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Welch TD, Ting LH. A feedback model reproduces muscle activity
during human postural responses to support-surface translations. J
Neurophysiol 99: 1032-1038, 2008. First published December 19,
2007; doi:10.1152/jn.01110.2007. Although feedback models have
been used to simulate body motions in human postural control, it is
not known whether muscle activation patterns generated by the
nervous system during postural responses can also be explained by a
feedback control process. We investigated whether a simple feedback
law could explain temporal patterns of muscle activation in response
to support-surface translations in human subjects. Previously, we used
a single-link inverted-pendulum model with a delayed feedback con-
troller to reproduce temporal patterns of muscle activity during
postural responses in cats. We scaled this model to human dimensions
and determined whether it could reproduce human muscle activity
during forward and backward support-surface perturbations. Through
optimization, we found three feedback gains (on pendulum accelera-
tion, velocity, and displacement) and a common time delay that
allowed the model to best match measured electromyographic (EMG)
signals. For each muscle and each subject, the entire time courses of
EMG signals during postural responses were well reconstructed in
muscles throughout the lower body and resembled the solution de-
rived from an optimal control model. In ankle muscles, >75% of the
EMG variability was accounted for by model reconstructions. Sur-
prisingly, >67% of the EMG variability was also accounted for in
knee, hip, and pelvis muscles, even though motion at these joints was
minimal. Although not explicitly required by our optimization, pen-
dulum kinematics were well matched to subject center-of-mass (CoM)
kinematics. Together, these results suggest that a common set of
feedback signals related to task-level control of CoM motion is used
in the temporal formation of muscle activity during postural control.

INTRODUCTION

We recently demonstrated that the entire time course of
muscle activity following postural perturbations to standing
balance in cats could be reproduced using a simple feedback
model of postural control (Lockhart and Ting 2007). A single-
link inverted-pendulum model with a delayed feedback con-
troller reproduced the characteristic temporal patterns of mus-
cle activation throughout the cat hindlimb. Temporal patterns
of muscle activation were generated through a combination of
center-of-mass (CoM) acceleration, velocity, and displacement
waveforms. These results suggest that a common set of vari-
ables related to the task goal of controlling body CoM motion
are used to coordinate the activation of proximal and distal
muscles during balance control. The goal of this study was to
determine whether the same sensorimotor transformation could
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also be used to describe the temporal patterns of muscle
activation observed in human postural responses.

Typically, feedback models of human postural control have
reproduced joint torques and segmental motions of the body,
but not muscle activity. Using single- or multilink inverted-
pendulum models, they demonstrate that a set of time-invariant
feedback gains can explain joint kinematics during either quiet
standing or postural responses to perturbations (Alexandrov
et al. 2001a; Bortolami et al. 2003; Kiemel et al. 2002; Kuo
1995; Park et al. 2004; Peterka 2000; Runge et al. 1995; van
der Kooij et al. 1999). Because feedback loops at each joint are
used to generate stabilizing joint torques, these models cannot
uniquely specify temporal patterns of muscle activation. Mus-
cles must be explicitly included because the low-pass dynamics
of the body introduce redundancy in the temporal domain,
whereby different temporal patterns of muscle activation can
produce similar kinematic outputs (Gottlieb et al. 1995; Lock-
hart and Ting 2007).

Evidence suggests that muscle activity during human pos-
tural responses is dependent on acceleration, velocity, and
displacement signals, as previously demonstrated in cats. In
response to support-surface translations, temporal patterns of
muscle activity in humans and cats have a similar rapid initial
rise followed by a longer, sustained plateau region (Macpher-
son et al. 1989). In cats, this waveform is due to CoM
acceleration, velocity, and displacement feedback (Lockhart
and Ting 2007). Consistent with this feedback model, muscle
activity in human postural responses have been shown to be
modified by perturbation velocity and total excursion (Diener
et al. 1988), smoothness of the initial perturbation trajectory or
acceleration (Brown et al. 2001; Siegmund et al. 2002; Szturm
and Fallang 1998), and the deceleration impulse at the end of
the perturbation (Bothner and Jensen 2001; Carpenter et al.
2005; Mcllroy and Maki 1994).

