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Abstract

Locomotion results from the interactions of highly nonlinear neural and biomechanical

dynamics. Accordingly, understanding gait dynamics across behavioral conditions and indi-

viduals based on detailed modeling of the underlying neuromechanical system has proven

difficult. Here, we develop a data-driven and generative modeling approach that recapitu-

lates the dynamical features of gait behaviors to enable more holistic and interpretable char-

acterizations and comparisons of gait dynamics. Specifically, gait dynamics of multiple

individuals are predicted by a dynamical model that defines a common, low-dimensional,

latent space to compare group and individual differences. We find that highly individualized

dynamics–i.e., gait signatures–for healthy older adults and stroke survivors during treadmill

walking are conserved across gait speed. Gait signatures further reveal individual differ-

ences in gait dynamics, even in individuals with similar functional deficits. Moreover, compo-

nents of gait signatures can be biomechanically interpreted and manipulated to reveal their

relationships to observed spatiotemporal joint coordination patterns. Lastly, the gait dynam-

ics model can predict the time evolution of joint coordination based on an initial static pos-

ture. Our gait signatures framework thus provides a generalizable, holistic method for

characterizing and predicting cyclic, dynamical motor behavior that may generalize across

species, pathologies, and gait perturbations.

Author summary

In this manuscript, we introduce a novel, machine learning-based framework for quanti-

fying, characterizing, and modifying the underlying neuromechanical dynamics that drive

unique gait patterns. Standard methods for evaluating movement typically focus on

extracting discrete gait variables ignoring the complex inter-limb and inter-joint spatio-

temporal dependencies that occur during gait. Popular physiologically realistic modeling

approaches encode these spatiotemporal dependencies but are too complex to
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characterize individual differences in the factors driving unique gait patterns or disorders.

To circumvent these modeling complications, we develop a phenomenological model of

gait that enables more holistic and interpretable characterizations of gait, encoding these

complex spatiotemporal dependencies between humans’ joint angles arising from joint

neural and biomechanical constraints. Our coined ‘gait signature’ framework provides a

path towards understanding the neuromechanics of locomotion. This framework has

potential utility for clinical researchers prescribing individualized therapies for patholo-

gies or biomechanists interested in animal locomotion or other periodic movements

assessed across different pathologies, neural perturbations, and or conditions.

Introduction

Locomotion is a ubiquitous, complex, and dynamic behavior that is essential for survival.

Using cyclic patterns of joint angles, inter-limb and inter-joint coordination, animals effec-

tively move through their environments: walking, running, trotting, swimming, flying, and

crawling. Even within species and types of locomotion, variations in locomotor patterns often

occur across behavioral contexts, groups, and individuals. Thus, although locomotor patterns

can appear highly stereotyped, considerable inter- and intra-individual variability exists. Stud-

ies of locomotor behaviors have shown systematic differences in movement patterns based on

a wide range of neural [1–4] and biomechanical perturbations [5–8] environmental challenges

[9,10], psychological state [11,12], social status [13,14], injury [15–17], and disease [4,18–23].

Furthermore, locomotor impairments can arise from a wide range of physiological and neuro-

logical changes, from the subtle changes that may be indicators of progressive disorders (e.g.,

aging, cognitive impairments) to profound impairments with brain injury (e.g., stroke, spinal

cord injury) that can severely limit locomotor function. Although locomotor deficits are often

subjectively visible to a human observer, objectively characterizing and understanding some-

times subtle yet important differences in locomotion from a scientific and mechanistic stand-

point has been challenging [24–26]. For example, kinematic movement patterns (the

continuous motion of joint angles over time) have been collected across a wide range of loco-

motor modes and species but revealing individual-specific differences in kinematics remains

difficult. One barrier to progress is that interpreting individual differences in kinematics with-

out an underlying dynamical model is challenging, as kinematics are the result of the complex

neuromechanical dynamics that drive the spatiotemporal dependencies of joint kinematics

over time. Thus, capturing these underlying gait dynamics is likely essential for interpreting

differences in gait and movement across conditions and individuals.

Traditionally, gait dynamics are modeled using physiologically detailed neuromechanical

equations, however making predictive models using this approach has often proved challeng-

ing [27–29]. Partially, this difficulty arises because in order to understand the dynamics under-

lying gait, we also need to understand how neural feedback and control shape these dynamics.

While many models (e.g., musculoskeletal models) that use principles like optimal control can

generate simulations of unimpaired gait, as well as changes in gait due to altered biomechani-

cal or neural constraints, they often fail to predict changes in gait kinematics following neuro-

logical injury [28] or more subtle perturbations [30,31]. Progress in the physiological

modeling of locomotor circuitry in the spinal cord and brainstem demonstrates the role of

neural circuits in gait dynamics. However, these models typically rely on simplified [32,33]

biomechanical properties and cannot yet predict the deficits in gait specific to an individual

[25,34–36]. More importantly, if a hyper-realistic model of the neural and biomechanical
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and on GitHub. Links to Google Colab notebooks

enable our software to be run on the cloud for

users without computational resources. The gait

signature code developed and used in this paper

has been deposited at GitHub: https://github.com/

bermanlabemory/gait_signatures.The RNN model

and code was developed in Python programming

language using built-in Python-based libraries such

as Keras, Pandas, and NumPy. We revised the

Phaser algorithm (https://github.com/sheim/

phaser) to estimate phase for our kinematic time

trajectories in the development of our phase

averaged dynamics per trial. Shareable Jupyter

Notebooks were developed on the Google Colab

platform. The data analysis of the generated gait

signatures was conducted in MATLAB 2022a

(MathWorks).
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system did exist, the relationships between the high-dimensional parameters and actual move-

ment patterns would not likely be unique, as many parameters would not be identifiable, even

given massive amounts of data, as many different parameter choices could lead to the same

biomechanical output [37,38]. This non-identifiability limits the predictive power and gener-

alizability of these models to other interventions and conditions outside of limited contexts,

suggesting a need for a more holistic approach.

Despite these challenges, rich individual-specific information exists in gait data. For

instance, through observation of movement, the human brain can perceive many socially

salient features of an individual’s gait, suggesting that it should be possible to infer aspects of

gait dynamics from kinematic data. As an example, humans can derive a host of information

about individuals from movement patterns, including gender [39], body size [40], sexual ori-

entation [41], emotion [42], individual differences in dancing [43], perceived affective states

[44] and underlying intention [45]. Furthermore, judgements based on how individuals move

can drive decisions such as partner desirability or attractiveness [46] diagnosis [47,48], and

treatment planning [49,50].

Despite the rapid advent of technologies providing kinematic measurements through a

wide range of techniques, from videos to wearable sensors, we are still limited in how kine-

matic data can help interpret individual differences in gait [51,52]. Current approaches to

comparing biomechanical features or kinematic trajectories quantify between-group differ-

ences or inter-individual similarity but lack sufficient sensitivity to reveal interpretable differ-

ences in individuals’ gaits [53–55]. Inter-joint coordination differs across individuals, as

muscular coordination patterns vary across a variety of motor skills and deficits in individual-

specific ways. Indeed, metrics of muscle coordination in children with cerebral palsy are con-

sistent with clinician judgements of motor control complexity that predict intervention out-

comes [56]. Recently, supervised machine learning methods have been used to classify

differences in a large sets of gait kinematics that were labeled by groups or individuals [55,57].

However, these approaches have not modeled the underlying gait dynamics, nor can they dis-

cover subtle differences in gait that are not labeled a priori.

Here we develop a data-driven framework for modeling gait dynamics that represents mul-

tiple individuals in the same latent space. This latent space reveals individual- and group-level

differences in the neuromechanical dynamics of gait. We used kinematic data from multiple

healthy and neurologically impaired individuals, each walking at six different speeds, to train a

recurrent neural network (RNN) that learns gait dynamics. This phenomenological approach

infers complex spatiotemporal dynamics and enables future kinematic predictions to be made

based on current and prior kinematic postures. Once trained, differences in gait dynamics

across groups, individuals, and walking speed were projected onto a common, low-dimen-

sional latent space of the model parameters. The stride-averaged representation of gait dynam-

ics in the latent space constitutes a “gait signature” that we use to characterize differences

across individuals, groups, gait speed, and impairment severity. To demonstrate the generaliz-

ability of gait dynamics, we show that interpolating gait signatures to predict gait kinematics at

new walking speeds is more accurate than interpolating the kinematics themselves in healthy

individuals. Further, we show that the low-dimensional basis functions we discovered have

biomechanical interpretability in terms of the inter- and intra-limb coordination patterns that

they generate. The dynamical projections onto each basis function for each trial can be inde-

pendently driven through the trained gait dynamics model to reconstruct the kinematics asso-

ciated with that specific basis function. We generated illustrations of the reconstructed joint

angle kinematics to visualize and infer what aspects of gait coordination each subcomponent

influences. These subcomponents of gait coordination can be manipulated independently (i.e.,

gait sculpting) to infer the relationships between specific underlying dynamical components
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and their corresponding kinematic phenotypes and to identify what specific gait rehabilitation

strategies are likely required for individuals. Finally, our gait dynamics model is generative; it

can predict individual-specific time evolution of kinematics from an initial arbitrary posture

(self-driving) once the network is primed with several gait cycles of the individual’s kinematic

data. This study establishes a new data-driven framework to quantitatively interpret individ-

ual-specific differences in gait dynamics with the potential to enable discovery in a wide range

of gait coordination deficits, contexts and interventions in humans and other animals.

Results

Gait signatures: A low-dimensional representation of gait dynamics

We used motion capture to collect sagittal-plane kinematic data that consisted of 15 seconds of

continuous gait kinematics from bilateral, hip, knee, and ankle joints from 5 able-bodied (AB)

participants and 7 stroke survivors (> 6 months post-stroke, gait speeds 0.1 to 0.8 m/s) walk-

ing on a treadmill at a range of six different speeds each. Taking inspiration from neural net-

work models that capture neural dynamics [58–60] and biological systems, we implemented a

recurrent neural network (RNN) model to capture the dynamical properties of gait. Our

model input parameters only include kinematic data and do not include anthropometric infor-

mation or clinical characteristics and do not account for differences in joint kinematics due to

neural versus biomechanical constraints.

