as in [47]:

minðaSOL;aTAÞ
maxðaSOL;aTAÞ

� ðaSOL þ aTAÞ, and (4) the contribution of expected effort from feedback to the total

expected effort: effortFB
effortFBþeffortFF

.

Stochastic dynamics and model parameters
We indicated variables that are modeled as Gaussian noise in red. The state consisted of the
segment angle and angular velocity, q; _q, the activation of soleus and tibialis anterior, aSOL and
aTA and the platform angle and angular velocity, qSS and _qSS:

x ¼ ½ q _q aSOL aTA qSS _qSS � ð12Þ

The control law was parametrized by the baseline muscle excitations, eff, and the constant
feedback gains, K:

eff ¼ ½ eSOL;ff eTA;ff �;K ¼
KSOL
q;prop KSOL

_q ;prop KSOL
q;vest KSOL

_q ;vest

KTA
q;prop KTA

_q ;prop KTA
q;vest KTA

_q ;vest

2

4

3

5; ð13Þ

where SOL refers to the soleus and TA refers to the tibialis anterior. The dynamics were

Table 2. Noise characteristics for perturbed standing balance simulations.

Sensory noise Motor noise σ2
SS; _q

�

s

� �2
=Hz

h i
0.0012; 0.32; 0.62; 1.22; 2.42; 4.82; 9.62

s2
p;q½ð

�
Þ

2
=Hz� 0.12 s2

SOL½ð� Þ
2
:=Hz� 0.012

s2
p; _q

�

s

� �2
=Hz

h i
0.22 s2

TA½ð� Þ
2
=Hz� 0.012 Platform translations

s2
v;q½ð

�
Þ

2
=Hz� 0.32 Platform rotations s2

SS;trans
m
s2

� �2
=Hz

h i
0.0012; 0.01752; 0.0352; 0.072; 0.142; 0.282; 0.562

s2
v; _q

�

s

� �2
=Hz

h i
0.62 s2

SS;q½ð
�
Þ

2
=Hz� 0.0012; 0.1252; 0.252; 0.52; 12; 22; 42

https://doi.org/10.1371/journal.pcbi.1009338.t002
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described by the equations of motion of the pendulum and the first order delay between excita-
tion and activation. The equations of motion were expressed in a non-inertial reference frame
by introducing fictitious forces due to the translational platform acceleration:

dq=dt

d _q=dt

daSOL;fb=dt

daTA;fb=dt

dqSS=dt

d _qSS=dt

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

_q
mgl; sinðqÞ
ml2 þ I

þ
TSOLþTA

ml2 þ I
þ
ml; sinðqÞ
ml2 þ I

wSS;trans

ðeSOL;fb þ eSOL;ff � aSOLÞ=t

ðeTA;fb þ eTA;ff � aTAÞ=t

0

0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð14Þ

withm the pendulum mass, l the pendulum length, g the gravity constant, I the pendulum
inertia, TSOL+TA the torque generated by the soleus and tibialis anterior. Note that the platform
has a constant velocity dqSS

dt ¼ 0 and acceleration d _qSS
dt ¼ 0, meaning that the mean platform posi-

tion and velocity and the platform position and velocity covariance matrix are per definition
constant in time and equal to their chosen initial value. The ankle angle and angular velocity
result from the difference between the pose of the segment and the platform:

qA ¼ q � qSS;q; _qA ¼ _q � _qSS; _q

The feedback muscle excitations (eSOL,fb, eTA,fb) resulted from linear feedback of the feed-
back signal yfb that consists of a proprioceptive, and vestibular (‘v’) signal:

yfb ¼

qA þ wp;q

_qA þ wp; _q

qþ wv;q

_q þ wv; _q

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;
eSOL;fb
eTA;fb

" #

¼ K; yfb ð15Þ

Note that we assumed here that the platform’s mean linear and angular position, velocity
and acceleration were constant in time with constant variance. This differs from driving the
platform acceleration with a zero-mean Gaussian input signal, which would lead to a mono-
tonic increase of the velocity and position variance in time. Instead, we assumed that a more
clever platform controller was used.

