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This chapter examines methodologies for dimensional analysis and linear decomposition of

multivariate data sets, and discusses their implicit hypotheses and interpretations for muscle

coordination of movement. It presents tutorials to compare how two common methods—principal

components analysis (PCA) and non-negative matrix factorization (NMF)—decompose

electromyographic signals into underlying components. To facilitate the integration of such

mathematical techniques with physiological hypothesis testing, the chapter focuses on developing an

intuitive understanding to the two techniques. It provides a simple two-dimensional tutorial, focusing

on how orthogonality constraints in PCA and non-negativity constraints in NMF impact the resulting

data decomposition and physiological relevance. Examples are presented using real data sets from

human balance control and locomotion. The chapter examines the structure of the resulting

components, their robustness across tasks, and their implications for various muscle synergy

hypotheses. The chapter addresses practical issues and caveats in organizing datasets, the selection of

the appropriate number of components, and considerations and pitfalls of experimental design and

analysis, as well as o�ering suggestions and cautions for interpreting results. Based on these

comparisons and on the work in the visual system over the last decade, evidence is presented for the

increased neurophysiological relevance of the factors derived from NMF compared to PCA.

How do humans and animals move so elegantly through unpredictable and dynamic environments? Why

does this question continue to pose such a challenge? During any motor task, many physiological elements

throughout the body must be coordinated, such as limbs, muscles, neurons, etc. A major question in motor

D
ow

nloaded from
 https://academ

ic.oup.com
/book/8542/chapter/154404485 by Em

ory U
niversity School of Law

 user on 26 July 2024

https://academic.oup.com/book/8542
https://academic.oup.com/search-results?f_Authors=Frederic%20Danion,%20PhD
https://academic.oup.com/search-results?f_Authors=Mark%20Latash,%20PhD
https://doi.org/10.1093/acprof:oso/9780195395273.001.0001
https://doi.org/10.1093/acprof:oso/9780195395273.003.0005
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22dimensional+analysis%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22linear+decomposition%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22multivariate+data+sets%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22muscle+coordination%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22movement%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22principle+components+analysis%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22non-negative+matrix+factorization%22%7d
https://academic.oup.com/search-results?qb=%7b%22Keywords1%22:%22data+decomposition%22%7d
https://academic.oup.com/search-results?page=1&tax=AcademicSubjects/SCI01960
https://academic.oup.com/oxford-scholarship-online


control is: How do the overall functions and characteristics of movements arise from the functional

arrangement and coordination of both neuromuscular elements and environmental interactions? Although

modern technology allows us to collect an unprecedented amount of data on the activity of neurons,

muscles, and limbs during a wide variety of behaviors, we still lack an understanding of how individual

elements of the body interact to produce the many movements we perform, let alone characteristics such as

grace or clumsiness.

Interpreting both structure and variability in the motor system and relating it to the resulting

biomechanical and behavioral outputs remains a grand challenge in understanding how we move. Nikolai

Bernstein noted the fact that motor behaviors never repeat themselves exactly, even when the same task is

performed in succession (Bernstein 1967). On the other hand, he also noted that characteristic output

patterns occur even when a motor task is performed by di�erent sets of muscles, such as when drawing

shapes or letters on a piece of paper versus on a blackboard, or with a di�erent appendage. Similarly, more

recent studies also demonstrate that the performance of a motor task, such as reaching to a target, can

occur quite consistently even when there is a great deal of variability in the underlying joint motions or

torques contributing to that task (Newell and Carlton 1988; Latash et al. 2002; Ko et al. 2003; Reisman and

Scholz 2006). These �ndings highlight the fact that our bodies have a large number of degrees of freedom in

the joints, muscles, and neurons that allow them to be �exible and functionally recon�gured to perform the

same task, as well as di�erent  tasks (see Kelso, Sternad, this volume). During any so-called coordinated

movement, synchrony and similarity are observed across many di�erent kinematic, kinetic,

electromyographic, and neural signals (Bernstein 1967; Macpherson 1991). But, when looking across a wide

behavioral repertoire, the synchrony and coordination observed in one movement may be abolished in

another, such that �uctuations in the spatiotemporal dynamics of the multiple measures may appear

coordinated in one instance and independent in another (Bernstein 1967; Macpherson 1991). Such

di�erences are potentially due to both changes in the neural control of muscles, as well as to changing

interactions of the body with the environment under various conditions.