Developing the recurrent neural network (RNN) architecture and training

the model

The gait dynamics model was developed in Python using common Python libraries, including

TensorFlow, Keras, Pandas, and NumPy. We developed our code in Google Colab to facilitate

open-source sharing of our dynamic framework, which can be found here: https://github.com/

bermanlabemory/gait_signatures. The model architecture was selected based on two criteria:

1) minimizing model training and validation loss during model fitting, and 2) maximizing the

similarity of short-time (single stride) and long-time (multiple strides) self-driven model pre-

dictions (termed: gait signature alignment) post model training (S1 Fig). By implementing

these two model selection criteria we ensure 1) a high goodness-of-fit (model that best repre-

sents the underlying dynamics across all participants and gait speeds) and 2) the model is capa-

ble of predicting the time-evolution of gait (encode gait dynamics). We evaluated these criteria

against alternative models by varying 2 hyperparameters (number of LSTM units and the look-

back time, see Methods). The selected model architecture is a sequence-to-sequence RNN [61]

consisting of an input layer, a hidden layer of 512 LSTM units, and an output layer. The RNN

learns a map from time-series kinematic input data (0 to T-1) to kinematics one time-step in

the future (1 to T) for all training trials (Fig 1A). The model was trained using the ‘mean

squared error’ (mse) loss function until training and validation error converged and stabilized

around the same point (< 0.03 degrees2). Thus, the model successfully learns the underlying

dynamics of gait (S2 Fig). The model’s internal states capture trial-specific dynamics predicting

the time evolution of joint kinematics; activation coefficients (H) and memory cell states (C)

and are tuned based on kinematic inputs. Kinematic data was input in multivariate format,

not concatenated [62,63]. In brief, our RNN model was designed to capture short and long-

term gait dependencies in time [64,65] as well as inter-and intra-limb coordination over time,

uncovering features of gait that were not previously targeted or used in gait analysis. To verify

whether our model was generalizable, we conducted leave-one-out cross validation, where 12

different models were trained leaving a single individual’s 6 trials on each model run (S3 Fig).
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Stroke-survivors are known for having neurological impairments that result in heterogeneous

gait dysfunction that are not fully understood; thus, we anticipate that our gait dynamics

model will capture and shed light on these individual-specific deficits in gait coordination,

identify similar coordination strategies or deficits amongst our stroke cohort, and allow us to

compare these different gait dysfunctions to the able-bodied ‘normative’ gait (controls).

Generating gait signatures

To generate gait signatures, kinematic trajectories from each walking speed trial across partici-

pants were fed as input into the trained neural network and the corresponding internal states

(H and C parameters, see above) were extracted (Fig 1A). The internal activations prescribe

the spatial and temporal dependencies generating the input kinematics. The resulting time-

series of 1024 internal states (512 H, 512 C parameters) were reduced in dimension using Prin-

cipal Components Analysis (PCA) and phase averaged [66]. Phase averaging is applicable

here, as the underlying gait dynamics are periodic, and the translation from time to a phase

between 0 and 2π allows us to describe all internal state dynamics in a speed-independent

manner.

The first 6 Principal Components (PCs) explain ~72% of the variance in gait dynamics (S4

Fig), allowing us to focus on these modes for our visualization and analysis. The time-varying

contributions of the first 3 dominant PCs were plotted in 3D for 3 representative individuals—

able-bodied adults, high-functioning stroke (self-selected (SS) walking speed > 0.4m/s) and

low-functioning stroke (SS speed < 0.4m/s)—highlighting that the gait dynamics between all 3

individuals are different (Fig 1B, left). The gait dynamics of the high-functioning stroke survi-

vor (red), while spatially closer to the able-bodied individual (blue) than the low-functioning

stroke survivor (orange), show observable differences in its dynamical trajectory between to

the two individuals. To determine whether some structure exists amongst the three different

subject groups, all the 6-dimensional gait signatures were projected onto a 3D map using Mul-

tidimensional scaling (MDS) [67] to visualize relative distances between all gait signatures

Fig 1. Pipeline figure outlining the steps to generating individual-specific gait signatures. Continuous, multi-joint kinematics from multiple individuals are

fed into the RNN model as input data and the model is trained sequence-to-sequence to predict one-step time shifted output kinematics. High dimensional

internal parameter (H and C) time traces per individual are extracted and principal component analysis was applied to reduce the dimensionality of the data to

form individual gait signatures (A). 3D time trace visualizations of 3 representative individuals (able-bodied (blue), high-functioning (red), low-functioning

stroke (orange)) of the 1st 3 dominant principal component contributions (B, left). 3D projections of the 6-D gait signatures using multi-dimensional scaling

(MDS) reveal different gait dynamics amongst the three gait groups: able-bodied (blue), high-functioning (red) and low-functioning (orange) stroke survivors

(B, right). The size of the circles represents the individual’s trial speed (i.e., the smallest circles represent an individual’s slowest gait speed, and the size of the

circles increase with gait speed).

https://doi.org/10.1371/journal.pcbi.1011556.g001
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(Fig 1B, right). The locations of the 3 MDS projections of the 3 representative individuals are

not arbitrary, as they belong to clusters of gait signatures of the same gait group. Thus, gait sig-

natures preserve key clinically relevant features of the underlying gait dynamics, independent

of the individual or speed.

Gait signatures reveal that individual-specific differences in dynamics are

favored in the gait representation, over differences in gait speed

Gait signatures of individuals’ 6 speed trials within both cohorts (healthy and stroke) are

tightly grouped together. Gait signatures represent individual-specific dynamics; the unim-

paired cohort exhibit a stereotyped low-dimensional structure across individuals in the able-

bodied cohort (Fig 2Ai, left) vs. the impaired cohort, which display much more variable (i.e.,

highly individualized) low-dimensional representations (Fig 2Ai, right). Because the data are

phase averaged over the gait cycle, we demonstrate that gait signature trajectories are well-

aligned with the four gait phases (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance), enabling

phase-specific comparisons of differences in gait dynamics. The unimpaired group showed

similar structure across the four gait events (Fig 2Aii, left), whereas there was much more vari-

ability within the impaired group (Fig 2Aii, right), revealing individual-specific differences

within and across distinct parts of the gait cycle. The similarity between gait signatures was

Fig 2. Gait signatures reveal highly individualized low dimensional representations of gait dynamics irrespective of absolute gait speed. A) 3D

unimpaired (left) and impaired (right) gait signatures colored by i) individual and ii) gait phase. Gait signatures are grouped together according to

individuals within both cohorts (same hues of blue cluster together for unimpaired (i, left) and similarly the same hues of red cluster in the impaired cohort

(i, right)). In our convention the right leg of all unimpaired individuals was assigned to be the paretic leg and left leg the non-paretic leg. Impaired

individuals can have either left or right leg paresis. Unimpaired gait signatures reveal a similar looped structure across the four gait phases that occur during

a gait cycle (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance) (ii, left) whereas impaired signatures showed individual-specific differences across the four

phases and were more variable (ii, right). B) 3D multidimensional scaling applied to all gait signatures shows the pronounced separation between

unimpaired (blue hues in left section of map) and impaired (red hues in right section of map) gait dynamics (i). Impaired signatures (red hues) are located

further away from the centroid of all unimpaired gait signatures (black square), indicating that they are less dynamically similar to the unimpaired

individuals. The smallest circles represent an individual’s self-selected walking speed trial and larger circles correspond to the faster speed trials. Low-

functioning stroke survivors (encapsulated in orange; based on self-selected gait speed< 0.4m/s) are located furthest away (largest Euclidean distances) from

the unimpaired centroid (i). Gait speed does not appear to strongly influence the differences in dynamics between individuals as similar speed gait

signatures are in different regions of the gait map (ii). Particularly, gait speed does not explain the heterogeneity in low-functioning stroke survivors’ gait

dynamics.

https://doi.org/10.1371/journal.pcbi.1011556.g002
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computed and visualized in a dimensionally reduced gait map space using MDS and colored

according to the different individuals in the dataset (Fig 2Bi). The unimpaired group form a

cluster in the gait map, showing that individuals in the unimpaired group are distinct from the

impaired group. Stroke-survivors occupy distinct positions from other impaired individuals’

sub-clusters in the gait space that highlight the well-established but poorly understood hetero-

geneity in gait deficits in the stroke cohort. Furthermore, individual-specific gait signatures

change slightly as individuals walk faster than their self-selected pace (Fig 2Bi). However, these

within-subject speed-induced changes are much smaller than between-individual difference in

gait signatures. The gait signatures of the individuals belonging to the able-bodied, high-func-

tioning, and low functioning stroke survivor cohorts show 3x, 4x and 7x larger distances

between individuals in the group versus within each individual 6 speed trials, respectively. We

calculated the Euclidean distance between individuals’ self-selected speed trial gait signature

and the calculated able-bodied centroid (Fig 2Bi, black square) and the results shown on the

plot to the right reveal that low-functioning stroke survivors (characterized based on the clini-

cal definition of having a self-selected walking speed of<0.4 m/s) are further away from the

able-bodied cluster than the high-functioning stroke survivors. Note that no information from

a clustering algorithm was used to characterize low- vs high-functioning individuals. The

encircled low-functioning stroke survivors (Fig 2Bi, orange enclosure) were labeled post-hoc

to demonstrate the lack of a single cluster characterizing low- vs high-functioning stroke survi-

vors. Showing the validity of our approach, low-functioning stroke survivors are less dynami-

cally similar to AB than higher functioning stroke survivors.

Gait speed does not appear to strongly influence the differences in dynamics between indi-

viduals’ gaits (although the range of gait speeds for each participant may not have been wide

enough to elicit major differences in their overall dynamics). It is worth noting that the walk-

ing speeds in our post-stroke cohort spanned the full speed range of each participant’s safe

walking capacity, whereas this was not the case for our able-bodied cohort. Overall, as

expected, the unimpaired group walked at faster speeds than the impaired group (Fig 2Bii).

Individuals in the able-bodied cluster walk at a range of different speeds, but individual gait

signatures still cluster tightly together. Despite the able-bodied dynamics being similar, there

still exists inherent variability in their gait dynamics that may be explained by factors such as

prior exercise and sports-training history, injury, disease, etc. Post-stroke individuals who

walk at similar slower speeds, however, maintain their own distinct individualized groupings.

