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Welch TDJ, Ting LH. A feedback model explains the differential
scaling of human postural responses to perturbation acceleration and
velocity. J Neurophysiol 101: 3294–3309, 2009. First published April
8, 2009; doi:10.1152/jn.90775.2008. Although the neural basis of
balance control remains unknown, recent studies suggest that a feed-
back law on center-of-mass (CoM) kinematics determines the tempo-
ral patterning of muscle activity during human postural responses. We
hypothesized that the same feedback law would also explain varia-
tions in muscle activity to support-surface translation as perturbation
characteristics vary. Subject CoM motion was experimentally modu-
lated using 34 different anterior–posterior support-surface translations
of varying peak acceleration and velocity but the same total displace-
ment. Electromyographic (EMG) recordings from several muscles of
the lower limbs and trunk were compared to predicted EMG patterns
from an inverted pendulum model under delayed feedback control. In
both recorded and predicted EMG patterns, the initial burst of muscle
activity scaled linearly with peak acceleration, whereas the tonic
“plateau” region scaled with peak velocity. The relatively invariant
duration of the initial burst was modeled by incorporating a transient,
time-limited encoding of CoM acceleration inspired by muscle spin-
dle primary afferent dynamic responses. The entire time course of
recorded and predicted muscle activity compared favorably across all
conditions, suggesting that the initial burst of muscle activity is not
generated by feedforward neural mechanisms. Perturbation conditions
were presented randomly and subjects maintained relatively constant
feedback gains across all conditions. In contrast, an optimal feedback
solution based on a trade-off between CoM stabilization and energy
expenditure predicted that feedback gains should change with pertur-
bation characteristics. These results suggest that an invariant feedback
law was used to generate the entire time course of muscle activity
across a variety of postural disturbances.

I N T R O D U C T I O N

The neural mechanisms responsible for the formation and
modification of muscle activity for standing balance control are
not well understood. Previous studies have described how
muscle activity changes in response to variations in support-
surface perturbations using descriptive measures, such as mean
electromyographic (EMG) activity during fixed time periods or
EMG onset and offset latencies (Brown et al. 2001; Diener
et al. 1988; Maki and Ostrovski 1993; Szturm and Fallang
1998). Joint torques have also been demonstrated to change
under varying biomechanical conditions (Bothner and Jensen
2001). However, it has been difficult to interpret the observed
changes in muscle activity with respect to either the underlying
neural mechanisms or the functional biomechanical outputs
because the relationship between sensory inflow due to a

postural perturbation and the resulting muscle activity is not
known. Although joint torque trajectories can be predicted
using biomechanical models (Alexandrov et al. 2001; Kuo
1995; Park et al. 2004; Peterka 2000; van der Kooij et al.
1999), muscle activity cannot be directly inferred from joint
torques (Gottlieb et al. 1995).

A simple neuromechanical model describing the sensorimo-
tor transformation between postural perturbation characteris-
tics and muscle activity can describe the entire time course of
muscle activity in normal and sensory-loss cats (Lockhart and
Ting 2007), as well as in healthy human adults (Welch and
Ting 2008) during postural responses to support-surface per-
turbations. The model represents an explicit formulation of the
hypothesis that temporal patterns of muscle activity are formed
by overlapping contributions of center-of-mass (CoM) accel-
eration, velocity, and position trajectories; each kinematic
signal is weighted by feedback gain magnitudes that are spe-
cific to each subject and muscle. Because of the different
temporal dynamics across kinematic signals, the feedback
model predicts that the contributions of CoM acceleration,
velocity, and displacement feedback will have distinct tempo-
ral signatures and always affect different portions of evoked
muscle activity. By appropriately choosing three feedback
gains on CoM acceleration, velocity, and displacement, as well
as a common time delay, we previously reproduced several
temporal patterns of muscle activation that varied across mus-
cles and subjects (Lockhart and Ting 2007; Welch and Ting
2008). The model was also used to predict temporal patterns of
muscle activation using an optimal trade-off between CoM
stabilization and energy efficiency. Although the optimal pat-
terns were similar to those found in trained cats (Lockhart and
Ting 2007), naïve human subjects used temporal patterns of
muscle activity that deviated from the optimal pattern but could
nonetheless result from the same feedback structure (Welch
and Ting 2008).

The predictions arising from this feedback hypothesis may
be consistent with prior studies investigating perturbation-
dependent changes in muscle activity, when considered in light
of potential experimental limitations in altering perturbation
acceleration and velocity independently. Previous studies re-
main somewhat inconclusive about the effects of perturbation
acceleration on postural response activity, perhaps because
acceleration levels were either not directly measured (and may
therefore be inaccurately reported) or did not vary indepen-
dently of perturbation velocity. For example, the initial EMG
burst amplitude has been shown to scale with perturbation
velocity, whereas the plateau region varies with perturbation
displacement (Diener et al. 1988); however, acceleration was
not directly measured or varied. Our feedback model suggests
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that although there may be a contribution of perturbation
velocity in the initial burst, the earliest muscle activity is
primarily due to perturbation acceleration (Lockhart and Ting
2007; Welch and Ting 2008). Because the initial acceleration
of a perturbation is difficult to manipulate independently of
perturbation velocity using traditional motion-control algo-
rithms (see METHODS), prior studies may not have sufficiently
isolated the effects of perturbation acceleration and velocity on
postural responses. However, consistent with the predicted
effects of perturbation acceleration, EMG amplitudes and joint
torques have been shown to depend on the “smoothness” of the
initial perturbation trajectory (Brown et al. 2001; Siegmund
et al. 2002; Szturm and Fallang 1998) and the deceleration
impulse at the end of the perturbation (Bothner and Jensen
2001), affecting the timing of the termination of the postural
response (Carpenter et al. 2005; McIlroy and Maki 1994).

In the current study, we developed a series of perturbations
to test whether perturbation velocity and acceleration have
different and independent effects on temporal patterns of mus-
cle activity during postural responses to discrete perturbations,
as predicted by our model (Lockhart and Ting 2007; Welch and
Ting 2008). To compare our results with previous studies, we
first used traditional EMG measures to assess how muscle
activity scales with perturbation characteristics during specific
time periods of the postural response across conditions. We
then performed the same analyses on simulated EMG signals to
test whether these results were consistent with the hypothesis that
subjects use the same set of feedback gains across all perturbation
conditions. Next, we investigated whether the entire time
course of muscle activity across conditions could be repro-
duced by the feedback model. We demonstrate that the initial
burst of muscle activity is well reproduced by feedback on
CoM acceleration for perturbations with short-duration accel-
eration impulses, but is not well reproduced when perturbation
accelerations are extended in time. We hypothesized that this
discrepancy could result from the transient encoding of accel-
eration by muscle spindles and improved model fits to data by
truncating acceleration feedback after a fixed duration. Using
this improved model, we finally demonstrate that subjects used
constant feedback gains across conditions, rather than modify-

ing them according to an optimal trade-off between CoM
stabilization and energy expenditure.

M E T H O D S

Seven healthy subjects (five male, two female), ages 19.4 � 1.4 yr
(mean � SD), were recruited from the Georgia Institute of Technol-
ogy student population to participate in an experimental protocol that
was approved by both the Georgia Institute of Technology and Emory
University Institutional Review Boards. All subjects signed an in-
formed consent form before participating. Subjects stood with weight
evenly distributed on two force plates (AMTI, Watertown, MA)
installed on a movable platform that could translate in the horizontal
plane. Subjects focused vision to a scenic view 4.6 m away and were
instructed to cross their arms at chest level and react naturally to the
support-surface perturbations.