p. 103

Controlling movements requires not only organizing physiological processes for movement, but also

requires consideration of the complex interactions of forces acting between the organism and the

environment. Bernstein de�ned the coordination of movement as: “the process of mastering redundant

degrees of freedom of the moving organ, in other words, its conversion to a controllable system” (Bernstein

1967). By “controllable” Bernstein meant that coordinated motor activity causes predictable biomechanical

events, such as force generation and motion, that allow us to reliably perform a motor task. Thus,

understanding movement requires characterizing the degrees of freedom of the physiological system that

are used in the performance of any particular movement, the recon�guration of such degrees of freedom in

the performance of divergent movements (see Latash, this volume), and the relationships of these degrees

of freedom to the biomechanical interactions that ultimately generate the movement (see Prilutsky, this

volume). Gathering large sets of data during natural movements is becoming increasingly easier, thus

allowing us to characterize coordination across many variables at di�erent levels of the motor system;

however, interpreting such large data sets and analyzing them to test motor control hypotheses remains a

challenge.

Computational methods for analyzing large sets of data are now easily accessible and available; however,

the utility of such methods for providing insight into motor control is debated. Can such techniques help us

to understand increasingly large data sets? Can quantitative analysis provide further insight than that which

scientists have gathered from observation? Are automated pattern-recognition techniques able to reveal

that which an experienced scientist can see when examining raw data? What are the potential bene�ts and

pitfalls of using such techniques? These questions will be addressed in this chapter.

Here, our goal is to provide instructive tutorials to provide an intuitive guide to the similarities and

di�erences between two primary techniques used for the analysis and decomposition of multiple signals in
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motor control and neuroscience, as well as in engineering �elds: principal components analysis (PCA) and

non-negative matrix factorization (NMF) (Lee and Seung 1999). Although comprehensive texts on the

quantitative aspects  of these techniques are readily available (Ramsay and Silverman 2005), we present

methods for understanding how the properties of each technique a�ect the decomposition and

physiological interpretation of muscle activation patterns in a simple example and in actual data from

postural control and walking. We have chosen two commonly used linear decomposition techniques that

render the most divergent results; however, similar principles could be used as a basis for comparing other

decomposition techniques, such as independent components analysis (ICA) or k-means analysis (Tresch et

al. 2006). We will discuss the interpretations and implications of the results and how such techniques might

be used to understand principles of motor coordination, as well as give insight into the function of the

nervous system in translating goal-level intentions into speci�c muscle activation patterns for movement.

p. 104

Basic Properties and Di�erences Between PCA and NMF: A Simple
Example

Although PCA and NMF are similar in their underlying concept and mathematical representations, there are

key di�erences in their implementation and in the resulting components. Both PCA and NMF are linear

decomposition techniques that assume that the set of measured data is composed of linear combinations of

a smaller number of underlying elements (Fig. 5.1A). That is, given a number of simultaneous observations

of multiple data channels, any particular observation could be represented as:

(Eq. 1)

Mj= c1jW1+ c2jW2+ … + cnjWn+ error
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Figure 5.1  Electromyography (EMG) data decomposition schematic and muscle synergy concept. A: Any pattern of multiple

muscle activation can be represented as a linear combination of the activations of that muscle by each muscle synergy

component. In this example, there are n = 2 components and m = 3 muscles, thus M(θ) can be represented in terms of the lower-
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dimensional combination of muscle synergies (components, Wi) and activation commands (ci(θ)). B) Organization of the data

matrix and the structure of the W and c matrices.

Here, Mj is a vector that represents measurements of multiple channels of data (Fig. 5.1B); for example, the

activity of m muscles at a given time point, arranged in a column. On the right side of the equation, the

components or basis functions Wi are vectors, also of length m, that represent invariant patterns of activity

across those di�erent channels. The pattern of muscle activity can be described by n scalar values cij, each of

which speci�es the contributions of each component to the measured muscle activation pattern Mj. If there

are m muscles and n〈m components, then the representation of Mj in terms of the components Wi and the

weight or scaling factors cij is lower-dimensional than simply stating the value of each element of Mj. Such

linear decomposition techniques therefore test the hypothesis that, over a large number of observations of

Mj, the components Wi remain �xed, but the scaling factors cij are allowed to change and are su�cient to

account for all of the variations of the data measured across di�erent conditions. When analyzing muscle

activation patterns, the modules Wi are often referred to as muscle synergies (Tresch et al. 1999; Cheung et

al. 2005; Ting and Macpherson 2005; Torres-Oviedo and Ting 2007) or M-modes (Danion et al. 2003;