Thus, individuals’ characteristic gait signatures were preserved across their range of walking

speeds and were not grouped based on absolute walking speed. For example, several clinically

similar post-stroke individuals (similar overground walking speed and Fugl-Meyer score [68])

have very different gait signatures that remain recognizable across a range of gait speeds (Fig

2). Although the low-functioning individuals in our sample are more dispersed than high-

functioning individuals, we expect that the spaces between individuals represent a continuum

of gait dynamics that would be filled given a larger sample size.

Furthermore, when used to distinguish between gait groups and identify individuals, gait

signatures perform similarly to using a set of 26 commonly used discrete variables (S5 Fig).

Discrete variables are already sufficient to classify between able-bodied and stroke gaits, with

numerous studies identifying key variables that map to function/impairment [69–71]. With

Gait signatures, we achieve the same level of classification without needing to hand-pick dis-

crete variables or to use force plates or inverse-dynamics analyses that would require more

equipment, computation, and subject-specific anthropometry for each observation. Gait signa-

tures also perform better than continuous kinematics and joint velocities at these same dis-

crimination tasks (S5 Fig). These results serve as a positive control, as researchers previously

could distinguish gait groups by building a classifier based on important subjectively selected

PLOS COMPUTATIONAL BIOLOGY Gait signatures: Data-driven discovery of gait dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011556 October 27, 2023 7 / 33

https://doi.org/10.1371/journal.pcbi.1011556


discrete variables. Here, we have created a dynamical representation that can distinguish

groups with similar accuracy. It is not surprising that the continuous kinematics performed

worse than the RNN gait signatures (which were developed from these very same data), as the

RNN model used the data to encode important time-varying changes in the kinematics, allow-

ing for more information to be extracted. Thus, parameterizing the evolution of individuals’

walking patterns into a common subspace allows for a more holistic, less biased, and straight-

forward analysis of primarily their overall differences in gait dynamics, inter- and intra-limb

coordination over any differences attributed to absolute gait speed. Gait signatures can allow

gait researchers to study or analyze the dynamical differences underlying impairment indepen-

dently from gait speed, facilitating analysis of dynamics between individuals who may not be

capable of walking at the same speeds and allowing investigation of changes in the underlying

mechanism of gait changes under different conditions (walking speed, gait rehabilitation inter-

vention, age etc.)

Low-functioning stroke-survivors are less dynamically analogous to able-

bodied and more dynamically variable compared to high-functioning

stroke-survivors

Clinically, gait rehabilitation researchers use gait speed as a primary quantitative indicator of

gait dysfunction [19,72,73]. While this coarse metric gives an overall value or number to one’s

overall gait function, it does not identify the specific impairments underlying the individuals’

gait. To derive more precise measures or indicators of gait impairment, we anticipated that uti-

lizing this gait signatures framework, we would be able to capture both subtle and obvious dif-

ferences in kinematic patterns underlying impaired gait. In the clinic, stroke survivors are

typically segmented into subgroups according to their self-selected walking speeds: high-func-

tioning stroke survivors with a self-selected (SS) walking speed above 0.4m/s and low-func-

tioning stroke survivors who adopt SS walking speeds less than 0.4m/s [74]. It is assumed that

low-functioning stroke survivors are more impaired and thus adopt slower walking speeds to

be able to navigate the environment safely. However, gait deficits of stroke survivors within

either sub-group are heterogeneous across individuals and include different impairments such

as foot drop, reduced paretic push-off during late stance, limited initial heel contact during

early stance, as well as compensatory gait strategies such as hip circumduction and hip hiking.

We expected that higher functioning individuals would have less severe impairments and

would be more dynamically analogous to able-bodied individuals, whereas low-functioning

stroke survivors would exhibit highly variable impairments from each other and be even less

dynamically analogous to able-bodied dynamics compared to higher functioning stroke

survivors.

To better visualize all developed individuals’ gait signatures across their 6 different speed

trials in our dataset, we again used MDS to project the 6D gait signatures to 3D. This mapping

allows us to visualize the relative locations of individuals in comparison to all the other gait sig-

natures to gain insights on how dynamically similar they are from one another. A 3D MDS

gait map of all gait signatures reveals that able-bodied and high-functioning stroke survivors

are located near each other, whereas low-functioning stroke survivors are farther and more

dispersed and form distinct clusters in different regions of the map (Fig 3A). Sub-group level

analysis reveals significant differences in the Euclidean distance metric (distance between each

gait signature and the able-bodied centroid) between the able-bodied group and the low- and

high-functioning stroke survivor groups, respectively (Fig 3B). Able-bodied gait signatures are

located closest to the centroid, followed by high-functioning and low-functioning stroke survi-

vors (Fig 3B). The within-group dispersion of gait dynamics for the low- and high- functioning
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stroke survivors was calculated based on the radius of a hypersphere enclosing 95% of the

groups’ gait signatures. Using a leave-one-out sample with replacement method, multiple

within-group dispersion calculations were conducted for each group and the average within-

group dispersion was expressed alongside the standard error in Fig 3C. The 95th percent radius

was significantly higher in the low-functioning stroke-survivors gait signatures compared to

the high-functioning, highlighting that low-functioning gait signatures were more dispersed

from each other (higher inter-individual variability) and the RNN model can capture these

individual-specific gait deficits in individuals with more severe gait impairment.

Gait signatures are biomechanically interpretable

While Principal Component trajectories and low-dimensional maps provide one way to com-

pare the overall dynamics between individuals and groups, it remains to be seen what informa-

tion the independent components of the 6D gait signature represent biomechanically. The

contributions of each principal component (PC) to a gait signature fluctuates over the gait

cycle, shown for an exemplar able-bodied, one high-functioning stroke survivor, and one low-

functioning stroke survivor in Fig 4A. Superimposed individual stride-averaged PC projec-

tions from these 3 individuals (Fig 4B) highlight the specific differences in each PC. For PC1,

both able-bodied and high-functioning stroke survivor traces are within the able-bodied 95%

confidence interval, whereas the low-functioning stroke survivor is outside of these bounds

around the middle of the gait cycle. For PC2, some regions of the low and high-functioning

stroke survivor can be found outside of the confidence interval, however the entirety of the

PC3 projection of the low-functioning stroke survivor is found outside of interval (vertically

shifted). Given the generative nature of our RNN-based model, a specified number of the load-

ings on the PCs can be driven through the trained RNN model to reconstruct the correspond-

ing kinematics. Thus, to interpret the individual PC components, the internal parameters

corresponding to each isolated PC were driven through the gait dynamics model, generating

gait predictions, i.e., a multi-joint coordination pattern and their temporal evolution over the

Fig 3. Comparison of gait signatures across three gait subgroups: able-bodied (AB), high functioning (HF) and

low functioning (LF). A) 3D gait map using multidimensional scaling highlights the relative distances between AB

(blue), HF (red) and LF (orange) stroke survivors. LF stroke survivors are less clustered and occupy distinct regions of

the map away from the able-bodied centroid (black square). B) Gait dynamics similarity based on Euclidean distance

between AB centroid and each participant, showing larger distances within the low-versus high-functioning groups. C)

Within-group dispersion of gait signatures based on the radius of a hypersphere enclosing 95% of each group’s gait

signature reveals more dispersed gait signatures in low- versus high-functioning stroke survivors, highlighting the

potential of gait signatures to capture individual differences in more severe gait impairments.

https://doi.org/10.1371/journal.pcbi.1011556.g003
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gait cycle that can be visualized in an animation or gait movie. Stick figure snapshots (7 equally

spaced samples of 100 frames) show that PC1 encodes dynamics driving hip flexion and exten-

sion, PC2 encodes dynamics driving knee flexion and extension and PC3 encodes dynamics

driving primarily postural coordination (trunk location relative to joints) (S1–S4 Videos). This

framework can potentially allow for the identification and targeting of individual-specific gait

deficits, informing the tailoring of precision rehabilitation strategies.

The gait dynamics model generalizes to unmeasured speeds

Our gait signature model can capture and predict nonlinear changes in dynamics in response

to speed in cases where interpolation of kinematics may fail. We trained a different gait

dynamics model using only 15s of data of the 2 fastest and 2 slowest walking speeds of each

subject. Weighted averages of gait signatures from an individual walking at these four different

gait speeds can be used to generate multi-joint kinematic trajectories that predict data from a

gait speed that was not used to train the model (Fig 5). Predicted kinematics from interpola-

tion of gait signatures across the four speeds resemble the measured kinematic reference more

accurately than do the kinematics generated from interpolating gait kinematics, shown for an

exemplary AB individual (Fig 5A) and low-functioning stroke survivor (Fig 5B). Kinematic

prediction from interpolation of dynamics did considerably better than interpolating kinemat-

ics directly for the exemplary low-functioning stroke survivor shown in Fig 5B, indicating that

interpolating gait signatures capture nonlinear (non-monotonic) changes in kinematics

between speeds. The kinematic output of the interpolated kinematics follows that of the fast

speed in the paretic hip closely but does not resemble the measured kinematic reference wave-

forms for the paretic knee or ankle angles. In some cases where interpolation of kinematics

fails, the averaged dynamics do a better job at predicting kinematic trajectories at unseen

speeds. Group level analyses show that the R2 values between the measured and predicted

kinematics from interpolated gait dynamics are significantly higher (Wilcoxon paired signed

rank test) than interpolating kinematics within the able-bodied cohort (Fig 5C), but not for

stroke (Fig 5D). In general, averaging gait dynamics produced less variable R2 values and less

R2 outliers than averaging kinematics in both the able-bodied (Fig 5C) and stroke survivors

(Fig 5D). The range of R2 values in the able-bodied cohort for averaged dynamics was -0.20 to

Fig 4. Biomechanical interpretation of gait signatures. A) Gait signatures reveal different gait dynamics between exemplar AB, low-

and high-functioning stroke survivors. B) The loadings on each principal component (PC), e.g., the contributions of each PC vary over

the gait cycle and can be compared to the AB 95% confidence interval (gray). C) Each PC generates specific multi-joint gait coordination

patterns when used to drive the gait model, enabling biomechanical interpretation of gait deficits and effects of treatment.