Experimental protocol

To test the effects of varying CoM acceleration and velocity on
muscle activity evoked during postural responses, we presented sub-
jects with a set of ramp-and-hold perturbations that translated the
support surface in the anterior–posterior direction. Perturbations were
applied using a custom-designed perturbation platform (Factory Au-
tomation Systems, Atlanta, GA) driven by servo motors and con-
trolled by industrial motion controllers. These perturbations varied the
relationship between peak acceleration and velocity by either main-
taining constant peak velocity while varying peak acceleration or
maintaining constant peak acceleration while varying peak velocity.
However, using traditional motion-control algorithms that minimize
the error between the desired and actual trajectories of the device, we
found that changing the acceleration characteristics of the ramp-and-
hold trajectory produced the predicted changes in peak acceleration,
but also caused correlated changes in peak velocity, as well as
overshoot in the displacement trajectory (Fig. 1A). We thus developed
two sets of perturbations where platform velocity and acceleration
were varied independently while maintaining a 12-cm total excursion
(Fig. 1, B and C). Perturbation characteristics spanned a range of
velocities (5-cm/s steps between 25 and 40 cm/s) and accelerations
(0.1-g steps between 0.1 and 0.6 g) that were varied independently in
both forward and backward directions for a total of 34 perturbation
types. Due to controller limitations, certain velocity–acceleration
combinations were excluded from the experimental design (see Fig. 4
for included experimental conditions).
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FIG. 1. Example of variations in pertur-
bation characteristics. A: using a standard
controller, unforeseen covariation of peak
perturbation velocity and acceleration, as
well as positional overshoot, occurs. Our
custom platform and controller allowed the
independent variation of peak perturbation
velocity and acceleration. B: in constant peak
acceleration perturbations, the initial accel-
eration profile and the peak acceleration
magnitude was the same across all perturba-
tions. Peak velocity was varied by extending
the duration of the acceleration pulse. C: in
constant peak velocity perturbations, peak
acceleration was varied to maintain the same
acceleration impulse across perturbations,
causing each perturbation to reach the same
peak velocity at different rates. Total plat-
form displacement was constant in all per-
turbations and exhibited no positional over-
shoot. For each column, line styles indicate
representative perturbations with different
platform motion characteristics.
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After a set of 20 acclimatization trials at an intermediate perturba-
tion level (35 cm/s at 0.4 g) in both directions, five replicates of each
perturbation condition were administered in random order, for a total
of 170 perturbations per subject. Intertrial time varied randomly
between 5 and 15 s. A minimum of 5 min seated rest was enforced
between each set of 60 perturbations to reduce muscle fatigue. Only
those trials in which subjects were able to maintain balance without
stepping were included in further analyses; conditions requiring a step-
ping response were replicated at random until five nonstepping trials were
achieved or until the total number of experimental perturbations exceeded
210 trials. Results from one experimental condition (25 cm/s at 0.3 g)
have been previously published (Welch and Ting 2008).

Data collection

Platform acceleration and position, surface EMGs, and ground
reaction forces were collected at 1,080 Hz, synchronized with body
segment kinematics collected at 120 Hz (Fig. 2). Platform acceleration
was measured using a three-dimensional accelerometer directly
mounted onto the platform (Analog Devices, Norwood, MA). Plat-
form signals were low-pass filtered at 30 Hz (third-order zero-lag
Butterworth filter). Platform velocity was then calculated by the
numerical differentiation of filtered platform position measured using
a linear variable differential transformer (MTS Systems, Cary, NC).
Surface EMG (Konigsberg Instruments, Pasadena, CA) was collected
from 15 muscles in the legs and trunk on the right side of the body
unless otherwise indicated: TA, tibialis anterior (bilateral); MG,
medial gastrocnemius (bilateral); SOL, soleus; VLAT, vastus latera-
lis; RFEM, rectus femoris; SEMB, semimembranosus; SEMT, semi-
tendinosus; BFLH, long head of biceps femoris; BFSH, short head of
biceps femoris; ES, erector spinae (bilateral); RA, rectus abdominis
(bilateral). Silver/silver chloride disc electrodes were placed at a 2-cm
interelectrode distance according to standard EMG electrode place-
ment guidelines (Basmajian and Blumenstein 1980). EMG signals
collected bilaterally are reported using the suffixes “-R” and “-L” to
indicate right and left legs, respectively. Raw EMG signals were
high-pass filtered at 35 Hz (third-order zero-lag Butterworth filter),
demeaned, half-wave rectified, and low-pass filtered at 40 Hz (first-
order zero-lag Butterworth filter). Body segment kinematics were
derived from a custom 25-marker set that included head–arms–trunk
(HAT), thigh, shank, and foot segments (Vicon, Centennial, CO).
Ankle, knee, and hip joint angular kinematics were calculated as the
intersegment angles in the sagittal plane. CoM displacement was
calculated from kinematic data as a weighted sum of segmental

masses (Winter 2005). This displacement waveform was low-pass
filtered at 50 Hz (third-order zero-lag Butterworth filter) and numer-
ically differentiated to derive the CoM velocity trajectory. Ground
reaction forces were low-pass filtered at 100 Hz (third-order zero-lag
Butterworth filter). CoM acceleration was then calculated as the
difference between ground reaction force divided by subject mass and
platform acceleration.

Data analysis

SCALING OF MUSCLE ACTIVITY TO PERTURBATION CHARACTERIS-

TICS. Changes in muscle activity due to the manipulation of pertur-
bation characteristics were determined by examining mean muscle
activity during specific time periods as reported in several previous
studies (Diener et al. 1988; Henry et al. 1998; Maki and Ostrovski
1993). Because the characteristic temporal features of the EMG
response vary between conditions, recorded EMGs following postural
perturbations were examined during two consecutive 150-ms time
periods following the onset of activity in each muscle, corresponding
to the initial burst (IB) and plateau region (PR) of muscle activity (Fig.
2). To increase the temporal resolution of the analysis, each time
period was then further subdivided to create a total of four 75-ms
periods following muscle onset (APR1–APR4), where IB is a com-
bination of APR1 and APR2 and PR is a combination of APR3 and
APR4. Muscle onset time was determined as the time point at which
muscle activity exceeded the mean activation level during the quiet
background period plus 2SDs of the mean and was verified manually.
For each subject, mean EMG levels during each time period were
calculated for each muscle and normalized to the maximum EMG
observed in that muscle over all conditions. To examine the scaling of
muscle responses with perturbation characteristics, we performed a
three-way ANOVA (velocity � acceleration � subject) on the mean
EMG data during each period. For those muscles significantly affected
by perturbation characteristics, we computed the slopes of the scaling
relationships by performing linear regression analysis of mean EMG
to peak perturbation acceleration and velocity. ANOVA results were
evaluated at a significance level of � � 0.05, adjusted with a
Bonferroni correction for multiple comparisons (� � 0.0125; n � 4).
All averaged data are presented as means � SD.

FEEDBACK PREDICTIONS AND RECONSTRUCTIONS OF MUSCLE AC-

TIVITY. We predicted the entire time course of muscle activity using
four different formulations of the hypothesis that CoM kinematic
signals are linearly combined in a feedback manner to generate
muscle activity. For all of the formulations, the horizontal displace-
ment (p), velocity (v), and acceleration (a) of the CoM were subject to
a common time delay (�) to simulate neural transmission and pro-
cessing time. Simulated muscle activity (EMGp) was then formed by
the linear combination of each delayed CoM signal weighted by a
feedback gain (ka, kv, kp)

EMGp � kp p�t � �� � k���t � �� � kaa�t � �� (1)

The simulated muscle activity was half-wave rectified to produce a
nonnegative EMG prediction, and converted to a muscle torque using
a first-order muscle model, which counteracted the disturbance torque
(Lockhart and Ting 2007; Welch and Ting 2008). All analyses were
conducted over a 1.1-s time interval, beginning 100 ms before plat-
form motion. In all simulations, feedback parameters were restricted
such that 0 � ki � 100 and 60 � � � 250. Parameters for all of the
formulations are listed and briefly described in Table 1.

