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Abstract

The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly

understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and

accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and

accelerations of 31 muscles in a 7 degree-of-freedom, three-dimensional model of the cat hindlimb. To test the effects of inter-joint

coupling, we systematically immobilized the joints (excluded kinematic degrees of freedom) and evaluated how the endpoint force and

acceleration directions changed for each muscle in 7 different conditions. We hypothesized that altered inter-joint coupling due to joint

immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual

muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or

acceleration direction by more than 901 in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with

behaviorally observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle

torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the

magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating

muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and

distal muscles to produce functional endpoint actions during motor tasks.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Standing balance is an important motor task that
requires the control of multiple muscles and joints across
the body. Because of mechanical redundancy, no unique
muscle activation pattern exists to perform a balance
task (Bernstein, 1967). However, during standing balance
in humans and animals, stereotyped muscle activation
patterns representing the coordination of multiple muscles
in a multijointed limb are observed (Henry et al., 1998;
Macpherson, 1988b). These results suggest that a highly
specific selection system is used by the nervous system to
organize muscle activations in the limb, yet the biomecha-
e front matter r 2007 Elsevier Ltd. All rights reserved.
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nical principles underlying this organization remain elu-
sive. Our goal is to understand the influence of mechanical
inter-joint coupling in a multisegmented cat hindlimb to
gain insights into inter-muscular coordination mechanisms
necessary for neural control of posture.
Musculoskeletal modeling and analysis techniques have

revealed the strong influence of biomechanical inter-joint
coupling on the specific contribution of a muscle force or
joint torque to the performance of motor tasks (Zajac and
Gordon, 1989). Inter-joint coupling can be identified
through the analysis of the equations of motion that
describe a musculoskeletal system. Non-diagonal terms in
the inverse mass matrix define how the force produced by a
single muscle generates an acceleration at remote joints
that the muscle may not cross (Zajac and Gordon, 1989).
Such analyses have helped to reconcile the actions of
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Table 2

Kinematic conditions
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experimental muscle activation patterns that seem to
contradict the anatomical descriptions of the muscles, such
as hamstrings activity during knee extension in locomotion
(Lombard, 1903), or extensor activity during pinch
(Valero-Cuevas et al., 1998). In special cases, the net
torque generated by a muscle at a joint may oppose its
anatomical description—gastrocnemius contributes a net
knee extension torque in walking despite its flexor moment-
arm about the knee (Zajac, 1993; Zajac and Gordon, 1989).
This type of analysis can be extended to examine the
contributions of a muscle to the generation of an endpoint
force or acceleration using the Jacobian matrix (Kaya
et al., 2005;Valero-Cuevas et al., 1998).

The specific purpose of this study was to investigate the
extent to which biomechanical inter-joint coupling me-
chanisms affect the endpoint force and acceleration
induced by a single muscle in an anatomically based
musculoskeletal model of the cat hindlimb (Burkholder
and Nichols, 2004; McKay et al., 2006). Our ultimate goal
is to understand the multiple muscle activation patterns
purported to generate endpoint forces during postural
control (Torres-Oviedo et al., 2006). The present study was
further motivated by experimental evidence in the cat
hindlimb demonstrating that the endpoint force and torque
directions elicited by direct stimulation of individual
muscles change depending upon the experimental fixation
conditions of the limb (Abelew et al., 1996; Lawrence et al.,
Table 1

Muscle abbreviations

adf Adductor femoris

adl Adductor longus

bfa Biceps femoris anterior

bfp Biceps femoris posterior

edl Extensor digitorum longus

fdl Flexor digitorum longus

fhl Flexor hallucis longus

gmax Gluteus maximus

gmed Gluteus medius

gmin Gluteus minimus

grac Gracilis

lg Lateral gastrocnemius

mg Medial gastrocnemius

pb Peroneus brevis

pec Pectineus

pl Peroneus longus

plan Plantaris

psoas Iliopsoas

pt Peroneus tertius

pyr Pyriformis

qf Quadratus femoris

rf Rectus femoris

sart Sartorius

sm Semimembranosus

sol Soleus

st Semiteninosus

ta Tibialis anterior

tp Tibialis posterior

vi Vastus intermedius

vl Vastus lateralis

vm Vastus medialis
1993; Murinas, 2003). Similarly, prior modeling work has
demonstrated that the number of degrees of freedom in a
musculoskeletal model can dramatically alter the effects
attributed to individual muscles (Riley et al., 2001; Siegel
et al., 1996). Chen (2006) demonstrated that altering the
kinematic context of the model, by including immobile
joints that are mechanically redundant, alters the inter-
joint coupling expressed in the equations of motion.
However, in the behaving animal, joint torques that
provide postural support to functionally immobilize a
joint arise from muscle activation that must be specified
by the nervous system. Therefore, to gain insight into
neural control mechanisms for muscle coordination,
biomechanical inter-joint coupling effects between a muscle
and remote, functionally immobilized joints must be
considered.
We hypothesized that, because of inter-joint coupling,