https://doi.org/10.1371/journal.pcbi.1011556.g004
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1.00 compared to –1.30 to 0.98 in averaged kinematics whereas the range of R2 values in the

stroke cohort for averaged dynamics was 0.46 to 1.00 compared to -0.50 to 1.00 in averaged

kinematics. Two low-functioning stroke survivors show higher R2 values of their hip, knee and

ankle kinematic traces when interpolating kinematics vs. dynamics. Post hoc analysis revealed

that these two stroke survivors (ST4 and ST2) were furthest away from the able-bodied cen-

troid (least dynamically similar to able-bodied) as shown in Fig 2Bi. These results suggest that

the RNN largely captures more stereotyped able-bodied dynamics and has a harder time learn-

ing the dynamics from more variable stroke individuals, especially those that deviate furthest

from able-bodied. We acknowledge that our model likely is not capable of generalizing to

speeds beyond the ranges of the input data (extrapolating), as RNNs are highly dependent on

the training data that it sees to learn patterns in the dataset. One benefit of this capability, how-

ever, is that any data that deviates from the walking speeds in the training set can still be ana-

lyzed, reducing the number of speeds required in the training set to achieve a model that is

valid across a range of speeds. Additionally, our small sample size limits the amount of data

the RNN sees for each diverse type of stroke dynamics, thus, with a larger sample size of stroke

survivors and longer trials, the RNN may be able to make better kinematic predictions of

lower-functioning stroke survivors. Moreover, this result highlights the utility in predicting

kinematics in unseen conditions which in contrast cannot be made using discrete biomechani-

cal or clinical metrics, nor with current biophysical models.

Fig 5. Data-driven gait dynamics model predicts non-linear changes in joint kinematics with gait speed. Gait

predictions of joint kinematics (green) at intermediate gait speeds not used in model training were generated by

interpolating gait signatures between slow (dashed grey) and fast speeds (dashed black) lines and using them to drive the gait

model. Interpolated kinematics from gait dynamics (green) and interpolated directly from kinematics (blue) were compared

to the measured reference kinematics (black solid). A) Predictions in an exemplar AB participant are more accurate when

interpolating gait signatures compared to interpolating gait kinematics across speeds. B) In an exemplar low-functioning

stroke survivor, interpolated gait signatures predict nonlinear changes in kinematics better at intermediate speeds than

interpolated gait kinematics. Averaging the kinematics fail in this case where there are larger differences between the slow

and fast speed paretic kinematics; the averaged kinematics (blue) follow the fast speed paretic hip kinematics whereas the

other angles do not reflect waveforms that resemble either the fast or slow speed. The gait model can therefore predict

movement reasonably well when interpolating between tested speeds. There is a statistically significant difference between

group level R2 comparisons (kinematics generated from interpolated dynamics vs interpolated kinematics) in the able-

bodied (C) but not in stroke (D) cohorts. However, the range of R2 values are larger in both able-bodied and stroke

kinematic predictions resulting from interpolated kinematics (-1.30–0.98, -0.50–1.00 respectively) vs. predicted from

interpolated gait dynamics (-0.20–1.00,0.46–1.00 respectively). Thus, while the R2 values may not improve on average for the

stroke survivors, the model’s performance is more robust overall.

https://doi.org/10.1371/journal.pcbi.1011556.g005
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Gait sculpting: Manipulating the PC components of an individual’s gait

signature identifies specific coordination deficits in stroke survivors

Previously, we showed that we can leverage our model to reconstruct the kinematics of healthy

PC projections of the gait signature to gain insight into their independent biomechanical inter-

pretations. However, identifying and interpreting the biomechanics related to impaired PC

dynamics of stroke-survivors’ gait would prove to be even more beneficial, as these dynamics

can potentially serve as rehabilitation targets when designing tailored gait intervention/strate-

gies for individuals. Here we present an example of how we use gait signatures to identify spe-

cific biomechanical or coordination targets in specific stroke survivors. Specifically, we utilize

our finding that the phase-varying contributions of the 6 principal projections of the gait sig-

nature differ in individual-specific manners (Fig 6A). For example, AB2’s 6 PC contributions

all lie within the 95% confidence interval of all able-bodied individuals. ST4 primarily shows

Fig 6. Gait sculpting: interpolating between components of able-bodied and stroke gait dynamics to visualize anticipated gait improvement. The

components of individuals’ gait signatures can be manipulated (gait sculpting) to understand the relationship between specific underlying dynamics and their

corresponding kinematic phenotype. A) The projection on each of the 1st 6 principal components (PCs) can be observed for a representative able-bodied

(AB2), two low functioning stroke-survivors each having similar self-selected (SS) speeds and Fugl-Meyer (FM) scores (ST2 & ST4, as denoted in Fig 2) and

another low functioning stroke survivor (ST3) who has a higher FM score and faster SS walking speed. The PC projections are colored according to the 4 gait

phases (non-paretic swing, non-paretic stance, paretic swing, paretic stance). The right leg of the unimpaired individuals was arbitrarily assigned to be paretic

and the left leg, non-paretic for consistency. Colored boxes and arrows (orange, brown, green, purple) show specific, single PC manipulations, for example, the

orange boxes and arrow illustrate that the PC 1 projection of AB2 was replaced with the impaired PC 1 projection from ST4. B) The AB2:ST4 manipulation

(orange) shows how AB2’s original phase averaged kinematics (black trace) was manipulated by ST4’s impaired PC 1 projection (red dashed traced). ST4’s

impaired PC 1 manifests in AB2’s healthy kinematics showing deviation primarily in the hip kinematics (as suggested in Fig 4 where healthy PC 1 encodes a

kinematic subcomponent corresponding to hip flexion/extension) and some deviation in the ankle angles, especially the paretic ankle. The AB2:ST4

manipulation (brown) shows how ST4’s impaired PC3 manifests in AB2’s healthy kinematics; we observe a vertical shift downwards (red trace) of the bilateral

hip angles as well as the non-paretic knee. This change in hip flexion highlights that this impaired PC3 encodes a reduction in the hip flexion angles; pointing to

a more crouched gait (trunk is leaning forward more). The AB2:ST2 manipulation (green) shows replacing AB2’s PC4 projection with ST2’s impaired PC4

dynamics shows deviation in the knee joints especially during paretic swing, a vertical shift upwards in the paretic ankle angle kinematics and deviations

around the middle of the gait cycle (transition between non-paretic stance and paretic swing) in the non-paretic ankle kinematics. Alternatively, the AB2:ST3

manipulation (purple) the impaired PC5 in ST3 is replaced with the healthy PC5 projection from AB2 resulting in slight increase in non-paretic knee

magnitude and reduced amplitude of paretic and non-paretic ankle flexion. The result of this manipulation points to potential predicted improvements (or

deviations) that can occur when aiming to mimic PC5 healthy dynamics in this stroke survivor allowing offline in-silico testing of potential avenues for gait

rehabilitation for this stroke survivor.

https://doi.org/10.1371/journal.pcbi.1011556.g006
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major deviation from AB in PC 3 (located entirely above the AB confidence interval), impaired

dynamics during paretic swing in PC 4 and overall irregular shapes in PC 5 and 6. ST2’s PC3 is

largely within the AB confidence interval, however PC 4’s paretic swing shows major devia-

tion, their PC 5 contribution is shifted below the AB confidence interval and PC 6 shows an

irregular shape. ST3’s PC5 projection lies below the AB confidence interval and PC 6 projec-

tion is irregularly shaped compared to AB. To validate our finding that suggested that PC 3 pri-

marily influences hip flexion or extension, we exchanged AB2’s healthy PC1 with that of ST4

(Fig 6A, orange boxes and arrow) and we observed if and how AB2’s original hip joint kine-

matics (Fig 6B, orange box, black trace) deviated (Fig 6B, orange box, red dashed trace and S5

Video). To gain further insight into how the other PC deviations manifest in movement, we

manipulated the PC3 projection of AB2 by replacing it with that of ST4 (Fig 6A, brown boxes

and arrow). The kinematic reconstruction from this manipulation (Fig 6B, brown box, red

dashed trace and S6 Video) shows a vertical shift downwards for bilateral hip angles and the

non-paretic knee. The vertical shifts in the hip flexion/extension angles suggest a major differ-

ence in this individual’s posture (perhaps stroke individual leaned forward more during gait)

compared to able-bodied. We manipulated AB2’s PC4 projection by replacing it with that of

ST2 (Fig 6A, green boxes and arrow). This manipulation affected specifically the paretic and

non-paretic ankle angles and both knee joints primarily during the period between non-

paretic stance and paretic swing (Fig 6B, green box, red dashed trace and S7 Video). This result

highlights a coordination deficit between these specific joint angles and, if targeted accurately,

may allow for corrected gait patterns of this stroke survivor. Conversely, we tested the effects

of replacing an impaired PC projection with a healthy one to observe how gait impairments

can potentially be improved. We replaced ST3’s PC5 with that of AB2 (Fig 6A, purple boxes

and arrow) and observed a substantial change in the magnitude and shape of bilateral ankle

angle trajectories and slight increase in non-paretic knee magnitude (Fig 6B, purple box, red

dashed trace and S8 Video). We can infer that to make improvements to ST3’s PC5 towards

able-bodied or normative kinematics, rehabilitation focusing on these specific knee and ankle

strategies may prove useful.

Self-driven signatures: Our gait dynamics model revealed robustness of gait

predictions establishing the utility of gait signatures in precision medicine

The ability to predict future kinematics based on measured data is key to rapid, virtual design

of personalized interventions. We demonstrate that the recurrent neural network model of

gait dynamics, once primed with several gait cycles of data from either able-bodied or stroke

participants, can predict future joint angle trajectories (Fig 7). Once the network is primed, an

initial posture is presented (initial condition, denoted by blue vertical bar) after which the

model self-drives i.e., predicts the general shape of future kinematics in a feedforward manner

(without referencing previous measured data points) in an able-bodied (Fig 7Ai, left) and

stroke individual (Fig 7Bii, left). A smooth transition is seen between the previously measured

gait cycle (green) and the self-driven cycle (red trace) for both AB and stroke (Fig 7Ai, right

and 7Aii, right respectively).To verify that the model was not generating a gait cycle prediction

entirely by chance, we calculated the Euclidean distance between the kinematics of the pre-

dicted (self-driven) gait cycle and the kinematics from each of the measured gait cycles. We

computed the distribution of distances between each predicted gait cycle with all other gait

cycles from the same individual (Fig 7B, purple bars). We then compared the predicted gait

cycle to the target gait cycle (Fig 7B, red bars). In the able-bodied individual, the predicted gait

cycles are more similar to the target gait cycle (Fig 7Bi, red bar) than 79% of all gait cycles.