Krishnamoorthy et al. 2004; Latash et al. 2007). In this context, the hypothesis 

is that muscle synergies remain �xed, but activation of these synergies can vary, resulting in observed

variations in individual muscle activity.

p. 105

p. 106

Although similar in concept, in practice, PCA and NMF are quite di�erent; each method decomposes the

variability within a given data set in very di�erent ways. PCA is an analytical technique, meaning that the

components are found through a straightforward set of computations. Therefore, it is easy to use and there

are readily available algorithms included in most data processing software packages. This is possible

because PCA requires that the components be orthogonal (e.g., perpendicular) to each other, creating a

unique solution to any decomposition. Furthermore, it is relatively straightforward to select the appropriate

number of components needed to explain a given data set based on a cuto� value for the variance accounted

for. In contrast, NMF is found using a search algorithm, which means that it has to start with a set of

random components and iteratively improve on them until an adequate proportion of the variability in the

dataset is accounted for. Components generated by repeated searches will not be numerically identical but

will be similar. Because NMF constrains both the weights ci, as well as all of the elements of the components

Wi to be non-negative, the problem is what is called convex. That is, there are no local minima for the search

to be “stuck” in, therefore components from multiple searches are numerically similar. In a non-negative

space, it is not possible for the components to be orthogonal; however, they must be independent, meaning

that no component can be de�ned as a linear combination of the other components. The iterative technique

also requires that the number of components be speci�ed in advance, so that multiple searches must be

done to determine the right number.

In the following set of tutorials, we use a simple two-dimensional example of a simulated dataset to

illustrate the di�erences in how PCA and NMF decompose variability in the dataset. For all three examples,

simulated muscle activity data are fabricated by assuming that there are two underlying components, which

can be interpreted as muscle synergies, W1 and W2 that each de�ne a di�erent ratio between the activity of

two muscles (Fig. 5.2A, gray bars). These components can also be drawn as vectors on a two-dimensional

plot (Fig. 5.2A, gray arrows). A set of data, M, is created by randomly assigning the activation level of each

component (c1 and c2) from a uniform distribution between 0 and 1. Each data point, or observation Mj, can

be represented as a vector [m1jm2j], and plotted as a single point on a set  of axes representing the level of

activation of muscle 1 versus muscle 2 (Fig. 5.2A). The tutorials are available for download as part of the

supplementary materials, at http://neuro.gatech.edu/groups/ting/PMCtutorial.html.

p. 107
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Figure 5.2  A 2-D example illustrating di�erences between components identified using principal components analysis (PCA)

and non-negative matrix factorization (NMF). A: Data is constructed using two components specifying fixed ratios of muscle

activation between two muscles, W1 (m1=0.5*m2) and W2 (m1=2*m2). The contribution of each component for a given

observation, or data point, is found by multiplying each component by a scaling factor (c1 and c2) selected from a uniform

distribution ranging from 0–1. B: Components identified using PCA to decompose the data from A. The percentage of total data

variability that each component accounts for is shown beside each vector. The first component is directed along the long axis of

the data cloud, and the second is constrained to be in the orthogonal direction. C: Components identified using NMF to

decompose the data from A. Components are found near the edges of the data cloud. Note the similarity to the original

components (W1 and W2) used to generate the data. D: Data is constructed using the same two components as in A, except now it

is weighted towards using W1. In order to generate this data, c1 was taken from a uniform distribution between 0 and 1, whereas

c2 was taken from a uniform distribution between 0 and 0.3. E: Components identified using PCA to decompose the data from D.

W1pca looks similar to W1, reflecting the bias towards W1 in the generation of the data set, but W2pca is di�erent from W2. F:

Components identified using NMF to decompose the data from D. Despite the bias in the generation of the data set, these

components are similar to those used to generate the data, as well as the components identified in C. G: Data is constructed

using the same two components as in A and D, except now part of the data is weighted towards using W1 and part is weighted

towards using W2. To generate this data, c1 was taken from a uniform distribution between 0 and 0.3, whereas c2 was taken from

a uniform distribution between 0 and 1, and this was included along with the data from D. H: Components identified using PCA

to decompose the data from G. W1pca passes between the two “clouds” of data where the mean values of m1 and m2 lie, and the

components look similar to those identified in B. I: Components identified using NMF to decompose the data from G. Again the

components are similar to those used to generate the data.
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Orthogonality Versus Independence