altering the kinematic status of any joint would change the
endpoint forces and accelerations induced by activation
of individual muscles. By systematically immobilizing
(excluding) joints in our model, we evaluated the effect of
altered inter-joint coupling on the induced endpoint force
and acceleration directions of 31 muscles. We defined
the inter-joint coupling mechanisms to have a dramatic
Dorsal
Sagittal

90

180

-90

0

90

180

-90

0

ψ Φ

A B

Fig. 1. Coordinate system for computing endpoint force and acceleration

direction: (A) dorsal plane angles (C), (B) sagittal plane angles (F). These
coordinates were used in the reporting of single muscle-induced endpoint

accelerations and forces in Tables 3 and 4.

Hip (H) Knee (K) Ankle (A)

HKA Free Free Free

HK� Free Free �

H�A Free � Free

H�� Free � �

�KA � Free Free

�K� � Free �

��A � � Free

� Indicates joint is immobilized.
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influence if the induced endpoint force and acceleration
directions of a single muscle changed by more than 901, as
joints were included or eliminated from the model. We
defined the inter-joint coupling to have a substantial
influence if the induced endpoint force and acceleration
direction of a single muscle changed by more than 451.
We demonstrate that inter-joint coupling effects can
dramatically alter the resulting endpoint function, and
also interpret these findings in terms of neural coordination
of muscles.
2. Methods

Using a three-dimensional model of the cat hindlimb (Burkholder and

Nichols, 2000, 2004; McKay et al., 2006), we examined the contributions

of 31 muscles (Table 1) to the mechanical actions at the metatarsopha-

langeal (MTP) joint, which can be considered to be the endpoint of the

limb (Kaya et al., 2005; Macpherson, 1988a). The distal phalangeal

segments contact the ground during stance without slipping, so the

MTP-ground interaction was modeled as a gimbal joint. For each muscle,

we examined the force generated at the MTP on the ground when a single

muscle was activated. We also examined the acceleration of the MTP

when it was elevated and did not contact the ground. Both ground contact

and elevation conditions occur in postural and locomotor tasks.
Table 3

Sagittal plane directions (F) of muscle-induced endpoint actions under variou

Instantaneous acceleration

HKA HK� H�A H�� �KA �K� ��A

adf �99 �142 44 169 NA NA NA

adl �98 �137 63 169 NA NA NA

bfa �93 �140 41 169 NA NA NA

bfp 45 145 35 169 53 147 NA

edl 14 159 �2 NA 16 �25 �4

fdl �174 NA 179 NA �177 NA 177

fhl �166 NA 178 NA �164 NA 176

gmax �40 �59 170 166 NA NA NA

gmed �29 �42 �179 6 NA NA NA

gmin �26 �35 �176 �6 NA NA NA

grac 70 144 53 169 67 144 NA

lg �173 131 178 NA �170 142 176

mg �171 127 178 NA �168 145 176

pb �150 NA 171 NA �127 NA 171

pec �94 �137 55 169 NA NA NA

pl �10 NA 0 NA �13 NA �2

plan �172 131 178 NA �169 142 176

psoas 73 24 �160 �10 NA NA NA

pt �7 NA 0 NA �11 NA �2

pyr 61 80 �10 �11 NA NA NA

qf 167 169 9 171 NA NA NA

rf �130 �48 �114 �11 �125 �34 NA

sart 112 45 �157 �11 NA NA NA

sm 149 �179 55 169 106 139 NA

sol �166 NA 178 NA �164 NA 176

st 72 144 47 169 70 144 NA

ta 14 NA �2 NA 16 NA �4

tp 175 NA 180 NA 171 NA 178

vi �122 �54 NA NA �121 �34 NA

vl �114 �53 NA NA �116 �35 NA

vm �140 �61 NA NA �132 �32 NA
We performed simulations with the hindlimb placed in a postural

configuration based on experimentally measured kinematics during an

unrestrained postural task (as in McKay et al., 2006; data taken from

Torres-Oviedo et al., 2006). The model had 7 kinematic degrees of freedom.