FEEDBACK MODEL RECONSTRUCTION OF MUSCLE ACTIVITY. Simi-
lar to our prior studies (Lockhart and Ting 2007; Welch and Ting
2008), we first used a computational model of balance control that
simulated the body motion using a lumped mass on a single-link
inverted pendulum scaled to each subject’s mass and CoM height

FIG. 2. Representative postural response to a forward support-surface
translation. Muscles were activated in a coordinated fashion to produce forces
to counteract the perturbation (left), returning the posture to an upright
position, usually within 1 s of the perturbation onset (right). The shaded areas
on electromyographic (EMG) traces represent the initial burst (IB) and plateau
region (PR) periods of muscle activity.
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(Fig. 3A). We used this neuromechanical model to identify a feedback
delay (�) and three feedback gains (ki) to best reproduce the entire
time course of recorded muscle activity for each muscle in each
experimental condition. An optimization was performed to minimize
the difference between the recorded and simulated muscle activity,
while ensuring the stability of the inverted pendulum

min
K�G

�J � E� �
0

tend

��sem
2 � max ��m�em���dt� � Wex�tend�� (2)

The first term penalized the error between the simulated and recorded
EMG signal over time as represented by the vector em with weight �s.

TABLE 1. Feedback model parameters for each model formulation

Symbol Description Value

A. System Identification Pendulum Model

�m Weight for maximum deviation between simulated and measured EMG signals at any time point 1,000 N �m/s
�s Weight for error between simulated and measured EMG signals over time 10 N �m/s
wp Weight for final pendulum position 0 N
wv Weight for final pendulum velocity 0.08 N � s
wa Weight for final pendulum acceleration 0.02 N � s2

B. Jigsaw Models

�m Weight for maximum deviation between simulated and measured EMG signals at any time point 10 N �m/s
�s Weight for error between simulated and measured EMG signals over time 1 N �m/s

C. Optimal Feedback Model

� Weight for level of EMG activation over time 20 N �m/s
qp Weight for deviations of pendulum position over time 0.05 N/s
qv Weight for deviations of pendulum velocity over time 50 N
qa Weight for deviations of pendulum acceleration over time 1 N � s
	p Weight for final pendulum position 0 N
	v Weight for final pendulum velocity 0.08 N � s
	a Weight for final pendulum acceleration 0.02 N � s2

W � [wp wv wa], Q � diag [qp qv qa], and 	 � [	p 	v 	a]. The final simulation time (tend) was 1.1 s for all models. Listed parameters are described in detail
in Welch and Ting (2008).

A

B

FIG. 3. Feedback models for postural control. A: the stand-
ing human was modeled as an inverted pendulum on a cart that
was perturbed using recorded perturbation acceleration trajec-
tories. Horizontal pendulum acceleration, velocity, and dis-
placement trajectories were subject to a common time delay and
scaled by the corresponding feedback gain. The resulting de-
layed and weighted kinematic signals were summed and recti-
fied to predict temporal patterns of muscle activity. A first-order
muscle model was used to generate the resulting muscle torque
to counteract the perturbation. The time constant of the muscle
model was defined as 
 � 40 ms and the muscle model gain was
A � 4mh kg �m
2 � s
1, where m is the mass (in kg) of the
subject and h is the height of the subject’s center of mass (CoM,
in m). B: in the model-free jigsaw analysis, recorded CoM
kinematic signals were used to directly reconstruct EMG pat-
terns. Predicted muscle activity was generated as a linear
combination of the recorded kinematic signals (CoM accelera-
tion, velocity, and displacement) at a common time delay.
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The second term penalized the maximum deviation between the
simulated and measured EMG signals at any single point in time with
weight �m. The final term penalized nonzero final states of the
inverted pendulum x � [p v a]T with weight W, promoting a final
pendulum configuration resembling quiet upright stance.

SCALING OF PREDICTED MUSCLE ACTIVITY WITH PERTURBATION

CHARACTERISTICS. Using subject-specific feedback gains and de-
lay, we also used this model to make predictions of muscle activity,
assuming that the feedback gains were fixed across conditions. For
each subject, the feedback gains and delay for an intermediate per-
turbation condition (35 cm/s at 0.4 g) were used to generate predicted
muscle activation patterns for all experimental conditions. The local-
ized changes in the temporal patterns of muscle activity predicted by
the constant-gain feedback model were then compared with those
recorded experimentally. The goodness of fit between recorded EMG
and constant-gain EMG predictions was evaluated for each muscle to
determine whether a feedback law with constant gains was sufficient
to account for the observed variations in muscle activity with pertur-
bation characteristics.

MODEL-FREE RECONSTRUCTION OF MUSCLE ACTIVITY. Because of
the possibility that the inverted pendulum model simulations may not
adequately reproduce the actual CoM kinematics, we also used a
model-free “jigsaw” method of reconstructing muscle activity directly
from experimentally measured CoM kinematics in each condition
(Fig. 3B). This approach was not subject to the strict biomechanical
constraints imposed on the CoM kinematics by the inverted-pendulum
model, but rather shifted and scaled recorded CoM acceleration,
velocity, and displacement signals to match recorded EMG patterns.
For each muscle and perturbation condition, a feedback delay (�) and
three feedback gains (ki) that best reproduced the entire time course of
recorded muscle activity were found by minimizing the difference
between the jigsaw reconstruction and the recorded EMG pattern

min
K�G �J � E �

0

tend

��sem
2 � max ��m�em���dt� (3)

This cost function is identical to Eq. 2, but excludes the final term
required to achieve an upright pendulum configuration at the end of
simulation.

TRANSIENT ACCELERATION ENCODING. An additional variant of the
model-free method was created to account for mismatches between
reconstructed and recorded muscle activity in low-velocity/accelera-
tion conditions. We hypothesized that muscle spindles transiently
encode acceleration when a muscle is stretched starting from rest, with
the encoding ending abruptly as force and strain accumulate within
the fiber. Although the mechanisms for such a “stiction” response are
not known, it could be caused by the rapid detachment of cross-
bridges (Getz et al. 1998; Henatsch 1971). Our “jigsaw with stiction”
method was used to investigate the possible role of transient acceler-
ation encoding due to spindle stiction on the postural response. We
empirically modeled the muscle spindle stiction response by allowing
acceleration encoding for a 75-ms time period after the onset of
platform acceleration. Specifically, acceleration feedback was elimi-
nated between 175 and 300 ms following platform motion onset. This
permitted a 100-ms neural processing delay before muscle onset and
75 ms of acceleration encoding before the elimination of acceleration
feedback. Feedback gains and delay were then chosen as with the
“jigsaw” method, using a cost function that minimized the difference
between the reconstructed and recorded EMG patterns (Eq. 3).

Similarly, we simulated transient acceleration encoding in the
feedback model by limiting the duration of the acceleration feedback
to the first 75 ms following the onset of EMG activity. We then
recomputed the predicted EMG time courses and scaling relationships
derived from constant-gain simulations.

OPTIMAL FEEDBACK MODEL. Finally, we used the feedback model
with stiction to predict muscle activation patterns for each perturba-
tion condition based on an optimal trade-off between CoM stabiliza-
tion and neural effort. For each condition, the feedback delay (�) was
set to 100 ms and three feedback gains (ki) were chosen to minimize
total muscle activation and the kinematic deviation of the pendulum
from the initial upright configuration, without regard to experimen-
tally recorded data (Lockhart and Ting 2007; Welch and Ting 2008).