PCA Is Descriptive; NMF Is Prescriptive

The constraints of orthogonality and independence in PCA, and independence without orthogonality in

NMF, account for the large di�erences between the components extracted by each technique. In this

example, the activity of each component was equally weighted, so that the data is scattered evenly between

the two vectors, W1 and W2, used to create the data (Fig. 5.2A). When PCA is applied to the data, two

components are extracted (Fig. 5.2B). The �rst aligns with the center of the long axis of the data and

accounts for 87% of the variability. Because the scaling factors can be positive or negative, the direction that

W1 points does not matter, only the line it de�nes. The second component must be at a right angle to the

�rst component to satisfy orthogonality. It accounts for a much smaller portion of the variability, only 13%.

Neither PCA component looks like the original components used to generate the data. Using NMF, the

extracted components are similar to the original components, W1 and W2, used to generate the data,

appearing at the edges of the data points (Fig. 5.2C). The variability accounted for by each component is

similar, 49% and 51%, respectively. Although the components are not orthogonal, the addition of a second

component nonetheless increases the set of possible patterns of muscle activation between muscles 1 and 2.

PCA, much like a multiple regression, describes the mean and residual variance from the mean in successive

principal components. Before identifying the components, the original dataset is typically demeaned; if this

is not done, then the �rst principal component represents the mean value of each variable across the

dataset. Otherwise, as in this example, the �rst principal component in PCA describes the largest deviation

from that mean in each muscle across a given dataset. Each additional component describes the orthogonal

direction containing the next largest deviations from that mean. In our two-dimensional example, it means

that if the �rst component changes, then the second component must also change. The percentage of

variability accounted for by each component decreases monotonically, describing the degree to which the

dataset varies in the corresponding direction. Because PCA allows for both negative and positive values for

the scaling factors, it is possible to describe any point on the plane with two independent components

derived from data in that plane, regardless of the direction that they point (Fig. 5.2B). Data with multiple

dimensions can be restricted to a plane by choosing only the �rst two principal components.p. 108

p. 109

In NMF, the components prescribe a subspace within which all data points must lie. Because of the non-

negativity constraints, only the points lying between the two components can be described (e.g., Fig. 5.2A).

Thus, components from NMF tend to identify the edges of the dataset and de�ne a convex hull, or polygon,

within which all of the feasible data points lie (e.g., Fig. 5.2C). The condition of independence requires that

each additional component increase the allowable subspace, as no two components can be represented as a

linear combination of other components. Because there is no constraint on orthogonality, it is also possible

for one component to change and the others to remain the same.

p. 110

Therefore, the non-negativity constraints within NMF make it more restrictive than PCA, delimiting

regions of the low-dimensional space that cannot be reached. Although dimension reduction can be

achieved in both techniques by examining only the �rst few components, NMF imposes further restrictions.

Components derived from PCA tend to describe the major direction of the data without imposing restrictions

within the space de�ned by those components. In contrast, NMF prescribes a subspace in which possible

combinations of muscle activity lie, restricting the expressible data points using those components.

Consider an example using the same components, W1 and W2, as in the previous tutorial, except this time

the data are preferentially weighted toward using W1 (Fig. 5.2D, data construction). This dataset was created

from sampling the same muscle activation components as in the prior example, but with a higher activation
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Physiological Interpretability of PCA Versus NMF Components

of W1 over W2. Using PCA, both components changed direction compared to the previous tutorial (compare

Fig. 5.2E and 2B). The �rst PCA component (W1pca) rotated closer to the mean of the observed pattern of

muscle activity and now looks qualitatively similar to the original W1 used to construct the data (Fig. 5.2A),

accounting for 97% of the variance. The second component must rotate a similar amount to maintain

orthogonality (compare Fig. 5.2B and 2E). Both components identi�ed in this case look di�erent from those

identi�ed using PCA in the previous example. Thus, PCA describes the data in a similar sense to a mean and

standard deviation. In contrast, both components found using NMF (Fig. 5.2F) were similar to the

components W1 and W2 used to generate the data (Fig. 5.2D) and to those identi�ed in the previous tutorial

(Fig. 5.2C). There was a slight shift in the second component simply because there is less variance in that

direction, and therefore a larger con�dence interval. Thus, the components obtained from NMF identify

vectors that prescribe the same space of possible solutions using those two components as in the prior

tutorial, even when one component is more heavily weighted than the other.