The pelvis was stationary, the hip joint was modeled as a gimbal, and the

knee and ankle were modeled as a pair of revolute joints with non-

intersecting, non-orthogonal axes (Burkholder and Nichols, 2000, 2004). In

order to isolate the inter-joint coupling effects on muscle forces, we eliminated

the contributions of gravity to the system. However, the addition of gravity to

the system did not significantly alter our results (data not shown). Under a

quasi-static assumption, we assumed joint velocities to be negligible, thus

removing the influence of motion-dependent effects. This reduced the

equations of motion to a linear system and allowed calculation of the

instantaneous acceleration and force (Kaya et al., 2005). We maximally

activated each muscle and determined the directions of endpoint force and

acceleration. Because our system was linear with respect to muscle activation,

these directions are equally valid for all levels of muscle activation.

To test the effects of inter-joint coupling on the muscle-induced

endpoint accelerations and forces, we systematically immobilized all

possible combinations of the hip, knee, and ankle joints (Table 2). For

each of the seven conditions, we determined the orientation of the

endpoint force and acceleration vectors. We defined c and F to be the

angle in the dorsal and sagittal projections, respectively. Inter-joint

coupling was defined to have a ‘‘substantial’’ or ‘‘dramatic’’ influence

when the change in c or F exceeded 451 or 901 across conditions,

respectively (Fig. 1). A value of NA was reported if all the joints that a

muscle crossed were immobilized.
s kinematic conditions

Instantaneous force

HKA HK� H�A H�� �KA �K� ��A

�91 �125 86 NA NA NA NA

�91 �125 86 NA NA NA NA

�90 �125 86 NA NA NA NA

79 129 86 NA 83 155 NA

50 �164 80 NA 55 �15 �4

�141 NA �101 NA �152 NA 177

�130 NA �101 NA �124 NA 176

�76 �107 88 NA NA NA NA

�70 �85 �97 NA NA NA NA

�68 �60 �96 NA NA NA NA

86 126 86 NA 86 142 NA

�152 83 �101 NA �138 75 176

�144 78 �100 NA �133 150 176

�116 NA �97 NA �98 NA 169

�90 �125 86 NA NA NA NA

9 NA 78 NA �30 NA �2

�147 83 �101 NA �135 58 176

87 52 �94 NA NA NA NA

16 NA 78 NA �22 NA �2

84 61 �92 NA NA NA NA

130 �144 85 NA NA NA NA

�99 �95 �94 NA �97 �26 NA

95 56 �94 NA NA NA NA

111 �135 86 NA 94 9 NA

�130 NA �101 NA �124 NA 176

87 126 86 NA 87 137 NA

50 NA 80 NA 57 NA �4

�160 NA �102 NA 164 NA 178

�96 �102 NA NA �96 �29 NA

�95 �101 NA NA �94 �33 NA

�103 �107 NA NA �99 �22 NA
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2.1. Calculation of muscle-induced endpoint acceleration

The complete equations of motion for the 7 degree-of-freedom model

were derived using Autolev software (Online Dynamics, Inc.) in the form

MðyÞ � €y ¼ RðyÞFmus þ Vðy; _yÞ þ GðyÞ. (1)

The angular accelerations for each degree of freedom are represented in

the 7� 1 vector €y. M(y) represents the mass distribution of the system,

Vðy; _yÞ is a vector of Coriolis and centripetal terms, and G(y) represents
gravitational contributions. R(y)Fmus represents the torques produced by

muscles at each degree of freedom, where R(y) is a 7� 31 matrix of muscle

moment arms, and Fmus is a 31� 1 vector representing individual muscle

forces. The state dependence of M, R, V and G is omitted in the following

sections for clarity.