COMPARISON OF FEEDBACK GAINS ACROSS MODELS. To determine
whether humans respond optimally to support-surface translations, we
compared the variations in each subject’s feedback parameters across
conditions to those predicted by the optimal control model. Each
model resulted in a unique set of three feedback gains and one time
delay for each subject, condition, and muscle. For each model and
subject, we assessed the goodness of fit between predicted and
recorded EMG signals using both the coefficient of determination (r2)
and the uncentered coefficient of determination (variability accounted
for [VAF]). Next, we performed three-way ANOVA (velocity �
acceleration � subject) on each feedback parameter, at a significance
level of � � 0.05, to determine whether these feedback parameters
remained constant or changed with perturbation velocity and acceler-
ation. We finally performed regression analysis of the mean feedback
parameters across subjects with respect to peak velocity and acceler-
ation to reveal any significant scaling relationships.

R E S U L T S

Summary

In response to a variety of support-surface perturbations of
equal displacement, the initial EMG burst in multiple muscles
scaled linearly with peak perturbation acceleration, while the later
plateau region of EMG scaled linearly with peak perturbation
velocity. Similar scaling trends were found in simulated EMG
signals based on a simple CoM feedback model. The temporal
pattern of EMG signals was similar to recorded EMG signals
during anterior-posterior support-surface translations over a wide
range of perturbation magnitudes that evoke a range of kinematic
strategies (e.g., ankle, mixed, and hip strategies) for balance
recovery. However, the initial burst of activity in recorded EMG
signals had a relatively fixed duration that only followed CoM
acceleration for a limited period of time. We corrected for this
discrepancy by incorporating a time-limited feedback reponse to
CoM acceleration in the model, inspired by muscle spindle affer-
ent dynamics. With this correction, a relatively invariant set of
model feedback gains was sufficient to characterize the changes in
the temporal patterns of muscle activity recorded across all ex-
perimental conditions.

Scaling of muscle activity to perturbation characteristics

In response to support-surface translations in the sagittal
plane, subjects activated muscles throughout the lower limbs
and trunk to counteract perturbation-induced postural sway.
Subjects exhibited postural sway in the opposite direction of
platform motion, characterized by coordinated joint motions
about the ankle, knee, and hip that varied across perturbation
conditions (Fig. 4), spanning the continuum from “ankle” to
“hip” strategies (Runge et al. 1999). The continuum of joint
motions across conditions was characterized predominantly by
changes in maximum hip deflection (P � 0.02), with ankle and
knee deflection remaining constant across conditions (P �
0.24). Subjects typically returned to an upright configuration
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within 1 s. Here, we will primarily discuss EMG analysis
results for the right ankle dorsiflexor tibialis anterior (TA-R)
during forward perturbations and for the right ankle plantar
flexor medial gastrocnemius (MG-R) during backward pertur-
bations; these muscles serve as major agonists and their results
are representative of the findings across all muscles. In re-
sponse to forward perturbations, the postural response in TA-R
was characterized by an initial burst of EMG, after a latency of
119 � 22 ms, followed by a sustained plateau region of tonic
activity (Fig. 5). Similarly, in response to backward perturba-
tions, MG-R exhibited an initial burst at a latency of 136 � 49
ms, followed by a plateau region. In all muscles, muscle onset
latencies were significantly affected by platform acceleration
(P � 0.006; except bilateral ES), but not by platform velocity
(except bilateral TA: P � 0.003; SEMB: P � 0.008). The
magnitude and shape of the EMG patterns varied considerably
between conditions (Fig. 5, A and C).

The effects of perturbation acceleration and velocity on EMG
activity were temporally separated within the time course of the
postural response, as exemplified by TA-R EMG (Fig. 5). In
perturbations of varying peak acceleration with constant peak
velocity, IB activity increased with perturbation acceleration
(Fig. 5A, example of TA-R response at 30 cm/s). This was true
for multiple velocity levels (Fig. 5B) and for all 15 muscles
recorded in both forward and backward perturbations (Table
2). Across subjects, the mean slope of IB activity with respect
to peak acceleration was 0.56 � 0.16 g
1 for TA-R and 0.41 �
0.27 g
1 for MG-R. In contrast, PR muscle activity did not
vary with peak acceleration at low velocities in TA-R, but
some scaling was found at higher velocities (Fig. 5B). This
scaling appears to be due to the variation of muscle activity in
early, rather than the late, PR time period (Fig. 5A). Scaling of
PR activity with peak acceleration was found in only 4 of 15
muscles for forward perturbations and in 12 muscles for
backward perturbations (Table 2).

For perturbations of constant peak acceleration and varying
peak velocity, IB activity was constant, while PR activity
increased with perturbation velocity (Fig. 5C, example of
TA-R response at 0.4 g) at all acceleration levels (Fig. 5D).
Significant scaling of IB activity with peak velocity was found
in only 7 muscles for forward perturbations and in 2 muscles
for backward perturbations (Table 2). Significant scaling of PR
activity with peak velocity was found in 14 of 15 muscles for
forward perturbations and in all muscles for backward pertur-
bations (Table 2). In contrast to the scaling of PR activity with
peak acceleration described earlier, the scaling of PR activity
with peak velocity appears to be due to variations in muscle
activity during the later portion of the PR time period (compare
Fig. 5, A and C). Across subjects, the slope of PR muscle
activity with respect to peak velocity was 2.25 � 0.72 s/m for
TA-R and 1.35 � 0.80 s/m for MG-R.

Inspection of the EMG signals suggests that the effects of
peak acceleration are limited to early PR and the effects of
velocity to late PR. Accordingly, a higher-resolution analysis
demonstrated that EMG activity evolved from scaling with
acceleration in the early periods to scaling with velocity in the
later periods (Table 3). The slope of the TA-R response with
respect to peak perturbation acceleration was highest in APR1
and decreased in APR2 across all velocity levels. In APR3 and
APR4, the scaling with peak acceleration was not significant,
except for APR4 at the highest velocity level (Table 3). In
contrast, the slope of the TA-R response with respect to peak
perturbation velocity was not significant in APR1, significant
for two velocity levels in APR2, and increased significantly
across all velocity levels between APR3 and APR4 (Table 3).
Although the effects of acceleration and velocity may be
temporally segregated at the earliest and latest time periods
investigated, their influences can overlap at intermediate time
points. The changes in slope with respect to acceleration and
velocity are thus consistent with the predictions of a feedback

FIG. 4. Joint motion varies with perturba-
tion characteristics. Intersubject mean peak
angular deflections of the ankle (A), knee
(K), and hip (H) joints, measured in degrees,
are illustrated for each experimental condi-
tion in the backward direction. Error bars
indicate 1SD of the mean.
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model where the activity is formed by the different time
courses, rather than simply the peak magnitudes, of CoM
acceleration and velocity (van der Kooij and de Vlugt 2007).

Scaling of predicted muscle activity
to perturbation characteristics

To determine whether a feedback law with constant feed-
back gains could reproduce the observed variations in muscle
activity across conditions, we used subject-specific feedback
gains from a perturbation of intermediate magnitude (Table 4)

to predict the muscle activity in all perturbation conditions.
The variations in the predicted EMG signals were qualitatively
similar to those recorded from experimental subjects—the
earlier regions of muscle activity, including the initial burst,
varied in response to changes in perturbation acceleration (Fig.
6A), whereas the later regions of muscle activity varied in
response to changes in peak velocity (Fig. 6C).