We hypothesized that the activity of multiple muscles during
human postural responses to perturbation is generated by a
common delayed feedback law based on CoM motion. As a
first step, we scaled the single inverted-pendulum feedback
model used in Lockhart and Ting (2007) to human dimensions
(similar to Peterka 2000) and examined whether this model
was capable of reconstructing temporal patterns of muscle acti-
vation in proximal and distal muscles. We examined forward and
backward support-surface perturbations to standing balance that
elicited “ankle strategy” responses (Horak and Nashner 1986).
We demonstrate that a delayed feedback law on CoM accelera-
tion, velocity, and displacement can reconstruct temporal patterns
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of both muscle activity and CoM kinematics during postural
responses to support surface translations.

METHODS

Seven healthy subjects (five male, two female) from the Georgia
Institute of Technology student population, ages 194 = 1.4 yr
(mean * SD), participated in the study. The experimental protocol
was approved by both the Georgia Institute of Technology and Emory
University Internal Review Boards. Subjects stood on two force plates
installed on a movable platform that translated in the horizontal plane.
Subjects were instructed to cross their arms at chest-level, look
straight ahead, and react naturally to the support-surface perturba-
tions. A set of 20 acclimatization perturbations were followed by a set
of 170 randomized forward and backward perturbations of varying
peak velocity and acceleration. To test the feasibility of our model
in this study, we analyzed responses to forward and backward
perturbations of 12-cm total excursion, 25-cm/s peak velocity, and
0.3-g peak acceleration. For each subject, five trials from each
direction were collected and averaged. A minimum of 5-min seated
rest was enforced between each set of 60 perturbations to reduce
muscle fatigue.

Platform acceleration and position, and surface EMG from 11
muscles in the legs and trunk were collected at 1,080 Hz, synchro-
nized with body-segment kinematics collected at 120 Hz (Fig. 1A).
Platform signals were low-pass filtered at 30 Hz (third-order zero-lag
Butterworth filter). EMGs were collected from the following muscles
on the right side of the body: TA, tibialis anterior; MG, medial
gastrocnemius; SOL, soleus; VLAT, vastus lateralis; RFEM, rectus
femoris; SEMB, semimembranosus; SEMT, semitendinosus; BFLH,
long head of biceps femoris; BFSH, short head of biceps femoris; ES,
erector spinae; and RA, rectus abdominis. Raw EMG signals were
high-pass filtered at 35 Hz (third-order zero-lag Butterworth filter),
demeaned, half-wave rectified, and low-pass filtered at 40 Hz (first-
order zero-lag Butterworth filter). EMG signals were then normalized
to the maximum EMG observed in each muscle over all conditions for
each subject. Body-segment kinematics were derived from a custom

>

Report
1033

bilateral Helen—-Hay 25-marker set that included head—arms—trunk
(HAT), thigh, and shank-foot segments. Center-of-mass motion was
calculated from kinematic data as a weighted sum of segmental
masses (Winter 2005).

Reconstruction of EMG using a feedback control model

We determined whether our feedback model could reproduce the
time course of EMG signals in each subject. The model consisted of
a single-link inverted pendulum, with a point mass m (equivalent to
each subject’s mass) and length 4 (equal to the height of each
subject’s CoM during quiet standing) (Fig. 1B). Disturbance torques
calculated from experimentally recorded platform accelerations were
applied at the ankle to model the effect of support-surface perturba-
tions (Lockhart and Ting 2007; Peterka 2000). Delayed feedback of
horizontal CoM trajectories [displacement, p(?); velocity, v(¢); and
acceleration, a(t)] were used to stabilize the inverted pendulum (Fig.
1B). EMG reconstructions (EMG,,) were taken as the output of the
feedback controller, which was a linear combination of the weighted
horizontal CoM kinematic trajectories at a common neural transmis-
sion delay (A)

EMG, = k,p(t — ) + ky(t — X) + ka(t — A) (1)

Each EMG reconstruction was half-wave rectified and converted to a
muscle torque using a first-order muscle model with a 40-ms time
constant (He et al. 1991; Lockhart and Ting 2007).