Under our assumptions of zero-gravity and the no motion-dependent

effects, G and V could be eliminated, and the equations of motion reduced to

€y ¼M�1½RFmus�. (2)

The acceleration vector of the MTP joint was computed from €y through

the Jacobian matrix J, as €x ¼ J €yþ _J _y (Sciavicco and Siciliano, 2000). In

the quasi-static case, this reduced to

€x ¼ J €y. (3)

Substitution of (2) in (3) resulted in endpoint acceleration in terms of

muscle force:

€x ¼ JM�1½RFmus�. (4)
Table 4

Dorsal plane directions (C) of muscle-induced endpoint actions under various

Instantaneous acceleration

HKA HK� H�A H�� �KA �K� ��A

adf �46 �90 105 �85 NA NA NA

adl �59 �61 150 �77 NA NA NA

bfa �14 �81 103 �82 NA NA NA

bfp 75 �40 81 �91 78 �98 NA

edl 105 �173 101 NA 105 29 101

fdl �154 NA �154 NA �151 NA �154

fhl �81 NA �82 NA �80 NA �82

gmax 69 7 �158 �8 NA NA NA

gmed 69 10 �158 2 NA NA NA

gmin 71 11 �155 5 NA NA NA

grac 128 �95 129 �80 122 �70 NA

lg �87 �141 �84 NA �86 �48 �83

mg �76 �65 �76 NA �75 �81 �76

pb �10 NA �4 NA �6 NA �6

pec �31 �61 138 �76 NA NA NA

pl 9 NA 12 NA 13 NA 11

plan �85 �143 �81 NA �83 �45 �81

psoas 145 35 �125 67 NA NA NA

pt 10 NA 13 NA 14 NA 12

pyr 38 178 37 149 NA NA NA

qf �91 �165 37 �158 NA NA NA

rf �99 146 �19 114 �98 87 NA

sart �143 108 �105 104 NA NA NA

sm �150 �110 146 �67 �166 �30 NA

sol �82 NA �82 NA �81 NA �82

st 137 �96 131 �68 132 �65 NA

ta 103 NA 104 NA 105 NA 104

tp �169 NA �166 NA �165 NA �167

vi �87 126 NA NA �87 95 NA

vl �69 97 NA NA �72 104 NA

vm �111 167 NA NA �112 70 NA
Immobilization of the hip, knee or ankle joint was accomplished by

recalculating M and J of the reduced degree-of-freedom system.

2.2. Calculation of muscle-induced endpoint force

Two different computations were used to find endpoint force,

depending on the number of degrees of freedom remaining in the system

after immobilizing the joints. When one or zero joints were immobilized,

there was at least one remaining degree of freedom in the system. In this

case, the endpoint force was found by multiplying the instantaneous

acceleration in (4) by the ‘‘apparent mass’’, N, of the endpoint. This is

given by N ¼ ðJM�1JTÞ
�1 (Zatsiorsky, 2002)

F ep ¼ ðJM�1JTÞ
�1JM�1½RFmus�. (5)

When the hip and either the knee or ankle were immobilized, the system

was overconstrained. The endpoint force was determined using the static

relationship between muscle-induced joint torques and endpoint force

with the right-pseudoinverse of the Jacobian transpose:

F ep ¼ ðJ
TÞ
þRFmus. (6)

This method minimized the magnitude of Fep and the non-contri-

buting reactions due to the indeterminacy (non-trivial null space

components).

No force solution existed when the knee and ankle were immobilized.

In this case, only the gimbal joints at the hip and MTP were free to

move, hence only rotation about the axis from the hip to the MTP

joint was possible. This motion was independent of the endpoint
kinematic conditions

Instantaneous force

HKA HK� H�A H�� �KA �K� ��A

�100 �90 98 NA NA NA NA

�136 �84 101 NA NA NA NA

�5 �88 98 NA NA NA NA

63 �36 96 NA 62 �151 NA

104 �170 100 NA 104 16 101

�157 NA �145 NA �154 NA �156

�83 NA �82 NA �82 NA �82

75 �13 161 NA NA NA NA

71 2 �140 NA NA NA NA

73 8 �124 NA NA NA NA

115 �96 99 NA 109 �46 NA

�88 160 �83 NA �87 2 �84

�76 64 �78 NA �75 �126 �75

�9 NA �6 NA �4 NA �4

�140 �84 100 NA NA NA NA

8 NA 17 NA 12 NA 11

�86 163 �81 NA �85 3 �81

140 70 �89 NA NA NA NA

9 NA 19 NA 13 NA 12

27 142 �27 NA NA NA NA

�89 �150 78 NA NA NA NA

�113 �169 �78 NA �114 32 NA

�135 94 �85 NA NA NA NA

�152 �97 101 NA �162 8 NA

�83 NA �82 NA �83 NA �83

128 �97 100 NA 124 �24 NA

103 NA 102 NA 104 NA 104

�170 NA �160 NA �166 NA �167

�105 �125 NA NA �104 44 NA

�89 �97 NA NA �88 84 NA

�121 �155 NA NA �125 24 NA
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forces produced and appeared as a singularity in the Jacobian. These