The differential scaling of IB and PR activity with peak
perturbation acceleration and velocity was predicted by model
simulations using constant feedback gains. At all velocity
levels, model-predicted IB activity varied linearly with peak

A B

C D

-
-

-
-

FIG. 5. Scaling of muscle activity with perturbation characteristics. A: example variations of right-leg tibialis anterior (TA-R) EMG to perturbations of varying
peak acceleration (Accel, 0.2–0.5 g), with constant peak velocity (Velo, 35 cm/s) and total displacement (Pos, 12 cm). Vertical lines indicate the time window
evaluated for the IB and PR time bins of muscle activity. B: the linear regression of mean TA-R EMG across all subjects during the IB and PR time bins to peak
platform acceleration. Each data point represents the mean EMG level for one successful trial of one subject. Results from the linear regression analysis are
indicated by slope (�) and P values. Significant slopes: *P � 0.01 and **P � 10
5, with data points in black and P values in bold font. Conditions with
insignificant regression slopes are indicated by gray data points. C: example variations of TA-R EMG to perturbations of constant peak acceleration (0.4 g),
varying peak velocity (25–40 cm/s), and constant total displacement (12 cm). D: the linear regression of mean TA-R EMG across all subjects during the IB and
PR time bins to peak platform velocity.
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perturbation acceleration, whereas activity during PR showed
no significant scaling with peak perturbation acceleration (Fig.
6B). The slopes of model-predicted IB muscle activity to peak
acceleration were generally larger than those in experimental
subjects and were similar across all velocity levels, in contrast
to experimental data where the slope of IB activity to peak
acceleration decreased at higher velocities (Fig. 5B). The
model did not predict the occasional scaling of PR activity with
peak acceleration that was observed experimentally in some
muscles (compare Fig. 5B to Fig. 6B). At constant acceleration
levels, the model predicted scaling of the IB activity with peak
perturbation velocity at higher accelerations and demonstrated
strong scaling of PR muscle activity with peak perturbation
velocity (Fig. 6D). The slopes of the scaling relationship
between PR activity and velocity were similar to those found
for experimental data (Fig. 5D).

Reconstruction of muscle activity using the feedback model

To determine the source of the discrepancies between the
scaling of model-derived predictions and measured muscle

activity in IB and PR, we investigated the goodness of fit
between the model-derived temporal patterns of muscle activ-
ity and those recorded experimentally. Although the model
adequately reproduced the recorded EMG signals for the in-
termediate perturbation from which the feedback gains were
determined (35 cm/s at 0.4 g), model predictions deviated from
the measured EMG signals when feedback gains were held
constant across all perturbation levels. In particular, the initial
burst of activity was similar for higher peak acceleration levels
in experimental subjects compared with the model predictions
(cf. black and dark gray traces in Figs. 5A and 6A). However,
the duration of the platform acceleration impulse is extended at
low acceleration levels; similarly, model predictions for these
conditions exhibit a slow rise in EMG, with the initial activity
extending for a long duration, well into the PR time period
(Fig. 6A). Experimental data did not reflect this widening of the
initial burst, but rather exhibited initial activity that was much
shorter in duration than predicted by the model at low peak
acceleration levels (cf. gray and light gray traces in Figs. 5A
and 6A). Accordingly, the temporal EMG patterns predicted by
the constant-gain model matched recorded EMG signals best at
higher accelerations and did not produce good matches at low
accelerations levels (Fig. 7). Across conditions, constant-gain
EMG predictions resembled bilateral TA EMG reasonably well

TABLE 3. Postural response scaling in TA-R evolves temporally
from acceleration to velocity scaling

Postural Response Period

Level APR1 APR2 APR3 APR4

Velocity Acceleration scaling slope, g
1

25 cm/s 0.74* 0.67* 0.31 0.07
30 cm/s 0.85* 0.61* 0.04 
0.08
35 cm/s 0.45* 0.31† 0.26 0.28
40 cm/s 0.39* 0.30* 0.13 0.41*

Acceleration Velocity scaling slope, s/m

0.2 g 0.07 0.40 1.37* 2.21*
0.3 g 
0.07 0.75† 1.84* 2.39*
0.4 g 
0.24 0.81† 1.39* 2.31*

Significant regression slopes are in bold, with the significance levels denoted
*(P � 10
5) and †(P � 0.05).

TABLE 4. Subject-specific parameters and gains from model
predictions of TA-R activity for forward perturbation
(35 cm/s at 0.4 g)

Subject
Mass m,

kg
CoM Height h,

m

Feedback Gains

kp,
cm
1

kv,
s/cm

ka,
s2/m

�,
ms

A 73 1.04 3.8 1.40 0.15 79
B 58 1.06 6.5 0.56 0.11 60
C 76 1.15 2.3 1.60 0.13 98
D 70 1.08 5.4 0.78 0.09 105
E 65 1.05 12.8 0.70 0.17 82
F 73 1.17 7.5 0.67 0.12 77
G 81 1.23 6.9 0.93 0.13 116

TABLE 2. ANOVA P values for EMG response to peak acceleration and peak velocity

Forward Perturbations Backward Perturbations

Initial Burst Plateau Region Initial Burst Plateau Region

Muscle Peak Accel Peak Velo Peak Accel Peak Velo Peak Accel Peak Velo Peak Accel Peak Velo

TA-L <10�16 0.009 0.089 <10�16 <10�15 0.54 <10�6 <10�8

MG-L <10�3 0.76 0.42 <10�3 <10�4 0.016 <10�4 <10�12

TA-R <10�15 0.03 0.26 <10�16 <10�8 0.39 0.002 <10�9

MG-R <10�5 0.09 0.001 <10�9 <10�6 0.77 <10�4 <10�9

SOL <10�5 <10�5 0.11 0.005 <10�8 0.002 0.002 <10�16

VLAT <10�6 0.64 0.009 <10�9 <10�4 0.092 <10�4 <10�8

RFEM <10�16 0.40 0.010 0.002 <10�6 0.001 0.001 <10�8

SEMB <10�15 <10�3 0.092 <10�10 <10�15 0.039 <10�10 <10�16

SEMT <10�14 0.001 0.040 <10�9 <10�16 0.22 <10�6 <10�16

BFLH <10�10 0.004 0.26 <10�10 <10�6 0.54 0.031 0.0031
BFSH <10�10 0.018 0.41 <10�9 <10�15 0.18 0.017 <10�3

ES-L <10�7 0.006 0.23 0.20 0.0022 0.10 <10�4 <10�16

ES-R <10�6 0.007 0.058 0.004 <10�4 0.89 <10�3 <10�10

RA-L <10�6 0.42 0.005 <10�8 <10�7 0.10 0.13 <10�5

RA-R <10�3 0.47 0.71 <10�5 <10�6 0.35 0.008 0.002

P values indicated in bold are significant at P � 0.0125 for n � 4 comparisons. For all muscles during all periods, the subject factor was significant (P �
10
5) and the interactions between velocity and acceleration were not significant (P � 0.045).
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in all subjects (VAF � 0.75 � 0.10), whereas the predictions
of triceps surae and proximal leg and trunk muscles resulted in
less successful matches to experimental data (triceps surae:
VAF � 0.67 � 0.11; proximal: VAF � 0.58 � 0.17) and
produced simulation results with as low as 27 and 6% VAF,
respectively.

When feedback parameters were allowed to vary with ex-
perimental condition, we observed improvements in the fit
between model predictions and experimental data (Fig. 8A).
The resulting simulated muscle activity accounted for �61%
of the variability in ankle muscle activity (SOL and bilateral
TA and MG) across all subjects and conditions (VAF � 0.86 �
0.05). Activity in proximal leg and trunk muscles was generally
well reconstructed (VAF � 0.82 � 0.11), although activity in

some conditions was poorly reconstructed (all VAF �27%) due
to the overprediction of muscle activity, especially during the
plateau region of the response. Because the low level of
activity in these muscles was insufficient to maintain the
pendulum in the upright configuration and each muscle was
analyzed individually, the optimization procedure increased
muscle activity to satisfy this stringent biomechanical con-
straint (e.g., SEMT, SEMB, RA, and ES).