For each muscle in each subject, the feedback gains (kp, k., k,) and
delay (A) that best matched the EMG reconstruction to the measured
EMG signal were found. We used an optimization (MATLAB, fmin-
con.m) to find the values of k; and A using the following cost function

fend

KeG
0

The first term penalized the error between the reconstructed and
measured EMG signal over time as represented by the vector e,, with
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FIG. 1. Example postural response, modeled as an inverted pendulum under delayed feedback control. A: in response to a forward support-surface

perturbation, the primary joint motion occurred at the ankle joint. Muscles throughout the body were activated in a coordinated fashion to counteract the
disturbance (left). Vertical lines indicate onset of perturbation acceleration (solid) and deceleration (dashed). The original postural configuration was typically
restored within one second of perturbation onset (right). B: the standing human was modeled as an inverted pendulum that was perturbed with a torque based
on recorded platform acceleration [d(7)]. To generate the reconstructed electromyographic (EMG) activity, pendulum displacement, velocity, and acceleration (p,

v, @) were subject to a common time delay (A) and feedback gains on each channel (k,

muscle model to generate the muscle torque to counteract the perturbation.

k,). The reconstructed EMG signal was then passed through a first-order
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weight u,. The second term penalized the maximum deviation be-
tween the reconstructed and measured EMG signals at any single
point in time with weight w,,. The final term penalized the final state
of the inverted pendulum if it differed from that of the experimental
subject (i.e., upright configuration) with weight W. Note that this
differs from the formulation of Lockhart and Ting (2007) in that only
the EMG pattern, and not the CoM kinematics, was matched. Feed-
back gains were restricted to have values between 0 and 100, and the
delay was restricted to values between 60 and 250 ms. We assessed
the goodness of fit between reconstructed and measured EMG signals
using both the coefficient of determination (+*) and the uncentered
Pearson’s coefficient of determination [variability accounted for
(VAF)].

Recorded and reconstructed EMG patterns were compared with
those predicted by an optimal control model (Lockhart and Ting
2007). Using a controller design similar to that of the linear quadratic
regulator (He et al. 1991), this delayed quadratic regulator (DQR)
model determined gains for CoM kinematic feedback channels, with-
out a priori knowledge of recorded EMG, through the use of a
quadratic cost function and time-delayed feedback. Feedback gains on
delayed CoM kinematics (k;) were optimized using the following cost

function
] (3

The first term penalized deviations from zero of the pendulum posi-
tion, velocity, and acceleration (where x = [p v a]”) with weights
Q = [0.05 50 1]. The second term penalized EMG activation level
(u) with weight p = 20, requiring the minimum possible level of
muscle activation to achieve the postural task. The final term penal-
ized final pendulum configurations that were not upright with weight
(). Because the optimization process consistently selected the mini-
mum allowable feedback delay, this delay was set to 100 ms for all
subjects to allow the calculation of an intersubject average of the
optimal postural control solution and to facilitate qualitative compar-
isons with recorded and reconstructed EMG patterns.

tend
min [J = E[f ("Ox + pu)dr + Qx(t,,,)