cases were not considered and a value of not applicable (NA) was

reported.
2.3. Co-activation of proximal and distal muscles

To determine the possible effects of multiple, simultaneous, activation

of muscles on endpoint forces and accelerations, we investigated the effect

of ankle muscle torque generation combined with the activation of

individual proximal muscles. First, we maximally activated biceps femoris

(BFP) or vastus medialis (VM) with the ankle free and computed the

induced acceleration at the ankle. We then activated the BFP or VM

simultaneously with ankle torque that canceled 0–100% of the induced
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3. Results
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3.1. Proximal muscles

In general, endpoint outputs induced by muscles crossing
the hip or knee joints, whether mono- or bi-articular, were
dramatically influenced by inter-joint coupling with the
ankle. The anterior–posterior direction of the endpoint
forces and accelerations for BFP, a hamstring muscle that
flexes the knee and extends the hip, and VM, a mono-
articular knee extensor, rotated by 4901 in both the dorsal
and sagittal planes when the ankle was mobile vs. immobile
(Fig. 2, compare **A vs. **� conditions). This demon-
strated that BFP significantly accelerated the ankle,
which had to be immobilized to generate the dorso-
posterior endpoint force direction that was expected based
Soleus & Tib
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C, thick lines, compare HK� vs. �K�). The inter-joint
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still substantial (Fig. 2, thick black lines).
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by inter-joint coupling with the hip and knee joints. Dorsal
plane forces and accelerations induced by monoarticular ankle
muscles, soleus (SOL) and tibialis anterior (TA) were similar
regardless of the inclusion of the hip and knee joints (Fig. 3C).
For both lateral and medial gastrocnemius (LG/MG), dorsal
plane forces were similar in all conditions in which the ankle
was free (Fig. 3A). But, when the ankle was immobilized, the
endpoint actions were dramatically influenced by inter-joint
coupling with the hip (Fig. 3A and B, compare HK� and
�K�). All muscles crossing only the ankle acted consistently
in the dorsal plane (Fig. 4), consistent with experimental
findings (Lawrence et al., 1993).

3.3. Distal joint torques modulate proximal muscle actions

The endpoint acceleration directions induced by VM and
BFP were modulated by varying the ankle torque between
the zero and the torque required to immobilize the ankle
joint (Fig. 5). As ankle torque increased, the endpoint
acceleration rotated monotonically between the ankle-free
and ankle-immobilized conditions.

4. Discussion

The purpose of this study was to investigate the effects of
biomechanical inter-joint coupling on the endpoint forces
and accelerations induced by single muscles. We demon-
strated that the directions of the force and acceleration
induced by the activation of a single muscle could vary by
up to 1801 when joints throughout the limb, both proximal
and distal to the muscle activated, were immobilized. These
findings suggest how variations in experimental restraints,
passive muscle and tissue forces, or muscle activity at
remote joints could contribute to inconsistent force
directions when single muscles are stimulated in vivo
(Abelew et al., 1996; Lawrence et al., 1993; Murinas, 2003).
In the context of the neural control of muscles, our findings
illustrate specific interactions between individual muscles
and functionally immobilized joints that support the need
for neural mechanisms that couple the control of multiple
muscles. Inter-joint coupling may therefore be an impor-
tant biomechanical principle underlying the coordination
of muscles to produce functional endpoint actions during
motor tasks. We conclude that our results can provide
insight for understanding specific neural mechanisms that
coordinate multiple muscles, such as spinal reflexes and
muscle synergies.
The substantial dependence of muscle-induced endpoint

actions on joint mechanical status was a robust finding that
would not be significantly altered by adding more
complexity to the model. We studied instantaneous, quasi-
static, inter-joint interactions during single muscle-force
production. We found that the model geometry, embodied
in the mass matrix, M(y) and the Jacobian transformation,
J(y) was sufficient to introduce substantial inter-joint
interactions. Our results, therefore, represent a lower
bound of the effects of inter-joint coupling, as the
simulation of a dynamic task or the inclusion of gravity
would only introduce more sources of inter-joint coupling.
However, we predict these differences would be small,
as muscle activations patterns from quasi-static and
dynamic simulations are similar in simulations of locomo-
tion (Anderson et al., 2004; Kaya et al., 2005). Moreover,
our results were largely independent on the inertial
distribution of the limb; interchanging the mass of
the foot and the thigh did not substantially alter our
results.
This work supports inter-joint coupling as an essential