The torque generated by the soleus and tibialis anterior muscles is a function of their forces
and moment arms:

TSOLþTA ¼ FSOL � dSOLðqAÞ þ FTA � dTAðqAÞ ð16Þ

with dSOL(qA), dTA(qA) the soleus and tibialis anterior moment arms, which depend on the
ankle angle qA. Muscle forces depend on muscle activation and through the force-length-
velocity properties of the muscle also on the muscle length (lSOL, lTA) and velocity (_lSOL; _lTA),
which in turn are a function of the ankle angular position and velocity qA; _qA :

FSOL
FTA

" #

¼
FISO;SOL � ½ðaSOL;fb þ aSOL;base þ wSOLÞ � flðlSOLÞ � fvðlSOL; _lSOLÞ þ fp;SOLðlSOLÞ�

FISO;TA � ½ðaTA;fb þ aTA;base þ wTAÞ � flðlTAÞ � fvðlTA; _lTAÞ þ fp;TAðlTAÞ�

2

4

3

5 ð17Þ

with fl the active muscle force-length relationship, fv the muscle force-velocity relationship,
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and fp the passive muscle force-length relationship. The active force-length, force-velocity, and
passive force-length relationships are described in [22].

Muscle-tendon lengths were approximated by the sum of a linear function, a sine, and a
constant offset (lMT = a�q+b�sin(c�q)+d) with a, b, c and d estimated by minimizing the least
square error between this approximation and the muscle lengths obtained from the OpenSim
gait10dof18musc model [75]. The moment-arms are computed as the derivatives of the mus-
cle-tendon lengths with respect to the angle: dmuscle = a+b�c�cos(c�q) [78].

Noise characteristics (summarized in Table 2) were based on preliminary simulations and exper-
imental data [36]. Motor noise, added tomuscle activations, had a standard deviation of 1% of the
maximal signal based on force fluctuationmeasurements in different isometric tasks [80,81], where
a coefficient of variation between 1–5% was found. Thesemeasurements quantify motor noise indi-
rectly as force-tracking errors might have other origins as well and we therefore selected the lower
end of the measured variability to model motor noise. The relative values of proprioceptive and ves-
tibular noise were selected such that the relative contribution of proprioceptive feedback,
kKpropk

kKpropkþkKvestk
, was between 0.7–0.8 during optimal unperturbed standing in agreement with values

identified from experiments by Peterka [32]. The absolute values for sensory noise were selected
such that during optimal unperturbed standing body sway, defined as the standard deviation of the
pendulum angle, was ~0.3˚, a typical value found in experiments of quiet standing in healthy sub-
jects [78]. The values that determine the platform rotations, s2

SS;q; s
2
SS; _q , were selected tomimic the

rotational perturbations applied in [36]. In these experiments, the platform angular position, velocity
and acceleration were not Gaussian. Here, we approximated the non-Gaussian experimental plat-
formmovements by zero-mean Gaussian platformmovements with a standard deviation of half the
amplitude of the experimental perturbations. The variance of the translational accelerations s2

SS;trans

were determined such that the healthymodel for the maximal accelerations, under optimal control,
reached a standard deviation of the ankle angle of 4˚, a value that is typically not exceeded in contin-
uous translation perturbation experiments [82,83].

The time unit appears in the noise variance ([/Hz]) or ([.s]) to describe the power spectral density
of a continuous-time Gaussian noise. If we perform a numerical integration and thusmove to a dis-
crete-time description of continuous noise the unit of time disappears by dividing the variance by
the integration interval length (expressed in seconds). This makes sense if we reflect about a forward
integration of a 1D point mass where the velocity has a continuous variance of e.g. 2 (m/s)2/Hz. If
we perform the numerical integration over an interval of 1s the discrete variance (S) is 2 (m/s)2, we
find that the variance of the position after 1s is equal to 2m2: Pkþ1 ¼ Pk þ dt � S � dt’ ➔
Pkþ1 ¼ 0 þ 1½s� � 2½ðm=sÞ2� � 1½s� ¼ 2m2. If we perform the numerical integration over 1s using
a time step of 0.1s the discrete variance is 20 (m/s)2. We obtain P0:1s ¼ 0 þ 0:1½s� � 20½ðm=sÞ2� �
0:1½s� ¼ 0:2m2:We obtain for P0:2s ¼ 0:2½m2� þ 0:1½s� � 20½ðm=sÞ2� � 0:1½s� ¼ 0:4m2. Finally,
P1s = 2m2.