KeG
0

RESULTS

Temporal patterns of muscle activity throughout the leg in
both forward and backward perturbations were reconstructed
by our feedback model in all subjects. Reconstructed EMG
activity in ankle muscles TA and MG were well matched to
measured EMG activity in forward and backward perturba-
tions, respectively (VAF > 0.75; Fig. 2, A and B). Notable
variations in the temporal patterns of muscle activity were
observed across subjects; these variations were accounted for
by differences in feedback gains (Fig. 3D). Still, ankle muscle
activity in all subjects resembled the optimal control solution,
although an exact match was not achieved by any subject (cf.
Fig. 2, A and B, DQR prediction; TA: * = 0.53 + 0.16,
VAF = 0.73 = 0.09; MG: r* = 0.45 = 0.13, VAF = 0.68 =
0.08). Although the ankle-strategy responses evoked produced
little knee or hip motion (Fig. 1A), muscle activity in biome-
chanically relevant proximal muscles was also well described
by the feedback model (VAF > 0.67 across all muscles and
subjects; Fig. 2C). The time course of experimentally recorded
CoM kinematic trajectories was similar to the motion of the
inverted-pendulum model controlled by the reconstructed
EMG pattern (Fig. 3C). This was surprising because we ex-
plicitly required only the temporal EMG patterns, and not
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kinematics, to match the experimentally recorded data, sug-
gesting that the kinematics of the body are indeed encoded in
the pattern of muscle activation used by the nervous system for
postural control.

A decomposition of the reconstructed EMG into contribu-
tions from each feedback component demonstrates that the
initial burst region was predominated by acceleration feedback,
whereas velocity and displacement feedback contribute to the
plateau region of muscle activity (Fig. 3B). Acceleration feed-
back from the deceleration of the platform also contributed to
the termination of muscle activity (solid gray, Fig. 3B). The
mechanical dynamics of the pendulum defined the temporal
separation of the various feedback contributions; addition of
independent delays for each channel had no significant effect
on the model reconstructions [TA: Ar* = 0.00 (P = 0.80),
AVAF = 0.01 (P = 0.31); MG: A”* = 0.05 (P = 0.11),
AVAF = 0.02 (P = 0.10)].

Acceleration feedback was required to reconstruct EMG
activity using physiological delays. When acceleration feed-
back was removed, delays shorter than the 55-ms latency of the
stretch response during postural perturbations (Diener et al.
1984) were required (intersubject range = 10-60 ms; Fig.
3D). Without acceleration feedback, the early EMG activity in
the initial burst and plateau regions, including the initial slope
of the response, were underpredicted (data not shown). Further,
the goodness of fit between reconstructed and recorded EMGs
was reduced in TA [Ar* = —0.14 (P = 7 X 10~ %); AVAF =
—0.07 (P = 0.006)], but not MG [Ar* = —0.05 (P = 0.42);
AVAF = —0.03 (P = 0.13)]. In both cases, however, the
reconstructed EMGs without acceleration feedback were often
insufficient to maintain the pendulum in an upright configura-
tion (data not shown).

DISCUSSION

Our results demonstrate that the neural mechanisms gener-
ating temporal patterns of muscle activity for postural control
in humans can be described by a feedback transformation from
body kinematics to EMG. For ankle strategy responses, an
inverted-pendulum model of human posture reproduced mus-
cle- and subject-specific muscle activation patterns throughout
the lower body using delayed feedback of acceleration, veloc-
ity, and displacement of the pendulum. The pendulum motion
also matched recorded CoM kinematics, although not explic-
itly required by the optimization. Our simulation therefore
provides a mechanistic model that functionally validated the
sensorimotor transformation between CoM motion and muscle
activity. These results suggest that a common set of feedback
signals related to the task-level control of CoM motion are
indeed used in the temporal formation of muscle activity
during postural control.

The nervous system may take advantage of the naturally
occurring physical relationships between acceleration, veloc-
ity, and displacement to provide feedback control of the CoM
without need for feedforward control mechanisms. Previous
studies have observed a positive, phase-leading correlation
between muscle activity during quiet stance and CoM motion,
suggesting the use of predictive, feedforward control (Fitz-
patrick et al. 1992, 1996; Gatev et al. 1999). The phase-lead
characteristics of acceleration feedback may serve to explain
this observation in the context of feedback control. In our
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FIG. 2. Averaged time courses of recorded (solid gray) and reconstructed (solid black) EMGs during postural responses. Gray-shaded regions indicate 1SD
from the mean recorded EMG for each muscle across five trials. A: tibialis anterior (TA) EMG signals in response to forward perturbations across all subjects
are presented with the average optimal control solution [delayed quadratic regulator (DQR) prediction]. Significant variations in the temporal patterns of TA
EMGs were observed across subjects; however, each response resembled the optimal DQR prediction. The feedback model was able to reproduce these variations
with >75% variability accounted for (VAF) by choosing a slightly different set of feedback gains and delay for each subject. B: similarly, medial gastrocnemius
(MG) EMG signals in response to backward perturbations were reconstructed with >77% VAF across all subjects and resembled the DQR prediction.
C: additionally, EMG signals from knee, hip, and pelvis muscle that were active during either forward or backward perturbations were also reproduced with
>67% VAF across all subjects.
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FIG. 3. Contributions of each feedback component to the time course of EMG depend on muscle- and subject-specific feedback gains. A: recorded (gray) and