However, in the stroke survivor, 60% of other gait cycles were more similar to the predicted
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gait cycle than the target gait cycle (Fig 7Bii, red bar). This suggests that the model is less able

to accurately predict future kinematics in stroke gait. Note, to calculate the Euclidean distances

between the gait cycles, we need to normalize the period of each gait cycle to the period of the

self-driven cycle. To avoid the potential of bias due to this normalization, we also performed a

comparison using a metric that was not manipulated in time–gait cycle duration. After prim-

ing the model, we presented the model with the first posture of the trial and ran the network

forward in self-driving mode for the remainder of the trial length (15 seconds). Able-bodied

self-driven predicted kinematics resembled the reference kinematics closely (Fig 7Ci, top plot)

whereas stroke self-driven predicted kinematics matched the first gait cycle closely but soon

converged to patterns reflecting able-bodied kinematics (Fig 7Cii, top plot). The gait cycle

duration of the first few cycles of the self-driven kinematics match those of the measured kine-

matics (blue dots located close to the y = x line) in both the exemplary able-bodied (Fig 7Ci,

Fig 7. Our trained RNN model can predict the time evolution of kinematics from an initial posture. The trained gait dynamics model can predict

individual-specific time-evolution of gait kinematics from an arbitrary initial posture (self-driving) in able-bodied (A, i) and stroke (A, ii) once the network is

primed with several gait cycles of an individual’s data (gait cyclex-n(measured), black solid). This predictive ability shows that the model encodes the gait dynamics

underlying movement. Despite inter-cycle kinematic variability, the gait dynamics model can predict the general shape of the next gait cycle of kinematics (gait

cyclex(predicted), red) in an able-bodied individual (A, i) and stroke survivor (A, ii), however, predicted kinematics (red) show larger deviation from the

measured reference gait cycle (gait cyclex(measured), black dashed) in the stroke survivor. A smooth transition exists between the measured kinematics from the

gait cycle preceding (gait cyclex-1(measured), green) the self-driven predicted cycle (red). For the representative able-bodied individual (B, i), the Euclidean

distance (deviation) between the predicted gait cycle of kinematics and its respective measured kinematics (reference) is ~79% lower than the distance between

the other gait cycles in the trial; ruling out that the kinematic predictions are attributed to chance. The deviation (Euclidean distance) of the predicted gait cycle

of stroke (B, ii) kinematics to its reference gait cycle is ~40% lower than the distance between the other gait cycles in the trial. This suggests that the dynamical

model is less able to accurately predict stroke kinematics better than chance. The dynamical model was first initialized with all the trial’s kinematics data (15

seconds) (black trace) after which the trial’s initial posture was presented to the model to self-drive kinematics (red trace) in feedforward mode for 15 seconds

(C, i, top plot). The duration of each gait cycle from the measured kinematics is not well encoded by the dynamical model; gait cycle durations of the predicted

kinematics are typically underestimated in both able-bodied (C, i, bottom plot) and stroke (C, ii, bottom plot) (to a larger degree) in self-driving mode and as

such deviate from the y = x reference line (black).

https://doi.org/10.1371/journal.pcbi.1011556.g007
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bottom plot) and stroke individual shown (Fig 7Cii, bottom plot), however kinematics soon

diverged to shorter and relatively consistent gait cycle durations (blue dots appearing almost

horizontal in the plots) result in both cases. The model may preferentially predict able-bodied

kinematics, which were less variable between individuals than were post-stroke kinematics.

These results highlight that the model encodes gait dynamics that can predict kinematics over

short timescales, but the variability and amount of training data may influence predictive

power over long timescales. Our model provides a foundation for a sample-specific gait

dynamics model to predict the effects of environmental perturbations, assistive devices, and

treatments without extensive experimental sessions. In-silico predictions using the gait

dynamics model may thus reduce the experimental time, cost, and participant burden required

for personalized gait characterization, treatment personalization, and device design.

Discussion

Summary

Here we establish a data-driven framework for comparing and predicting individual-specific loco-

motor patterns without needing to construct physiologically based mechanistic models. As an ini-

tial proof of concept, complex neuromechanical gait dynamics were modeled using a relatively

simple recurrent neural network that captures the rules by which joint kinematics during gait

transition from one time point to the next. Because the network was trained on multiple healthy

and impaired individuals walking at several speeds, its internal parameters provide a basis for

comparing, interpreting, and predicting gait dynamics. Gait signatures further capture coordina-

tion between joints and limbs without the need for pre-selecting gait features that may introduce

bias and ignore the continuous nature of gait. We show that individuals have little variance in gait

dynamics across speeds, leading to the individual-specific “gait signature” concept and enabling

comparisons between individuals moving at different speeds. Across stroke survivors, we found

greater heterogeneity in low-functioning individuals who exhibited disparate gait dynamics

despite similar clinical metrics, highlighting the potential utility of gait signatures in providing

more sensitive diagnoses to personalize therapies. Gait signatures provide a predictive simulation

framework for sculpting gait dynamics to understand coordination deficits and predict kinemat-

ics, potentially forecasting the effects of rehabilitative devices or treatments. Finally, the gait signa-

tures methodology can be readily applied to other periodic motions across species and across

conditions that alter movement and may be a powerful adjunct to modern experimental methods

aimed at understanding the neural mechanisms underlying movement.

Computational framework captures the neuromechanical dynamics of

walking

Using a data driven modeling approach enabled us to learn the underlying gait dynamics

based on data rather than constructing a neuromechanical gait model based on first principles.

Data-driven approaches in gait have not focused on gait dynamics but have solved tasks based

on unique features in multi-dimensional gait data such as classifying gait based on pathologies

[75] or conditions such as fatigue and non-fatigue [76], identifying gait events (e.g., initial con-

tact, loading response [77–79]), and discriminating individuals [62,80]. Gait dynamics have typi-

cally been described though neuromusculoskeletal models based on physical principles focusing

on musculoskeletal mechanics, [30,81] but they lack adequate representations of the neural sys-

tems that contribute to the resulting movement patterns, particularly in neurological impair-

ments such as stroke [31]. Machine learning methods to capture dynamics have been used

across physics, engineering, and neuroscience to learn the dynamics underlying complex
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systems when the governing equations are unknown [58,82,83]. Recently, machine learning

models have been used in human gait to predict continuous kinetic variables such as ground-

reaction forces [84] or joint torque [85,86] based on kinematic data. Dynamical machine learn-

ing models have also been used to encode gait dynamics, including responses to perturbations

or assistive devices, but their model structure did not enable comparisons between individuals

[87–91]. Here, our RNN-based gait dynamics model provides a means to capture the rules

underlying continuous, multi-joint coordination between bilateral lower limb joints, and how

they evolve over time. Accordingly, we do not explicitly capture mechanical dynamics (i.e., the

relationship motion and force), but the effects of force interactions within the body and environ-

ment and implicitly represented in how multi-joint kinematics evolve over time, with the net-

work parameters and the internal states at each time point determining the output kinematics.

As gait arises from complex interactions between the nervous system and the musculoskele-

tal system that are not easily modeled from first principles, a data-driven approach provides a

powerful framework for capturing and comparing neuromechanical constraints on gait

dynamics. While biomechanical dynamics clearly play a role in movement, the activation of

muscles by the nervous system enables the body to perform a variety of motor behaviors. How-

ever, the governing spatiotemporal dynamics of neuromuscular signals are poorly understood,

especially in neuro-pathologies such as stroke. During behaviors such as locomotion, motor

patterns can be characterized by the number and structure of motor modules, or muscle syner-

gies, defining groups of co-activated muscles producing a biomechanical function for gait [92].

Similar motor modules are used within individuals across different task conditions [93–95],

and are shaped by learning and disease [96,97]. Particularly in post-stroke gait, motor modules

appear to constrain motor function. Fewer motor modules are observed post-stroke with the

number of modules correlated to reduced walking speed [98,99]. Further, different patterns of

motor module merging are seen in slower walking stroke survivors, differentially affecting gait

biomechanics in a manner that may necessitate individualized rehabilitation approaches [100].

Adding neural constraints such as motor modules on muscle activations in musculoskeletal

simulations improve predictions of key physiological variables such as joint loading in osteoar-

thritis [101]. However, relating motor modules to kinematic gait patterns post-stroke and in

other neurological disorders has been challenging, likely because the neural constraints are

underspecified [27,102–105]. Corroborating results from motor module analysis, there were

greater differences in gait dynamics amongst the slowest walking stroke survivors. Since the

gait signatures capture spatiotemporal constraints underlying gait dynamics, they provide a

complementary approach to musculoskeletal simulations. Ultimately, gait signatures may play

a complementary role to biophysical simulations, enabling the relationships between bio-

mechanical principles, neural constraints, and the emergent gait dynamics to be revealed.

Gait signatures enable holistic comparison of gait dynamics across

individuals, speeds, and groups

In contrast to other applications of dynamical machine learning models for gait, we capture

multiple individuals within a single network, enabling comparisons of gait dynamics across

groups, individuals, and gait conditions. Rather than using the network as a black box solely to

generate predictions, we explicitly compare and interpret the model’s internal parameters to

identify low-dimensional latent variables representing gait dynamics. To encourage a general-

izable data-driven gait dynamics model, we omitted subject and trial condition (gait speed)

labels as inputs to the neural network. Adding input labels might force the RNN to create sepa-

rable gait models, whereas our goal was to have the network learn a structure that could be

modified parametrically to represent individual differences in the neuromechanics of walking.