In general, model predictions were best matched to experi-
mental data in conditions with accelerations �0.2 g. In these
conditions, pendulum kinematics were well matched to re-
corded CoM kinematics (kinematic VAF �66%; kinematic
VAF � 0.87 � 0.08), despite the fact that kinematic matching
was not specified in the cost function. Still, the reconstruction of

A B

C D

FIG. 6. Scaling of muscle activity predicted by a constant feedback gain pendulum model. A: example variations of simulated TA-R EMG to perturbations
of varying peak acceleration (Accel, 0.2–0.4 g), with constant peak velocity (Velo, 35 cm/s) and total displacement (Pos, 12 cm). B: the linear regression of mean
simulated TA-R EMG across all subjects during the IB and PR time bins to peak platform acceleration. Significant slopes: *P � 0.01 and **P � 10
5. Conditions
with insignificant regression slopes are indicated by gray data points. C: example variations of simulated TA-R EMG to perturbations of constant peak
acceleration (0.4 g), varying peak velocity (25–40 cm/s), and constant total displacement (12 cm). D: the linear regression of mean simulated TA-R EMG across
all subjects during the IB and PR time bins to peak platform velocity.
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muscle activity from those conditions with accelerations �0.2 g
resulted in good matches to recorded EMG; however, the
kinematics of the pendulum often differed substantially from
the recorded CoM kinematics (kinematic VAF �38%; kine-
matic VAF � 0.68 � 0.15). For low peak accelerations,
experimentally recorded COM acceleration trajectories mim-
icked the wide duration impulse of the platform acceleration
waveform (Fig. 8B). Because the initial burst of experimental
EMG was always of short duration, the model was thus unable
to match both CoM acceleration and EMG signals in the same
condition at low peak accelerations. Instead, model-derived
EMG patterns matched the short initial burst of the EMG
signals by deviating pendulum motion substantially from the
actual CoM acceleration in the same condition (Fig. 8B).

Model-free reconstruction of muscle activity

To remove the influences of mismatched CoM acceleration
predictions from the model-based reconstruction of EMG, we
directly scaled and summed recorded CoM kinematic signals to
best reproduce the measured EMG signals using the jigsaw
model. Like the simulated EMG signals derived from the
pendulum model, jigsaw EMG signals consisted of an initial
burst of activity followed by a plateau region, with a time course
similar to that of recorded EMG data (Fig. 9). The jigsaw EMG

reconstructions reproduced recorded EMG with �55% VAF in all
muscles and subjects for all conditions (VAF � 0.90 � 0.06).
However, in perturbations with peak acceleration �0.2 g,
jigsaw EMGs also resulted in wide, low-magnitude initial burst
regions compared with recorded EMG signals. This discrep-
ancy between the jigsaw EMG signals and the recorded data
was more pronounced in subjects and muscles where EMG
signals had well-defined initial burst regions (e.g., all muscles
for Subjects A and G; ankle muscles for all subjects). Although
the VAF across all conditions was not improved when these
perturbation conditions were removed from the analysis
(VAF � 0.90 � 0.05), the minimum VAF across conditions
increased from 55 to 66%.

Transient acceleration encoding

The addition of transient acceleration encoding significantly
improved the match between model-derived and recorded
EMG patterns for all muscles (Fig. 10), but did not qualita-
tively alter the predictions regarding the scaling of muscle
activity with perturbation acceleration and velocity. With stic-
tion, the goodness of fit between jigsaw and recorded EMG
improved in conditions with accelerations �0.2 g (P � 10
16),
as well as in those with accelerations �0.2 g (P � 10
29). The
observed improvements to model reconstructions were most
pronounced in subjects and muscles with strong, well-defined
initial burst regions, resulting in well-matched model recon-
structions.

When transient acceleration encoding was added to the
constant-gain inverted-pendulum model, the scaling of IB
muscle activity with peak perturbation acceleration and the
scaling of PR activity with peak velocity was similar to that
observed in experimental subjects. Also, the slope of initial
burst scaling remained larger in the constant-gain model com-
pared with experimental data (data not shown). As before, PR
activity was predicted to scale with peak acceleration, although
this was not observed experimentally.

Optimal feedback predictions compared with feedback gain
variations across conditions

To achieve an optimal trade-off between postural stability
and energetic efficiency, the optimal model predicts the chang-
ing of feedback gains with both peak perturbation acceleration
and velocity (P � 10
16 for all gains) (Fig. 11). In contrast, the
jigsaw model with stiction demonstrates the relative invariance
of the feedback gains necessary to reconstruct recorded tem-
poral patterns of muscle activity across conditions (P � 0.10
for kv and kp). Although we observed small variations in
acceleration gain with peak perturbation acceleration (Fig.
11A) and variations in all feedback gains with peak perturba-
tion velocity (Fig. 11B; P � 10
3 for all gains), these trends
were inversely related to those predicted by the optimal feed-
back model.

D I S C U S S I O N

Across postural strategies that incorporate different joint
motions, we reproduced the entire time course of muscle
activity using constant, delayed feedback gains on CoM accel-
eration, velocity, and displacement in a simple inverted-pen-
dulum model. This suggests that different temporal muscle

25 cm/s @ 0.1g 40 cm/s @ 0.6g
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FIG. 7. Comparison of the time course of recorded EMGs to those pre-
dicted by a constant-gain pendulum model. The same feedback gains chosen to
match subject responses at an intermediate perturbation level (35 cm/s at 0.4
g) were used to predict temporal patterns of muscle activity across all
perturbation conditions. The time course of the predicted (solid black) muscle
activation pattern is compared with the recorded EMG patterns (gray, mean �
SD) for low- (left column) and high-velocity/acceleration conditions (right
column). Three representative comparisons are shown to illustrate the range of
observed results among subjects and muscles: TA-R (right-leg tibialis ante-
rior), SEMT (right-leg semitendinosus), and RA-R (right rectus abdominis).
Goodness-of-fit is indicated by the coefficient of determination (r2) and
uncentered coefficient of determination (variability accounted for [VAF]).
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activation patterns across individuals, muscles, and perturba-
tion conditions have a common underlying neural mechanism
of low dimension. The feedback model explains the differential
scaling of muscle activity during various time periods of
postural responses to perturbation acceleration and velocity.
These scaling relationships may have been previously masked
or misinterpreted as a result of limitations in the control of
perturbation devices, which we circumvented through careful
manipulations of perturbation characteristics. As in prior stud-
ies, we show that the initial burst of muscle activity during
postural responses is relatively invariant compared with later
time periods in the postural response. However, we hypothe-
size that the limited duration of the initial burst reflects the
dynamics of afferents that transiently encode acceleration in-
formation, rather than a feedforward motor pattern.

Feedback control of muscle activity for posture

Although feedback models of posture predicting joint
torques have been implemented previously, only through the
direct examination of muscle activity were we able to reveal
potential neural mechanisms for postural control because many
different temporal patterns of muscle activity can produce
similar kinematic trajectories and joint torques (Gottlieb et al.
1995). Without the use of acceleration feedback in our model,
realistic muscle activity patterns do not emerge in simulations
of either human (Welch and Ting 2008) or cat responses
(Lockhart and Ting 2007). However, as in animals with large-
fiber sensory neuropathy, muscle activation patterns lack an
acceleration feedback component yet produce similar patterns
of CoM kinematics (Lockhart and Ting 2007). The destabiliz-
ing effects of neural processing and transmission delays may
be mitigated by the phase-leading acceleration feedback to

muscle activity, allowing prior postural feedback models to
transform joint angle changes instantaneously into joint
torques.