reconstructed (black) TA EMG signals for Subject A. Vertical lines indicate onset of perturbation acceleration (solid) and deceleration (dashed). B: decomposition
of the reconstructed EMG signal (black) into individual feedback components from acceleration feedback (gray line), velocity feedback (gray dashed line), and
displacement feedback (gray dotted line). Acceleration feedback contributes to the rapid initial rise in EMG activity. Velocity and displacement feedback
contribute to later activity during the plateau region. C: recorded (solid line) and predicted (dashed line) center-of-mass (CoM) acceleration, velocity, and
displacement trajectories are also similar. This was surprising because our optimization explicitly required only temporal patterns of EMG signals to be matched
between the model and experiment. These results suggest that CoM kinematics are indeed used by the nervous system in generating EMG signals. The time course
of each feedback component’s contribution to the reconstructed EMG is determined by these CoM kinematic trajectories after a delay (A). The mechanical
dynamics of the pendulum thus define the temporal separation of the contributions from each feedback channel, illustrated in B. The amplitude of the
contributions from each feedback channel depends on the magnitude of the feedback gains, which varies across muscles and subjects. D: variations in feedback
gains for TA and MG muscles across subjects (white boxes) when acceleration feedback was included. Boxes delimit the middle 50% of the data, with the center
indicating the median value (thick black line). Whiskers delimit the full range of the data, excluding outliers (indicated with a +). When acceleration feedback
was removed from the model (gray boxes), the remaining model parameters changed (* represents significant difference at P < 0.05), resulting in modest or
insignificant changes in goodness of fit. However, the range of the delays required to reproduce the EMG signals without acceleration feedback was reduced to

durations shorter than the 55-ms short-latency stretch response during postural perturbations, and were therefore not physiological.

model, the contribution of acceleration feedback is fully re-
flected in the muscular response before significant displace-
ment-related information becomes available. Moreover, the
acceleration component of the reconstructed muscular response
leads CoM displacement, but occurs after the CoM accelera-
tion induced by the perturbation. The phase lead of accelera-
tion feedback with respect to CoM displacement in our simu-
lations was about 135 ms, consistent with the 100- to 250-ms
phase lead observed experimentally for high-frequency pos-
tural sway (Fitzpatrick et al. 1992). The early burst of muscle
activity during postural responses to perturbation, here shown
to arise from acceleration feedback, was previously attributed
to a feedforward component (Diener et al. 1988). Consistent
with our model, however, the middle portion of the response
varies with changes in perturbation velocity, whereas the late
response is affected by changes in perturbation displacement
(Diener et al. 1988).

Several other studies provide support for acceleration feed-
back in postural control. Postural responses have been shown
to scale with perturbation acceleration in the neck muscles of
seated subjects (Siegmund 2004; Siegmund et al. 2002) and in
perturbations to arm movements (Soechting and Lacquaniti
1988). In standing posture, muscle onset latency and total ankle
moment are also affected by perturbation acceleration (Brown

et al. 2001; Siegmund et al. 2002; Szturm and Fallang 1998).
Further, the rate of muscle activity onset during perturbations
to treadmill walking has also been related to perturbation
acceleration (Dietz et al. 1987). Several studies during standing
postural responses suggest that the termination of the postural
response results from feedback on the deceleration impulse
(Bothner and Jensen 2001; Carpenter et al. 2005; Mcllroy and
Maki 1994). Consistent with this finding, in our model, termi-
nation of the postural response can also be attributed to the
delayed effects of the deceleration impulse (Fig. 3A).