PLOS COMPUTATIONAL BIOLOGY Gait signatures: Data-driven discovery of gait dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011556 October 27, 2023 16 / 33

https://doi.org/10.1371/journal.pcbi.1011556


Similarly, neuromusculoskeletal models assume common dynamic principles across individu-

als, using parameter variations to represent individual differences [27,28,103,104,106]. We

intentionally designed a relatively simple RNN architecture (e.g., single layer, linear input/out-

put) as a starting point to recover as much interpretability as possible, with the awareness that

more complexity could be added to the model architecture (number of hidden layers, number

of neurons, etc.) if required to fit a given data set robustly. The representations of gait dynam-

ics that emerge from our model holistically capture the changes underlying measured kinemat-

ics, without being attributable to specific neural or biomechanical constraints. The loss of

physiological interpretability is counterbalanced by the holistic approach to representing gait

dynamics and explaining gait kinematics features.

Analogous to written signatures, we find that features of individual-specific gait signatures

are largely preserved across walking speeds. Recognizable qualitative features of handwriting

are preserved even as the size of letters changes quantitatively, or if different limbs, or writing

instruments are used [107]. Similarly, it is well known that individuals can be recognized

based on how they move or walk [28,40,108–110], even if joint angle excursions are similar.

We show that gait dynamics are more similar within individuals across speeds than between

individuals, leading to the concept of the gait signature. In contrast, gait kinetics and kinemat-

ics vary characteristically across speeds, such that they cannot be directly compared across

speeds [111]. The relatively small changes in gait signatures across speeds suggest that the sig-

natures reflect changes in the spatiotemporal relationships between joint kinematics, rather

than quantitative changes in their magnitude. As such, gait signatures appear to encode indi-

vidual-specific constraints of walking, making it possible to compare gait either within or

between individuals walking at different speeds.

Gait signatures characterize the high inter-individual variability in gait impairment

amongst stroke survivors beyond overall gait function explained by clinical gait metrics. This

heterogeneity is a direct reflection of the wide range of impairments in stroke survivors,

including muscle weakness, impaired coordination, spasticity, abnormal synergistic activation

(muscles not independently coordinated), and compensatory motion [19,53,112]. We found

that higher-functioning stroke survivors were more dynamically similar to each other, whereas

lower functioning stroke survivors were more dispersed. In fact, two low-functioning stroke

survivors with similar clinical metrics (Fugl-Meyer score and gait speed) had quite different

gait signatures. As such, gait signatures have the potential to provide insights into individual

differences in gait dynamics that are simply not captured by clinical metric such as gait speed.

Moreover, in contrast to higher-functioning stroke survivors who share similar gait dynamics,

lower-functioning stroke survivors may require more individuals individualized rehabilitation

approaches targeting specific aspects of gait dysfunction. Further gait signatures do not require

a priori selection of which gait variables to compare [113–116]. As such gait signatures provide

a powerful, holistic approach to enhance the specificity and precision of gait diagnosis and

treatment. Our study inclusion criteria exclude severe contractures or deformities that inter-

fere with normal ambulation and in future work the gait signatures would need to be inter-

preted and correlated with clinical evaluation of strength, range of motion, sensorimotor

impairment, and/or limb deformities. The demographic and clinical information of the stroke

participants in our study are available in Supplementary Materials S1 Table. Gait signatures

could be part of a set of multi-modal data to account for the diverse causal factors underlying

each individual’s gait pattern (e.g., lesion neuroanatomy, medical confounding variables, mus-

culoskeletal conditions, psychosocial variables, physiological contributors to gait and environ-

mental factors). This framework can potentially extend to other diseases, disorders, injury, etc.

to gain further insight into individuals’ specific impairments and uncover specific targets

towards developing targeted therapies for individuals.
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Gait signatures enable biomechanical interpretation and manipulation

Our gait dynamics model enables biomechanical interpretation of gait signatures and explor-

ing “what if” scenarios to sculpt desirable gait dynamics. Gait signatures are based on principal

components (PCs) of the gait model internal states, where the weightings on each PC vary

over the gait cycle. The model parameters can be prescribed over the gait cycle, resulting in the

predicted kinematic outputs (i.e., joint angles). The gait signature PCs and their time-varying

weightings can be individually prescribed in the network as a method to reveal the specific

inter- and intra-limb coordination patterns governed by each PC. Further, any combination of

PC’s can be combined and reweighted to generate new kinematic output patterns. For exam-

ple, we interchanged healthy and impaired PCs to gain deeper insight into how specific

impaired PCs alter healthy gait and vice versa. Further, interpolating gait dynamics can predict

gait kinematics at walking speeds that were not used in the training data. Especially when

there was a nonlinear response in gait kinematics across speeds, interpolation of gait dynamics

to predict gait kinematics performed better than interpolating gait kinematics directly. As such

our data driven gait dynamics model can be used to show how changing select components of

the gait signature alters gait kinematics, providing a potential framework to identify personal-

ized therapeutic targets for gait rehabilitation.

Gait signatures have potential to predict future kinematics

Another powerful aspect of our gait signatures framework is its ability to generate future gait

kinematics in the absence of new data. The model is self-driving for able-bodied individuals,

predicting multiple cycles of gait kinematics in the future. However, the ability of the model to

predict future stroke kinematics is limited to approximately one gait cycle in the future; ren-

dering it promising in applications that provide control signals to rehabilitation devices (e.g.,

exoskeletons). Furthermore, our model is likely only capable of generalizing to speeds within

the speed ranges of the input data. There was a moderate association between participants’

similarity to able-bodied gait signatures (distance to the able-bodied centroid) and the RNN’s

ability to predict gait kinematics over one gait cycle (S6 Fig). This association is likely due to

the RNN favoring able-bodied dynamics during model fitting, which were more homogeneous

than those of high- or low-functioning stroke survivors. A larger post-stroke sample may

improve the RNN’s ability to encode and predict pathological gait dynamics. Further, the

reduced predictive power for the stroke participants can be attributed to our model architec-

ture’s relative simplicity and short time-series (15 seconds/ 1500 sample points per trial).

These factors should be addressed to improve the predictive capacity of the model for impaired

gait in the future. Additionally, including more variables besides sagittal plane kinematics

(e.g., frontal plane and coronal plane kinematics and joint forces, may improve learning of the

underlying dynamics of gait and increase predictive capability of our model.

Generalization to other species and rhythmic movements

Because the input to this model are periodic sequences of behaviors, our gait dynamics frame-

work should generalize to other species that display similar behavioral motions (e.g., flight,

crawling, and walking). Physicists, computational biologists, and other scientists can benefit

from this method by studying the dynamical behavior of species whose neuromechanical mod-

els and physics of complex terrains are difficult to model. This is the first study to our knowl-

edge that uses a neural network to study the dynamics of gait in an interpretable manner.

While much work is left to be done, we have provided a simplistic, unsupervised framework to

discover individual-specific differences in walking in health and disease in humans. Despite

being limited by a small dataset, we have shown that our model is generalizable to
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characterizing and predicting kinematics of one held-out subject using leave one out cross vali-

dation (S3 Fig). Here we focus on demonstrating the innovation, feasibility, and potential

advantages of our RNN gait signature approach, justifying the need and potential for further

development by scaling to larger-sample studies.

Importantly, this methodology relies on having a periodic or quasi-periodic pattern, as

non-periodic patterns would not be able to generate a phase and subsequent signature. We

also limited our inputs to gait kinematics, anticipating applications to the proliferation of

new measurement modalities for movement in humans and animals such as wearable sen-

sors and markerless video-based motion capture [117–119]. However, the gait signatures

framework could easily be extended to include other data types (e.g., force, muscle activity,

joint loadings, center of mass dynamics) and experimental conditions (overground walking,

biomechanical constraints, gait interventions, such as exoskeletons, functional electrical

stimulation, or treatment e.g., drugs, optogenetics). In practice, a more comprehensive data

set would be needed within each gait group to train a model capable of capturing the full

range of variability in gait dynamics. Short of having a massive data set, it may also be possi-

ble to leverage synthetic gait data from simulations to span the full range of feasible gait

dynamics variations.

Overall, by modeling the dynamics of individual’s gait based on measured data, we uncov-

ered individual-specific representations of individuals’ neuromechanical constraints that

allows direct comparisons between individuals who do not walk at the same speed. The gait

signatures framework has implications for the diagnosis of disease, development of future tai-

lored gait therapies or interventions and tracking meaningful changes in the fundamental neu-

romechanical mechanism of walking.

Materials and methods

Ethics statement

All participants provided written informed consent prior to study participation, and the study

protocol was approved by the Emory University Institutional Review Board.

Human subject participants

To develop dynamical signatures of human gait, we collected data in seven post-stroke individ-

uals (age = 56 ± 12 years; 2 females; 48 ± 25 months post-stroke; Lower Extremity Fugl-

Meyer = 20 ± 4) and five able-bodied (AB) controls (age = 24 ± 4 years; 4 female). All post-

stroke participants experienced a cortical or subcortical ischemic stroke, were able to walk on

a treadmill for one minute without an orthotic device, and exhibited no signs of hemi-neglect,

orthopedic conditions limiting walking, or cerebellar dysfunction.

Experimental design

Participants completed 15-second walking trials at six different speeds, distributed evenly

between and ranging from each participant’s self-selected (SS) speed to the fastest safe and

comfortable speed. Across stroke participants, gait speeds ranged from 0.3–1.6 m/s. Each par-

ticipant’s fastest walking speed was determined by progressively increasing the treadmill speed

from the SS speed until the participant could no longer comfortably or safely maintain the

speed for 30 seconds. Participants rested for 1–2 minutes between consecutive gait trials. Dur-

ing data collection, speed increased from the participant’s SS to their fastest speed (i.e., not

randomized).
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Data acquisition

Reflective markers were attached to the trunk, pelvis, and bilateral shank, thigh, and foot seg-

ments [120]. We collected marker position data while participants walked on a split-belt

instrumented treadmill (Bertec Corp., Ohio, USA) using a -7-camera motion analysis system

(Vicon Motion Systems, Ltd., UK). Participants held onto a front handrail and wore an over-

head safety harness that did not support body weight. Marker data were collected at 100 Hz,

and synchronous ground reaction forces were recorded at 2000 Hz and were down sampled to

100Hz using previously established techniques [121–123].