Together with studies investigating the sensory integration
mechanisms in balance control, our results support the hypoth-
esis that the CNS uses a multisensory estimate of task-level
variables, such as CoM motion, to produce and modulate
muscle activity during postural control. Here, we used a single-
link pendulum model of postural control to investigate, in
principle, whether muscle activity could be characterized by a
feedback mechanism; future studies will be necessary to vali-
date the generality of the model to different postural perturba-
tion paradigms and strategies. Although cats use quadrupedal
stance, they may be adequately modeled as an inverted pen-
dulum during support-surface translations because the mass of
the trunk is large and all four legs primarily change in orien-
tation but not length (Macpherson et al. 1989; Scrivens et al.
2008). However, in humans, the body can literally act as a
single-link pendulum during ankle-strategy responses (Peterka
2000), but undergoes multijoint motions for mixed- and hip-
strategy responses to larger perturbations. The fact that our
single degree-of-freedom model can still predict individual
muscle responses when the individual joint motions do not
mirror those of the CoM supports the idea that, rather than
being activated by feedback circuits local to a particular joint,
muscles across the body are modulated using an estimate of
CoM motion in a feedback manner. Similarly, it has been
shown that the hand trajectory is well controlled in reaching
tasks (Adamovich et al. 2001; Tseng et al. 2002) and global
variables such as hand direction, velocity, and endpoint force
are encoded in the primate motor cortex (Georgopoulos et al.
1986, 1992; Scott and Kalaska 1997). Even at the level of the
spinal cord, global variables such as leg length, orientation,

A B

FIG. 8. Comparison of the time course of recorded EMGs to
those predicted by system identification using the pendulum
model. For each perturbation condition, feedback gains were
chosen to match the EMG response in each muscle and each
subject. A: the time course of the model-derived (solid black)
muscle activation pattern is compared with the recorded EMG
patterns (gray, mean � SD) for low- (left column) and high-
velocity/acceleration conditions (right column). Three represen-
tative comparisons are shown to illustrate the range of observed
results among subjects and muscles: TA-R (right-leg tibialis
anterior), VLAT (right-leg vastus lateralis), and RA-R (right
rectus abdominis). Goodness of fit is indicated by the coefficient
of determination (r2) and uncentered coefficient of determina-
tion (VAF). B: the acceleration of the inverted pendulum model
corresponding to simulated muscle activity (black) is compared
with recorded CoM motion (gray) for the low- (left column) and
high-velocity/acceleration conditions (right column).
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velocity, and endpoint force are computed from the ensemble
of sensory receptor information (Bosco and Poppele 1997,
2001; Bosco et al. 1996; Lemay and Grill 2004; Poppele et al.
2002).

As the critical task-level biomechanical variable defining the
motion of the body, the direction of CoM motion has been
shown to reliably predict the directional tuning of muscles
across postural perturbation conditions where any single sen-
sory signal would fail to predict the appropriate muscle re-
sponse. These studies demonstrate that not only local propri-
oceptive signals but also vestibular and visual information are
insufficient to robustly predict the ensuing muscle activity for
the full suite of postural responses. Rotations (pitch and roll)
versus translations (horizontal plane) of the support surface
that elicit similar patterns of muscle activation induce opposite
changes in joint angles, but similar changes in CoM displace-
ment in both humans and cats (Carpenter et al. 1999; Diener
et al. 1983; Gollhofer et al. 1989; Nardone et al. 1990; Nashner
1977; Ting and Macpherson 2004). Similarly, spatial patterns
of muscle activation in the legs, trunk, and neck during auto-
matic postural responses cannot be attributed to any single
somatosensory or vestibular signal, but require multisensory
integration, whether subjects are standing (Carpenter et al.
1999; Inglis and Macpherson 1995; Keshner et al. 1988; Ting
and Macpherson 2004) or seated (Forssberg and Hirschfeld
1994; Keshner 2003).

Here, we extend these results to demonstrate that the forma-
tion of the time course of muscle activity across multiple joints
may also be derived from a global (rather than local) multi-
sensory estimate of postural destabilization, as encapsulated by
CoM kinematics (Ting 2007). The initial direction of changes
in joint kinematics on perturbation was not conserved within
each condition—even within the same subject—consistent
with previous studies demonstrating that CoM kinematics are
more tightly regulated in postural control than are individual
joint angles (Allum and Carpenter 2005; Brown et al. 2001;
Gollhofer et al. 1989; Krishnamoorthy et al. 2003; Szturm and
Fallang 1998). Especially in slower perturbations, the measur-
able changes in joint velocity and acceleration occurred too late
to be useful in the formation of muscle activity through
delayed-feedback processes. Further, joint kinematic changes
did not scale linearly with platform motion characteristics as
did muscle activity, suggesting that local joint changes may be
inappropriate for the feedback control of balance. Thus despite
the obvious limitation of our current analysis, which allowed
only a single muscle to be investigated at a time, it is unlikely
that a multiple-link pendulum model could reproduce the
muscle activity based on a set of constant local feedback gains.

The fact that muscles across the body appear to be modu-
lated by a common set of variables related to CoM kinematics
is consistent with a low-dimensional, hierarchal feedback con-
trol law (Todorov 2004), where task-level variables modulate
the activity of muscle synergies (Ting 2007; Ting and McKay
2007). Such a neural architecture has been shown to emerge
from the principles of optimal feedback control (Chhabra and
Jacobs 2006; Todorov and Jordan 2002). Muscle synergies that
coactivate multiple muscles across the body in fixed propor-
tions have been identified in postural responses to perturbations
in cats and humans and their activity is modulated by both the
direction of the postural disturbance and the postural strategy
(Ting and Macpherson 2005; Torres-Oviedo and Ting 2007;
Torres-Oviedo et al. 2006). Muscle synergies can activate
anatomical agonists and antagonists in varying proportions,
possibly explaining the scaling of “antagonist” muscles with
perturbation characteristics observed in the current study. Fur-
ther, because individual muscles may be simultaneously acti-
vated by multiple muscle synergies, different feedback gains
can occur across anatomical agonists, as we observed here.
Indeed, muscle synergy activity (M-modes) has been corre-
lated to anterior–posterior CoM motion during anticipatory
postural adjustments (Krishnamoorthy et al. 2003). Clearly,
more complex, multisegmental models will be necessary to
more fully understand the multimuscle coordination and bio-
mechanics required for different kinematic balance strategies
(Alexandrov et al. 2001; Horak and Nashner 1986; Runge et al.
1999). Further, the generality of such task-level postural con-
trol needs to be tested in other types of perturbation that alter
CoM kinematics through mechanisms different from the mov-
ing floor paradigm studied here.

Scaling of muscle activity to perturbation characteristics

Regardless of whether local or global variables are used in
postural control, the ability of our model to reproduce the
temporal patterns of muscle activity for postural responses to
support-surface perturbations provides a useful framework for
understanding variations in muscle activity across perturbation
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FIG. 9. Comparison of the time course of recorded EMGs to those pre-
dicted by a model-free analysis. In the “jigsaw model,” recorded CoM
kinematic signals are used to directly reproduce recorded EMG signals using
3 gains and a delay. The time course of the jigsaw-derived (solid black) muscle
activation pattern is compared with the recorded EMG patterns (gray, mean �
SD) for low-(left column) and high-velocity/acceleration conditions (right
column). Three representative comparisons are shown to illustrate the range of
observed results among subjects and muscles: TA-R (right-leg tibialis ante-
rior), SEMT (right-leg semitendinosus), and RA-R (right rectus abdominis).
Goodness of fit is indicated by the coefficient of determination (r2) and
uncentered coefficient of determination (VAF).
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conditions. Our experimental methods and data may also serve
to better clarify the scaling relationships of the initial burst
reported previously by Diener and colleagues (1988). Consis-
tent with their findings, simulated muscle activation patterns
exhibited velocity dependence during the late portions of the
initial burst of muscle activity, as well as throughout the
plateau region, with the effects of displacement predominant
only in the late plateau region. The scaling of muscle activity
during the initial burst with peak perturbation acceleration,
versus velocity as reported by Diener, may be explained not
only by differences in the control of the experimental appara-
tus, but also by the interactions and temporal overlap between
acceleration and velocity feedback contributions.