Our study supports the idea that a small set of variables
related to task-level goals are used to coordinate multiple
muscles throughout the body during postural control and other
movements. Activity in muscles crossing the hip, knee, and
ankle joints all exhibited temporal patterns that were explained
by combinations of the CoM motion as modeled by an inverted
pendulum. Although the hip and knee joints did not undergo
appreciable joint angle changes (Fig. 14), proximal muscle
activity may be necessary to minimize joint motions from
interaction torques generated by ankle muscle activity (van
Antwerp et al. 2007; Zajac and Gordon 1989). Therefore
whenever the ankle muscles are activated, the proximal mus-
cles must also be activated to maintain the postural configura-
tion. We propose that a muscle synergy defining consistent
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spatial patterns of multiple muscle activity for ankle-strategy
responses (Torres-Oviedo and Ting 2007) may be temporally
regulated by feedback signals. The spatiotemporal patterns of
muscle activation for postural control could thus be specified
by defining a constant set of gains on CoM acceleration,
velocity, and displacement for each muscle.

Although we have demonstrated the feasibility of task-level
feedback in explaining ankle-strategy responses to support-
surface translations, more complex biomechanical models may
be necessary to represent the full range of responses—ankle,
hip, and mixed strategies—in the postural-control suite
(Alexandrov et al. 2001b; Horak and Nashner 1986; Runge et
al. 1999). This is especially pertinent for modeling muscular
responses to backward translations, as well as to support-
surface rotations and upper-body perturbations, where hip-
strategy responses produce significant joint motions and mus-
cle activation about the proximal joints (Jo and Massaquoi
2004; Runge et al. 1999). Because the hip-strategy response
has a distinct muscle synergy pattern that can be decomposed
from a mixed response (Torres-Oviedo and Ting 2007), it is
possible that the hip-strategy response is also regulated by a
task-level feedback controller that is independent of the ankle-
strategy controller.

Comparisons of experimentally recorded EMG with an
optimal control solution suggest that the postural responses of
our human subjects, although similar to the optimal solution,
may not have completely achieved the optimal feedback pat-
tern for responding to support-surface translations during the
course of our experiment. In contrast, cats subjected to a
similar perturbation protocol exhibited EMG patterns that
matched the optimal solution as predicted by the DQR model
(Lockhart and Ting 2007). The cats underwent a rigorous
training regimen in which they learned to stand on the pertur-
bation platform over the course of several weeks or months (cf.
Macpherson et al. 1987). Our human subjects, however, were
completely naive to postural perturbation studies and each
completed the experimental protocol in less than 1 h. We
hypothesize that, during their training regimen, the cats may
have slowly adapted their muscular responses toward the
optimal control solution for the task. We therefore predict that,
with training, human muscle activity during postural responses
may more closely match the optimal feedback pattern predicted
by our DQR model. Alternately, it may be possible that each
human subject used a different set of optimality criteria, which
could be modeled either by varying the weights in the cost
function (Qu et al. 2007) or by changing the components of the
cost function altogether.

Our feedback model may provide a low-dimensional frame-
work for understanding variability in muscle activation pat-
terns during postural control (Ting 2007). Extensive intersub-
ject variability in temporal patterns of muscle activity may be
accounted for by varying only three feedback gains (Fig. 2, A
and B). Rather than performing a point-by-point adjustment of
neural activity over time, the CNS may adjust gains to each
feedback channel. This differential weighting of feedback
channels may explain changes in muscle responses due to
habituation and changes in central set (Horak et al. 1989). For
example, when the interval between acceleration and deceler-
ation of translation perturbations is short and predictable,
subjects anticipate the deceleration timing (Carpenter et al.
2005; Mcllroy and Maki 1994). The advance in the timing of
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response termination might occur due to changes in CoM
velocity and displacement feedback gains, which alter the time
at which the acceleration feedback triggers the offset of EMG
activity.
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