Data processing

Raw marker position data were labeled, gap-filled, and low-pass filtered in Vicon Nexus.

Labeled marker trajectories and ground reaction force raw analog data were low-pass filtered

In Visual 3D. Gait events (bilateral heel contact and toe-off) were determined using a 20-N

vertical GRF cutoff, and sagittal-plane hip, knee, and ankle joint kinematics were calculated in

Visual 3D (C-Motion Inc., Maryland, USA).

RNN model development

Our goal was to start with a simple RNN to reduce overfitting with too many parameters and

deep layers. We wanted the simplest model capable of learning the dynamics underlying gait

which also preserved interpretability. The simplest recurrent neural network (RNN) model archi-

tecture consisted of one input layer, one hidden layer and one output layer. The hidden layer was

composed of long short-term memory (LSTM) units with a lookback parameter that spanned at

least one gait cycle. Model hyperparameter selection is described in a later paragraph.

RNN model training

Model fitting on our selected dataset and architecture was executed on the order of minutes to

tens of minutes, using Keras 3.7.13 and TensorFlow 2.8.2 on Google Colab’s standard GPU

with high-RAM runtime (54.8 gigabytes). The RNN model was trained using bilateral, sagittal-

plane, lower-limb joint angles from 5 able-bodied (AB) participants and 7 stroke survivors

each walking on a treadmill at 6 steady speeds, ranging from each participant’s preferred speed

to the fastest safe speed. Our training dataset was input to the RNN in multivariate format (not

concatenated) [62,63]. We trained a sequence-to-sequence RNN with 512 long-short-term

memory (LSTM) activations units in the single hidden layer, capable of using 15 seconds (sam-

ple rate of 100 Hz) time-series kinematic input data (0 to T-1) to predict kinematics one time-

step in the future (1 to T) for all training data across individuals and speeds. Our data was

batched according to the number of total trials (N = 72); thus, the LSTM maintains its internal

state while a batch is being processed, after which the internal state can be maintained or

cleared. Because our network retains its internal state from one time step to the next (i.e., the

RNN is stateful), we have fine-grained control over when the internal state of the LSTM net-

work is reset. The input data from all trials was ‘mini-batched’ into 2 training batches and 1

validation batch (499 samples each) that were used to update model weights on each model

run (epoch). To format our data into equal length input and output mini batches for training

and account for the output data being a one-time step shifted version of our input data, our

lookback parameter must be one value less than a divisor of the trial length. For example, in

our dataset (1500 sample length trials), a lookback parameter of 499 would result in the first

mini batch input of samples [0:499] which will predict our reference output samples [1:500],

our 2nd mini batch input data would include samples [501:999] and corresponding output
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[502:1000] and the last mini-batch input of samples [1001: 1499] predicts samples [1002:

1500]. This lookback parameter of 499 allows us to construct 3 mini-batches of shorter input

and output data lengths which would be used to train and validate the RNN model (2:1 train-

ing: validation mini batch split). Similarly with the lookback parameter of 499 (2:1 training:

validation mini-batch split) and 749 (1:1 training: validation split). Mean squared error was

used as the LSTM loss function and ADAM as the optimization algorithm because it is fast,

has a small memory footprint and is well suited for large-parameter deep learning models

[124]. The model was trained for at least 5000 iterations or until training and validation error

converged (< 0.75˚). The training resulted in a sample-specific dynamical model structure

defined by a single set of LSTM network weights (W). The model’s internal states capture trial-

specific dynamics predicting the time evolution of joint kinematics; activation coefficients (H)

and memory cell states (C) and are tuned based on kinematic input.

Model hyperparameter selection

We selected the hyperparameter values of 512 nodes in the LSTM layer and a 499-sample

LSTM lookback length (number of samples preceding the current time point that is used to

train the LSTM) were selected based on training and validation loss, as well as the ability to

encode dynamics over short and long timescales. In two steps, we evaluated all pairs of the fol-

lowing hyperparameter values: 1024, 512, 256, and 128 LSTM nodes and 749, 499, and 249-sam-

ple lookback parameters. Because RNN performance can change with the parameters used to

initialize the RNN, we fit an RNN gait dynamics model 20 times using random initial parame-

ters, for each hyperparameter pair. First, we compared model training and validation loss for

each hyperparameter pair: the ‘best’ hyperparameter pair would have low training and valida-

tion loss. The following [node-lookback] pairs were considered the best hyperparameter pairs:

512–499 (MSEtrain = 0.010 ± 0.001 deg2; MSEval = 0.018 ± 0.000 deg2), 256–749 (MSEtrain =

0.010 ± 0.002 deg2; MSEval = 0.015 ± 0.001 deg2), 256–499 (MSEtrain = 0.010 ± 0.001 deg2; MSE-

val = 0.017 ± 0.000 deg2). (S1A Fig). The training loss was not different between hyperparameter

pairs (p> 0.235). The validation loss differed between all three models (p< 0.001), with the

256–749 model having the lowest validation loss. However, if the differences in validation loss

of less than 0.003 deg2 corresponded to meaningful differences in performance was unclear.

Our second analysis was, therefore, used to compare the three hyperparameter pairs

deemed best in the prior analysis. Here, we evaluated the models’ abilities to encode the aver-

age dynamical behavior over long timescales (long-time) and the stride-to-stride behavior

(short-time). We defined the best model as the one with the highest long- and short-time per-

formance. The following analysis was performed for 10 of the 20 random initializations. For

long- and short-time analyses, we created a single set of reference dynamics as done in the

manuscript: we performed one time-step predictions over the full (1500-sample) time-series.

This step provided best-case predictions of the gait dynamics (S1B Fig).

Long-time performance. We generated long-time predictions of each trial’s gait signa-

tures (RNN latent states) by simulating each participant’s gait dynamics forward in time, 1500

samples into the future. Each simulation was initialized by setting the RNNs’ latent states to

those of the last sample of the trial’s reference dynamics and using the last sample of the trial’s

kinematics. We then phase-averaged both the reference dynamics and the long-time predic-

tions using the same technique as described in the main manuscript. Long-time performance

was defined as the similarity of the phase-averaged latent states (i.e., the gait signatures)

between the reference and the long-time predictions and was quantified using R2. Note that

using R2 as a similarity metric, rather than the Euclidean distance metric used in the main

manuscript, was needed to compare models with different numbers of nodes. Unlike R2,
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Euclidean distances are sensitive to the number of samples used to compare models, which

would bias short- and long-time performance towards models with fewer nodes. Low R2 values

between predictions indicates that the learned dynamics are sufficiently complex to capture

instantaneous gait dynamics but can also accurately generate the time evolution of dynamics

over the gait cycle—a major challenge in data-driven models of locomotion [89–90].

The 512-node model captured gait dynamics over long time scales significantly better (i.e.,
more accurate predictions of the time-varying dynamics) than the 249-node models (S1B Fig).

For long-time predictions, the 512-node model predictions (R2 = 0.50 ± 0.46) were better than

the 249-node 499-sample lookback model (ΔR2 = 0.27 ± 0.06; p< 0.001; independent-samples

t-tests) and the 249-node 499-sample lookback model (ΔR2 = 0.31 ± 0.07; p< 0.001).

Short-time performance. We generated short-time predictions by simulating single strides

in each trial’s time-series, initialized from the first sample of each stride. Initialization used the

latent RNN states and kinematics of the reference dynamics at the onset of a new stride

(phase = 0 rad). For each initial condition, we integrated the dynamics forward in time, up to the

onset of the next stride. For each stride, we then compare the similarity of the reference dynamics

to the dynamics of the corresponding short-time prediction using R2. Short-time performance

was quantified as the average R2 value across trials for a single model and initialization.

The 512-node model captured gait dynamics over short time scales significantly better (i.e.,
more accurate predictions of the time-varying dynamics) than the 249-node models (S1B Fig).

For short-time predictions, the 512-node model predictions (R2 = 0.11 ± 0.51) were more

accurate than the 249-node 499-sample lookback model (ΔR2 = 0.51 ± 0.13; p = 0.055; inde-

pendent-samples t-tests) and the 249-node 499-sample lookback model (ΔR2 = 0.34 ± 0.09;

p< 0.001). Based on difference in short- and long-time prediction performance, we selected

the 512-node, 499-sample lookback hyperparameters for the RNN model.

Leave-one-out subject model evaluation for generalizability

Using the selected hyperparameters, 12 different models were trained where one different sub-

ject (all 6 speed trials per subject) was held out for evaluation on each model run. The same

model architecture, training and validation setup was used as the original model trained using

the full dataset (12 subjects). The minimum training loss, validation loss, and overall evaluated

test loss for each model were extracted and box plots of each generated. The Wilcoxon Rank-

Sum Test statistic was used to compare the means. Each model was evaluated on the 6 held-

out speed trials from training and an average loss was calculated for each model. The reference

kinematics, externally driven and self-driven predictions of each of the 6 held-out trials per

model were phase averaged and R2 between the phase averaged externally driven and long-

time self-driven predictions (see Long-Time Performance section, above) were calculated.

Box plots for each metric across the held-out trials were generated and the Wilcoxon Rank-

Sum Test statistic used to compare the means.

Computing gait signatures from RNN internal states

To develop the gait signatures, we extract the activation and cell states from the LSTM

(denoted “H” and “C” respectively) which evolve over time (the course of the gait cycle) as the

kinematics of each trial are fed through the trained RNN. These H and C parameters represent

how the model’s internal parameters change as it encodes the prediction of future kinematic

trajectories. The selected 512-node LSTM layer had 512 H parameters and 512 C parameters.

Time-varying gait signatures were computed by identifying dominant modes of variation in

the internal states using principal components analysis (PCA). A single PCA operation was

used to transform the internal states for all participants into a common basis. Consequently,
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inter-trial differences in the time-varying activations of the principal components (modes)

reflect differences in the underlying dynamics of the individual(s). These activations consti-

tuted the time-varying (1500 sample) gait signatures, which had the same dimension as the

RNN’s hidden layer (1024 units). However, the first six principal components accounted for

~72% of the variance in the internal states.