Goal-directed reaching
General description of reach simulations and outcome measures. Wemodeled four

reaching tasks based on a two-segment model, where the segments represent the upper and
lower arm and are connected by hinge joints (Fig 2). The arm model was driven by six Hill-
type muscles with rigid tendons consisting of a uni-articular agonist-antagonist pair for the
shoulder (anterior and posterior deltoid) and the elbow (brachialis and lateral triceps) and a
bi-articular agonist-antagonist pair spanning both the elbow and the shoulder (biceps and
long triceps).The muscle properties (maximal isometric force FISO, normalized maximal con-
traction velocity vmax, and damping coefficient β; described in Table 3) were identical to the
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model used and reported in [20] and are reported in Table 3. The muscles were stimulated by
muscle excitations (eBRACH, eLATTRI, eANTDEL, ePOSTDEL, eBIC, eLONGTRI) that were a sum of feed-
forward (eff) and feedback excitations (efb = K�yfb). Feedback excitations consisted of linear
time-varying feedback of the end effector (hand) position and velocity with respect to the
nominal end effector kinematics. The nominal end effector kinematics was the end effector
kinematics due to the feedforward excitations in the absence of sensory and motor noise. Acti-
vations were related to excitations through first-order dynamics with a time constant (τ) of
150ms lumping together sensorimotor delays. Policy or sensory noise was modeled by additive
Gaussian noise on the end effector position (wEEx

;wEEy
) and velocity (w _EEx

;w _EEy
) with respec-

tive variance (s2
EE;x; s

2
EE;y; s

2
EE; _x ; s

2
EE; _y). The noisy end effector positions and velocities were input

to the feedback law. System noise consisted of motor noise that was modeled by Gaussian
additive noise added to each joint torque (ws, we) with variance (s2

s ; s
2
e ).

The task-goal was to perform a point-to-point reaching movement over a distance of 25cm
in 0.8s with a pre-defined chance of the end effector ending up within the target. Reaching
accuracy was imposed by limiting the variance of the horizontal and vertical end effector posi-
tion depending on the task requirements.

1. Reaching towards a small circular target (circle) was modeled by constraining the standard
deviation of the end effector end-point horizontal and vertical positions to be smaller than
0.4cm.

2. Reaching towards a horizontal bar (bar) was modeled by constraining the standard devia-
tion of the end effector end-point vertical position to be smaller than 0.4cm

3. Reaching towards a circular target in the presence of an obstacle was modeled by imposing
the standard deviation of the end effector end-point horizontal and vertical positions to be
smaller than 0.4cm and the standard deviation of end effector horizontal position during
the second part (>0.25s) of the reaching trajectory to be smaller than 0.4cm

4. Reaching towards a circular target in the presence of a divergent force field of 200N/m was
modeled by constraining the standard deviation of the end effector end-point horizontal
and vertical positions to be smaller than 0.4cm.

We solved for optimal control policies that minimized expected effort,

E½
Z

½eBRACHðtÞ
2
þ eLATTRIðtÞ

2
þ eANTDELðtÞ

2
þ ePOSTDELðtÞ

2
þ eBICðtÞ

2
þ eLONGTRIðtÞ

2
�dt�; ð18Þ

while fulfilling the task requirements for each of the specific tasks. We then used these optimal
control policies to perform 100 forward simulations of unperturbed and perturbed reaching.
The simulated extension perturbations matched the perturbations in the experiments
described by Nashed et al. [8] and are shown in Fig 2C.

Table 3. Musculoskeletal properties of model for goal-directed reaching.

Skeletal properties Muscle properties

Upper arm Forearm BRACH LATTRI ANTDEL POSTDEL BIC LONGTRI

m [kg] 1.4 1.0 FISO[N] 572 445 700 382 159 318
l [m] 0.3 0.33 ~vM;max 10 10 10 10 10 10

I[kg.m2] 0.025 0.045 β 0.01 0.01 0.01 0.01 0.01 0.01

https://doi.org/10.1371/journal.pcbi.1009338.t003
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We computed the accuracy for the different optimal control policies in perturbed and
unperturbed reaching by computing the 95% confidence ellipses of the end-point positions of
the end effector for the 100 simulations. We computed the corrective muscle activations for
perturbed reaching by subtracting the mean muscle activations during unperturbed reaching
from the muscle activations for each of the 100 perturbed reaching simulations. We computed
the mean and standard deviation of these corrective muscle activations to analyze corrective
behavior at the muscle level. We computed the co-contraction index throughout the reaching
movement for each of the joints by averaging the joint-specific CCI over time. We computed
the CCI as in [47]: minðaflexðtÞ;aextðtÞÞmaxðaflexðtÞ;aextðtÞÞ

�ðaflexðtÞ þ aextðtÞÞ where aflex and aext are the activations of the

flexor and extensor muscles of the antagonistic pairs.