Covariation of perturbation acceleration and velocity is typ-
ical of many perturbation paradigms in prior studies (Maki and
Ostrovski 1993; Szturm and Fallang 1998), possibly resulting

from the use of controllers in which only the displacement
trajectory is specified (Brown et al. 2001). Positional overshoot
and an underdamped “ringing” in the acceleration are also
common (Fig. 1A). Additionally, initial platform acceleration
can be relatively invariant on a hydraulically actuated platform,
even when the reference trajectory is smoothed, possibly due to
the minimum aperture opening on the servo valve (Ting and
Macpherson, unpublished results). On such devices, the initial
perturbation acceleration can be altered only by shortening the
initial acceleration burst (Lockhart and Ting 2007). Thus it is
important that perturbation acceleration be directly measured,
rather than inferred from either the desired or recorded dis-
placement trajectory.

Our analysis also reveals that the acceleration and velocity
feedback gains that reproduce the observed variations in mus-
cle activity are relatively invariant across perturbation condi-

FIG. 10. Comparison of the time course of recorded EMGs
to those predicted by a model-free analysis with a transient
acceleration contribution. In the “jigsaw model with stiction,”
the recorded CoM acceleration signal is truncated to limit its
contribution to 75 ms. The time course of the model-derived
(solid black) muscle activation pattern is compared with the
recorded EMG patterns (gray, mean � SD) for 4 velocity/
acceleration combinations. Antagonistic pairs on each body
segment are shown to illustrate the range of observed results
among subjects and muscles: TA-R (right-leg tibialis anterior),
MG-R (right-leg medial gastrocnemius), VLAT (right-leg vas-
tus lateralis), SEMT (right-leg semitendinosus), RA-R (right
rectus abdominis), and ES-R (right erector spinae). Goodness
of fit is indicated by the coefficient of determination (r2) and
uncentered coefficient of determination (VAF).
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tions, although interactions can arise in a standard statistical
analysis from the overlapping contributions of acceleration and
velocity feedback in each time period. We demonstrated that
when peak velocity is held constant, the initial burst scales with
the peak perturbation acceleration. However, the scaling rela-
tionship with perturbation acceleration changes slope with
different peak velocity levels, demonstrating an interaction
effect. As in Diener et al. (1988), we find velocity scaling to be
present in the initial burst only if data are pooled across all
conditions; if segregated by acceleration level, when the peak
acceleration is increased, the muscle activation increases to a
larger but constant level with respect to velocity (Fig. 5D). A
similar acceleration scaling result can be observed in the
plateau region if data are pooled together, but not when
separated by velocity level.

Transient acceleration encoding

Although our findings suggest that acceleration information
is used in postural control, it is not known how acceleration is
encoded within the nervous system. The initial burst of muscle
activity remains present following vestibular loss (Inglis and
Macpherson 1995; Runge et al. 1998). In contrast, sensory loss
in the group I range eliminates the initial burst of the postural
response, which can be explained by the absence of accelera-
tion feedback within the framework of our model (Lockhart
and Ting 2007), implicating Golgi tendon organs, cutaneous
receptors, and muscle spindles. Although Golgi tendon organs
respond to muscle contractile force, it is not clear that they
produce a transient response to stretch when situated physio-

logically (Jami 1992). Rapidly adapting cutaneous receptors
have an acceleration-like dynamic response to pressure or
stretch of the skin (Johansson et al. 1992) and modulate motor
response to slipping and during finger–object interactions
(Johansson and Westling 1987; Macefield et al. 1996). Further,
plantar mechanoreceptors in the foot may transmit shear force
information that is proportional to horizontal accelerations
when stimulated by the onset of platform motion (Maki and
Ostrovski 1993; Morasso et al. 1999).

Muscle spindle primary afferents also exhibit a burst in
firing frequency at the onset of muscle stretch that has been
shown to scale with stretch acceleration (Schafer 1967) and
may represent the local acceleration of the part of the muscle
in which the spindle is embedded (Schafer and Kijewski 1974).
This acceleration response may result from stiction within the
intrafusal fiber when it is stretched from an isometric state
(Jansen and Matthews 1962; Lennerstrand and Thoden 1968)
and disappears when the muscle is first shortened and then
stretched (Gregory et al. 1987; Haftel et al. 2004; Houk et al.
1992; Huyghues-Despointes et al. 2003). The end of this
acceleration response could result from the breaking of actin–
myosin complexes as force within the fiber increases (Henatsch
1971) or the detaching of cross-bridges in a prepower stroke
phase at a critical strain level (Getz et al. 1998).

The duration of the initial burst in spindle firing frequency
also varies with respect to the acceleration and velocity char-
acteristics of the stretch. In fast stretches (�12% resting
length/s), the initial burst consists of a few spikes, lasting only
tens of milliseconds (Haftel et al. 2004). However, in slow

A B

FIG. 11. Comparison of feedback gains that characterize recorded EMG signals to an optimal solution. A: the linear regression of optimal and jigsaw CoM
acceleration, velocity, and position feedback gains (ka, kv, kp) to peak perturbation acceleration is illustrated at each velocity level (0.25–0.4 m/s). Data points
indicate the intersubject mean of the feedback gain for each condition. B: the linear regression of optimal and jigsaw feedback gains to peak perturbation velocity
is illustrated at each acceleration level (0.2–0.4 g).
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stretches (�0.2% resting length/s), the initial burst can be
much broader, lasting up to 500 ms (Cordo et al. 2002). Using
published human muscle morphometric data for TA (Maga-
naris et al. 1999), we estimate that the TA stretches in the
present study to be about 1–2% resting length/s. During these
long initial bursts, the firing frequency decays in a quasi-
exponential shape (Cordo et al. 2002), similar to the force
transients in muscle fibers when stretched (Getz et al. 1998).
The initial burst may thus transiently encode acceleration; the
initial burst of muscle activity reliably followed CoM acceler-
ation trajectory when the acceleration burst was shortened
(Lockhart and Ting 2007), but not when it is lengthened in the
present study. Although our simple truncation of acceleration
encoding to 75 ms improved model fits to experimental data,
more information about the mechanisms that determine the
duration and shape of the initial burst of muscle primary
afferents may further improve the agreement between our
simulation results and experimental data.

Invariant versus optimal feedback gains for postural control

Our results demonstrate that humans use a set of invariant
feedback gains in response to a wide range of postural pertur-
bations, even when different kinematic strategies are used.
Here, we found that, regardless of how similar the nominal
response of our subjects was to the optimum (Welch and Ting
2008), they did not alter their feedback gains according to an
optimal feedback solution when perturbations were presented
randomly. We hypothesize that the different joint motions
emerged from musculoskeletal dynamics due to the linear
scaling of muscle activity in response to perturbation charac-
teristics imposed by the constant feedback gains. This is
consistent with the idea that the ankle and hip strategies
represent the extremes of a continuous spectrum of postural
responses (Alexandrov et al. 2001; Creath et al. 2005; Horak
and Nashner 1986; Runge et al. 1999). Although small varia-
tions in the feedback gains were found across different veloc-
ities, these variations were inversely related to those predicted
by the optimal solution specific for each perturbation condi-
tion. It is possible that these small variations represent some
biases in the perturbations themselves, in the sensory receptor
mechanisms, or in the data analysis algorithms. We hypothe-
size that the feedback gains would change if perturbations were
presented predictably, rather than randomly, consistent with
the previously observed habituation to postural perturbations,
whereby the same perturbation may evoke different response
magnitudes and response strategies (Chong et al. 1999; Hansen
et al. 1988; Horak et al. 1989; Timmann and Horak 1997). If
so, the feedback gains identified here may reflect the “central
set” of a subject, which determines the amplitude of postural
responses to perturbation (Horak 1996; Keshner et al. 1987).
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