biomechanical principle underlying the coordination of
proximal and distal muscles in the cat hindlimb to produce
functional endpoint actions during motor tasks. The
endpoint force or acceleration induced by BFP activation
rotated by nearly 1801 in a plane from an anterior to a
posterior direction as increasing levels of ankle torque
were simultaneously activated. The magnitude of ankle
torque modulated the direction of endpoint force between
the endpoint force induced by BFP in the ankle-free
(HKA) and ankle-immobilized conditions (HK�). Beha-
viorally, our results may explain how BFP could contribute
to the changing endpoint actions during the transition
from stance to swing in locomotion (Engberg and
Lundberg, 1969). Ankle muscle fascicles undergo little or
no length change during the stance phase of locomotion
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(Biewener et al., 1998; Daley and Biewener, 2003;
Fukunaga et al., 2001; Lichtwark et al., 2007), serving to
functionally immobilize the ankle. The combination of
ankle muscle and BFP activity would produce a posterior-
directed propulsive force at the ground. Towards the end of
stance phase, however, ankle muscle activity declines into
toe-off; BFP activation in the early swing phase would
produce an anterior acceleration of the toe. Similarly,
modeling studies have demonstrated that a synergistic
activation between hip and ankle muscles is necessary for
propulsion in human pedaling (Fregly and Zajac, 1996;
Raasch and Zajac, 1999; Raasch et al., 1997) and walking
(Zajac, 2002; Zajac et al., 2003).

In the context of neural control strategies for muscle
coordination, the effect of joint torques that functionally
immobilize a joint must be considered whether they are
explicitly or implicitly included in the model. A torque that
provides postural support at a joint cancels the accelera-
tions that would be induced at that joint by other muscles
(Chen, 2006). However, this torque itself also induces
accelerations at non-immobilized joints, altering the end-
point action of the limb. For example, BFP activation
produced torque around the axes of rotation at the hip and
the knee (Fig. 6A, black). Through inter-joint coupling via
the mass matrix, these torques induced accelerations at all
joints—hip, knee and ankle (Fig. 6A, white). Direct
application of torque at the ankle generated ankle
accelerations that were equal and opposite to those induced
by BFP activation as well as accelerations at the knee
and hip (Fig. 6B). Functional immobilization of the ankle
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joint occurred through simultaneous BFP activation and
ankle-torque application (Fig. 6C). The resulting joint
accelerations (Fig. 6C, white) were identical to the case
where the ankle was excluded from the equations of motion
(Fig. 6D, white). Although in the latter case, the necessary
muscular (or passive) torque at the ankle required were not
explicitly expressed in the equations of motion, their
contribution cannot be ignored in the context of neural
control of muscles.

Our study revealed specific inter-joint coupling effects
that may provide further insight into neural mechanisms
necessary to coordinate multiple muscles that produce
seemingly simple limb functions (Full and Koditschek,
1999; Ting, in press). By immobilizing joints, we demon-
strated the degree to which limb function could change
when muscles spanning the multijointed limb are not
coordinated. Our approach may help resolve how and why
the nervous system collapses the dimension of the
musculoskeletal system such that it can be described by
low-dimensional models, like an inverted pendulum (Chen,
2006). Immobilization of the joint can thus be used as a
proxy for understanding how activation of muscles at that
joint could affect the function of the limb. Our results
provide a ‘‘mapping between the interpretations drawn
from simple and complex models’’ (Chen, 2006) and
delimit the range of possible endpoint actions through
modulation of torque at the immobilized joint. These
results can guide studies using the full three-dimensional
musculoskeletal model of the cat hindlimb to determine
which muscles should be co-activated to produce a
desired limb function, although this step is non-trivial.
Using this approach, the biomechanical principles under-
lying the specific organization of spinal reflexes (Bonasera
and Nichols, 1996; Wilmink and Nichols, 2003), neural
circuits for locomotion (Drew et al., 2002; Jankowska
et al., 2005; McCrea, 2001), or muscle synergy organization
for movement (d’Avella et al., 2003; Ivanenko et al.,
2004; Ting and Macpherson, 2005; Tresch et al., 1999) may
be revealed.
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