To compare gait signatures within and between individuals, we phase averaged each trial’s

signatures across strides. Rather than linearly interpolating the data between foot contact

events before averaging, as is common in gait analysis [122,125–127] we computed a continu-

ous phase using the first 3 gait signature modes for each trial using Von Mises interpolation

[128]. Compared to averaging across linearly interpolated strides, phase averaging is expected

to reduce the variance in the data at any point in the stride [66,90]. As the domain for interpo-

lation, we estimated the time-varying phase for each trial separately using the Phaser algo-

rithm, using the first 3 principal components as phase variables [66]. To align phase estimates

across trials, we defined zero-phase as the maximum of the first principal component.

Gait event estimation of phase averaged signatures

The force plates embedded in the treadmill captured precise gait event timing information

(left heel strike, right toe off, right heel strike, left toe off) across individuals’ trials which we

represented as a vector of 1’s, 2’s, 3’s and 4’s, respectively (ground truth markings for the 4

gait events). We leveraged the Phaser algorithm again [66] to develop a phase estimator to

transform these 4 gait events over time into gait events over phase. For each trial, we deter-

mined the mode phase that corresponded to each of the 4 gait events to gain a representa-

tion of where the 4 gait events occurred during phase averaged dynamics (0–2π) for each

trial.

Interpolation of unseen speed gait signatures to reconstruct kinematics

To demonstrate the generalizability of gait dynamics, we show that linearly interpolating gait

signatures to predict gait kinematics at new walking speeds is more accurate than linearly

interpolating the kinematics themselves. We trained another RNN model with the same archi-

tecture and hyperparameters to the first model, however using only the 2 slowest and 2 fastest

speeds from each participant (i.e., we held out the 2 middle speed trials from each participant).

We then linearly interpolated the 2-middle speeds’ internal states and ran the data through the

trained RNN to reconstruct or predict kinematics. We compared the original phase averaged

kinematics to the predicted kinematics resulting from each of the two linear interpolations

(dynamics and kinematics) using the coefficient of determination. Furthermore, even when

we reduced the dimensionality of the model’s internal states from the full 1024 to the first 6

principal components (the selected dimension on the gait signatures), it still performed better

than interpolating kinematics (also rank = 6).

Biomechanical interpretation of principal components of the gait signature

To reconstruct kinematics from the corresponding underlying dynamics (internal state repre-

sentations), we restored our trained model’s weights to a new model using the ‘model.set’ and

‘model.get_weights’ Keras built in functions. The function ‘model.predict’ takes in the hidden

state values (Hs) only (first 512 of the 1024 internal-state time trajectories) and predicts the

corresponding kinematics for the provided internal states. Using this framework, we provided

this new model with independent principal component representations of individuals’ hidden

states and visualized the corresponding kinematics through stick figure movie representations

of the resulting kinematics over the walking trials.
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Predicting time evolution of kinematics from an initial posture (self-

driving)

Our trained generative gait model can take in a single initial posture of size (6,1) correspond-

ing to a single time point representation of each of the 6 joint angles to predict the next time

step posture/kinematics using command ‘model.predict’. To make further predictions, the

predicted value is used as the new initial condition (posture) and predictions are made on a

one-time step basis in a similar fashion for a pre-specified prediction length (self-driving).

However, it is important to note that even though our current framework only predicts one

time-step in the future, the LSTM layer remains stateful through each gait cycle, allowing the

model to learn much longer timescales as seen when self-driving the network (S7 Fig).

Supporting information

S1 Video. Stick figure movie demonstrating the RNN’s kinematic reconstruction of all the

PCs of dynamics.

(MP4)

S2 Video. Stick figure movie demonstrating that PC1 encodes dynamics driving hip flexion

and extension.

(MP4)

S3 Video. Stick figure movie demonstrating that PC2 encodes dynamics driving knee flex-

ion and extension.

(MP4)

S4 Video. Stick figure movie demonstrating that PC3 encodes dynamics driving postural

coordination.

(MP4)

S5 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC1

projection is replaced with ST4’s impaired PC1 projection.

(MP4)

S6 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC3

projection is replaced with ST4’s impaired PC3 projection.

(MP4)

S7 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC4

projection is replaced with ST2’s impaired PC4 projection.

(MP4)

S8 Video. Stick figure movie demonstrating the kinematic reconstruction when ST3’s

impaired PC5 projection is replaced with AB2’s PC5 projection.

(MP4)

S1 Fig. Comparison of model performance on training and validation loss (left), and long-

and short-time prediction performance (right). In both plots, small dots represent the aver-

age values across trials for each random initialization of each model. Large dots and bars

denote the average and standard deviation of model performance metrics across initializations.

Left: Training and validation loss (RMSE) for all 12 hyperparameter pairs. Models in the

lower-left consider are considered better. Right: Long- and short-time prediction performance

(R2) for the 3 hyperparameter pairs with the lowest training and validation loss. Models in the
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upper-right corner are considered better.

(TIF)

S2 Fig. RNN model training (green) and validation (blue) loss curves.

(TIF)

S3 Fig. RNN dynamic learning generalizes across 12 leave-one-individual-out models. The

minimum train loss (blue) and validation loss (green) was low (< 0.02 degrees2) for 5 models

that were trained each with a single able-bodied individual held out of the training data (A, i)

and 7 models each with a stroke individual held out of training data (A, ii). The magnitude

and range of the test loss (evaluation of model on the held-out data) (orange) was higher than

the respective minimum training and validation losses for both held-out able-bodied (A, i)

and stroke (A, ii) models. The magnitude and range of test losses evaluated on held-out able-

bodied individuals, however, were lower than models evaluated on held-out stroke data. The

models generate external predictions (blue) of held-out test trials with higher R2 values than

that of self-driven predictions (red) in models evaluated on both able-bodied (B, i) and stroke

trials (B, ii). The models can generate external kinematic predictions (blue) of held-out able-

bodied (B, i) trials better than that of stroke (B, ii). Self-driven predictions of stroke kinematics

were generally very low (R2 values below 0.5). Models were incapable of generating self-driven

predictions for 5 of 30 able-bodied trials and 16 of 42 stroke trials. (C) shows reference (black),

externally driven (blue) and self-driven (red) phase averaged kinematic predictions for an

exemplary able-bodied trial (C, i) and exemplary stroke trial (C, ii). Models can predict kine-

matics of held-out able-bodied trials better (higher R2) than that of stroke.

(TIF)

S4 Fig. Cumulative proportion of variance explained by the first 100 principal components

of gait dynamics. Six (6) principal components (PCs) explained 77% of the variance in the

gait dynamics. The top 6 dominant PCs were used to develop the gait signature.

(TIF)

S5 Fig. Support vector machine cross-validation classification accuracy of four different

gait descriptors (discrete variables, gait signatures, kinematics, and a combination of kine-

matics & joint velocity) for discrimination between: a) gait group (able-bodied vs. stroke)

and B) individuals. Using k = 25 folds, RNN gait signatures distinguished between impaired

and unimpaired gait with 100% accuracy, along with the 26 discrete variables (100%, p = 1),

whereas kinematic (92.67 ± 0.15%, p< 0.05) and kinematics & velocity (88.67 ± 0.17%, p

<0.05) discrimination were significantly lower. Using k = 6 folds, SVM classification of indi-

viduals was most accurate using RNN gait signatures and discrete variables (100%), lower

using kinematics (88.9 ± 0.13%, p = 0.061) and significantly lower using a kinematics and

velocity (68.10 ± 0.16%, p< 0.05).

(TIF)

S6 Fig. Relationship between participants’ similarity to able-bodied gait signatures and the

RNN’s ability to predict gait kinematics over one gait cycle. There exists a negative correla-

tion between self-driven R2 and Euclidean distance to the AB centroid that is statistically sig-

nificant at the 0.05 level (S6 Fig, dots). Lower functioning stroke survivors are located further

away from the able-bodied centroid, however remarkably all but one (outlier) of the R2 values

are above 0.73 in both high and lower-functioning individuals. Even though the model can

better predict able-bodied future kinematics better than stroke (R2 values above 0.8), the abil-

ity of our model to predict at least a single gait cycle of future stroke kinematics with R2 above

0.73 is promising. To provide a control for this analysis, we found the average R2 values
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between the self-driven prediction of the last full gait cycle of each trial and 5 randomly

selected gait cycles from other randomly selected individuals in the same gait group (able-bod-

ied vs. stroke) (S6 Fig, stars). This control would effectively reveal whether our model learned

each individual’s specific gait pattern or was just producing arbitrary (averaged) gait patterns.

We expect that if the model learned individuals specific gait patterns, then the distribution of

the R2 values of the self-driven kinematic predictions would be significantly different to that of

the averaged R2 values corresponding to arbitrary gait patterns. In fact, the averaged R2 of the

generic gait cycle comparisons ranged from 0.56 to 0.95 (compared to 0.61–0.99 in self-driven

predictions). Further, the distributions of the R2 outputs for both able-bodied and stroke indi-

viduals were significantly different (at the 0.05 level) to self-driven R2 outputs with p-values

5.5x10-6 and 5.4x10-3 respectively using the Wilcoxon Rank-Sum test. This reveals that even

for stroke survivors the model has learned their dynamics in some capacity and the model isn’t

simply predicting arbitrary gait patterns.

(TIF)

S7 Fig. Graphical summary and pseudo code of our gait signatures framework and algo-

rithm. A) Training dataset: Using the 6-dimensional gait trajectory, the inputs (green) were

concurrent segments from the gait trajectory, each one 499-time steps long. The outputs (blue)

were 1-shifted (in time) segments of inputs. B) Model architecture: Our model consisted of

an input layer, a hidden layer composed of 512 LSTM units, and a 6-unit Dense output layer.

C) Stateful training: The hidden state of an RNN at time t is a function of the input at time t

and the hidden state at time t-1. The model starts with processing the first mini-batch, calculat-

ing a new hidden state at each t and predicting gait kinematics at time t+1 given kinematics

data at t. At the end of the mini-batch processing, the model calculates MSE over the entire

mini-batch to calculate error for backpropagation and to update model weights. The final hid-

den state h(t+L) is used as the initial hidden state for generating predictions for the next mini

batch (L is the temporal length of each mini-batch). The hidden state is initialized as zero

before processing the first mini-batch.

(TIF)

S1 Table. Stroke participant’s demographics and clinical scores.

(TIF)
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