Stochastic dynamics and model parameters
We indicated variables that are described as constant zero-mean Gaussian noise in red. The
state consisted of the joint angular positions (qs, qe) and velocities ( _qs; _qe), and the activations
of the anterior deltoid, the posterior deltoid, the biceps and the triceps muscles (aBRACH, aLAT-
TRI, aANTDEL, aPOSTDEL, aBIC, aLONGTRI).

x ¼ ½ qs qe _qs _qe aBRACH aLATTRI aANTDEL aPOSTDEL aBIC aLATTRI � ð19Þ

The control law was parametrized by the feedforward muscle excitation trajectories eff(t)
and the time-varying feedback gains, K(t):

eff ðtÞ ¼

eff ;BRACHðtÞ

eff ;LATTRIðtÞ

eff ;ANTDELðtÞ

eff ;POSTDELðtÞ

eff ;BICðtÞ

eff ;LONGTRIðtÞ

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

; KðtÞ ¼

KBRACH
qs

ðtÞ KBRACH
qe

ðtÞ KBRACH
_qs
ðtÞ KBRACH

_qe
ðtÞ

KLATTRI
qs

ðtÞ KLATTRI
qe

ðtÞ KLATTRI
_qs

ðtÞ KLATTRI
_qe

ðtÞ

KANTDEL
qs

ðtÞ KANTDEL
qe

ðtÞ KANTDEL
_qs

ðtÞ KANTDEL
_qe

ðtÞ

KPOSTDEL
qs

ðtÞ KPOSTDEL
qe

ðtÞ KPOSTDEL
_qs

ðtÞ KPOSTDEL
_qe

ðtÞ

KBIC
qs
ðtÞ KBIC

qe
ðtÞ KBIC

_qs
ðtÞ KBIC

_qe
ðtÞ

KLONGTRI
qs

ðtÞ KLONGTRI
qe

ðtÞ KLONGTRI
_qs

ðtÞ KLONGTRI
_qe

ðtÞ

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð20Þ

The dynamics were described by the equations of motion and the first order delay between
excitations and activations:

dq
dt
d _q
dt
da
dt

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

_q

MðqÞ� 1
ðCðq; _qÞ þ TM þ ½

WS

we

�Þ

ðe � aÞ=t

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð21Þ

withM(q) the mass-matrix of the arm model, Cðq; _qÞ the term describing the Coriolis forces,
TM the shoulder and elbow joint torques generated by the muscles and ws, we the stochastic
torque acting at shoulder and elbow. The total muscle excitations were the result of feedfor-
ward and feedback control, where the feedback signal is the noisy (wEEx

;wEEy
;w _EEx

;w _EEy
) devia-

tion from the end effector position and velocity with respect to the expected or mean end
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effector positions and velocity:

yfb ¼

EEx þ wEEx

EEy þ wEEy

EEx

þ wEEx
EEy þ wEEy

2

6
6
4

3

7
7
5 � EEref ; e ¼ eff þ K � yfb: ð22Þ

The end effector positions (EEx, EEy) and velocities ( _EEx;
_EEyÞ can be computed from the

joint positions and velocities:

EEx

EEy

EEx

EEy

2

6
6
4

3

7
7
5 ¼ fkinðq; _qÞ ð23Þ

The reference end effector trajectory (EEref) is the end effector trajectory in the absence of
noise, which can thus be computed from the mean joint trajectories.

EEref ¼ fkinðqmean; _qmeanÞ

The shoulder and elbow torques generated by the different muscles depends on muscle
forces and moment arms, which in turn depend on the shoulder and elbow joint angles:

TM ¼
FANTDEL; dANTDELðqsÞ þ FPOSTDEL � dPOSTDELðqsÞ þ FBIC � dBIC;sðqsÞ þ FLONGTRI � dLONGTRI;sðqsÞ

FBIRACH; dBRACHðqeÞ þ FLATTRI � dLATTRIðqeÞ þ FBIC � dBIC;eðqeÞ þ FLONGTRI � dLONGTRI;eðqeÞ

" #

; ð24Þ

with
dANTDELðqsÞ; dPOSTDELðqsÞ; dBRACHðqeÞ; dLATTRIðqeÞ; dLONGTRI;sðqsÞ; dLONGTRI;eðqeÞ; dBIC;eðqeÞ; dBIC;sðqsÞ
the muscle moment arms depending on the articulated joint angles. Muscle forces depend on
muscle activation and through the force-length-velocity properties of the muscle also on the
normalized muscle fiber length (lBRACH, lLATTRI, lANTDEL, lPOSTDEL, lBIC, lLONGTRI) and velocity
(_lBRACH; _lLATTRI; _lANTDEL; _lPOSTDEL; _lBIC; _lLONGTRI), which in turn were a function of skeleton posi-
tions and velocities (qs; qe; _qs; _qe):

FBRACH
FLATTRI
FANTDEL
FPOSTDEL
FBIC

FLONGTRI

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

FISO;BRACH � ½aBRACH � flðlBRACHÞ � fvðlBRACH; _lBRACHÞ þ fpðlBRACHÞ�

FISO;LATTRI � ½aLATTRI � flðlLATTRIÞ � fvðlLATTRI; _lLATTRIÞ þ fpðlLATTRIÞ�

FISO;ANTDEL � ½aANTDEL � flðlANTDELÞ � fvðlANTDEL; _lANTDELÞ þ fpðlANTDELÞ�

FISO;POSTDEL � ½aPOSTDEL � flðlPOSTDELÞ � fvðlPOSTDEL; _lPOSTDELÞ þ fpðlPOSTDELÞ�

FISO;BIC � ½aBIC � flðlBICÞ � fvðlBIC; _lBICÞ þ fpðlBICÞ�

FISO;LONGTRI � ½aLONGTRI � flðlLONGTRIÞ � fvðlLONGTRI; _lLONGTRIÞ þ fpðlLONGTRIÞ�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð25Þ

with fl the active muscle force-length relationship, fv the muscle force-velocity relationship,
and fp the passive muscle force-length relationship. The active force-length, force-velocity, and
passive force-length relationships are described in [22].

Normalized muscle fiber lengths were approximated by the sum of linear functions and
sines of the joint angles added to a constant offset:
(lM ¼ as � qs þ

bs
cs
� sinðcs � qsÞ þ ae � qe þ

be
ce
� sinðce � qeÞ þ d). The muscle-moment arms were

computed as scaled versions of the derivatives of the normalized fiber lengths with respect to
the joint angle: ds ¼ ssðas þ bs � sinðcs � qsÞÞ; de ¼ seðae þ be � sinðce � qeÞÞ, where the scaling
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factors serve to denormalize the muscle-moment arms. The coefficients parametrizing the
muscle-tendon lengths and moment arms (as, bs, cs, ss, ae, be, ce, se, and d) were estimated to
match the data provided in [20].

We computed the variance of the end effector position and velocity in the horizontal and
vertical directions, used to define accuracy constraints, based on the following equations:

VarðEExðtÞ;EEyðtÞ; _EExðtÞ; _EEyðtÞÞ ¼ trace

@fkinðqðtÞ; qðtÞÞ
@x

� �

qmeanðtÞ; _qmeanðtÞ

PðtÞ
@fkinðqðtÞ; _qðtÞÞ

@x

� �

qmeanðtÞ; _qmeanðtÞ

0

 !

ð26Þ

with P(t) the covariance matrix used to approximate the stochastic state.
Noise characteristics summarized in Table 4 are based on preliminary simulations and

experimental data. Motor noise was defined as a noisy torque actuator with zero mean and a
variance power spectral density of 0.05(Nm)2/Hz. The absolute values for sensory noise were
selected such that during optimal unperturbed reaching to the circle target an end-point accu-
racy of 0.4cm was achievable but an accuracy of 0.2cm was not [8].

Supporting information
S1 Text. Describes additional results, motivation and consequences on assuming rigid ten-
dons and more details on the implemented method.
(PDF)
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