In PCA, a component, Wi, can contain positive and negative numbers representing relative muscle activation

levels, as well as positive and negative  weightings, ci. This means that positive and negative

relationships can be inverted easily by negative weighting values. In the context of muscle activation

patterns, this equal relationship between positive and negative activation is inconsistent with the

transformation between motorneuron action potentials and muscle activity. Although motoneurons no

doubt receive inhibitory as well as excitatory neural activity, the inhibitory e�ect can only be seen on motor

output if there is also a high background level of muscle activity. That is, if inhibition occurs when muscles

are quiescent, they have no e�ect on muscle activity due to the rectifying properties of neural transmission.

Moreover, excitatory pathways and e�ects cannot be made inhibitory, and vice versa, so that there is no

reason to think that an excitatory pattern would be identical to an inhibitory one. In contrast, in NMF, the

components are constrained to be non-negative, which is physiological for neural and muscle output, since

neurons are either �ring action potentials (positive signal) or else in a resting state (zero signal).

p. 111

One interesting result of the non-negativity constraint in NMF is that the underlying components resemble

a “parts-based” decomposition, in which a series of parts are summed to create a whole. Since each

component, or part, that is added cannot be subtracted out through the contributions of another

component, the parts must resemble identi�able features of the output. In contrast, allowing negative

numbers in PCA means that a given data point is created by addition and subtraction of contributions from

di�erent components to a given muscle’s activity. The �rst component describes the mean, and the next

components can add or subtract activity from that mean. Therefore, the resulting data point may bear no

resemblance to the identi�ed principal components.

Here, we demonstrate the di�erent ways in which PCA and NMF deal with data that are not evenly

distributed. Consider an example using data constructed from the same components, W1 and W2, from the

�rst two tutorials, except now part of the data is skewed toward using W1 and part skewed toward using W2

(Fig. 5.2G). The components identi�ed using PCA are similar to those found in the �rst tutorial: The �rst

component passes between the two main “clouds” of data, and the second is orthogonal to the �rst

(compare Fig. 5.2H to 2B). In contrast, components extracted using NMF look very similar to the original

W1and W2 used to generate the data, as well as to those identi�ed in the �rst two tutorials (compare Fig. 5.2I

to 2F and 2C). The components lie along the edges of the data “clouds,” and therefore can be used to

describe any data points between them.

In this example, the components from PCA are directed in similar directions as in �rst example, with the

�rst component aligned along the mean values of m1 and m2 across the dataset (Fig. 5.2H). Most of the data

points are reached by scaling the contribution of the �rst component and adding or subtracting a
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contribution of the second component. However, these components do not resemble the two-armed

“parts” of the dataset. In contrast, the components from NMF are again similar to those used to generate

the data, and similar to the components found from the two other  data sets (Fig. 5.2I). Here, the two

components from NMF clearly identify two of the underlying “parts” that are obvious in the dataset

(similar results can also be achieved through independent components analysis [ICA] in combination with

PCA [Hyvärinen 2001; Tresch et al. 2006]).

p. 112

Similarly, in the original paper describing di�erences between PCA and NMF, the components underlying

decomposition of an image of a face were compared (Lee and Seung 1999). All of the PCA components look

like entire faces, which are then added and subtracted together to generate a given face. To generate a face

with a medium nose, large eyes, and small mouth, one might imagine starting with the mean face expressed

by the �rst principal component and adding a component with a large nose, large eyes, and medium mouth,

then subtracting another component with a small nose, medium eyes, and small mouth. The NMF

components, however, are characterized by face parts such as the nose, eyes, and mouth. A face would be

generated by selecting a component nose, scaling it by a medium number, selecting a component eyes and

scaling it by a larger number, and selecting a component mouth and scaling it by a smaller number.

Interestingly, this kind of parts-based decomposition is similar to the type of neural representations

observed in the visual and other sensory encoding systems (Olshausen and Field 2004). Accordingly, there

has been a shift from the use of PCA to NMF in visual system research (Simoncelli and Olshausen 2001).

Identifying Components Using PCA and NMF: A Postural Control
Example

Taken together, these three tutorials illustrate key di�erences in how PCA and NMF describe and partition

the variability in a given data set, which are relevant to how they can be used to test motor control

hypotheses. Although all of the data were generated from the same set of underlying components, the

components identi�ed by PCA changed when the mean levels of muscle activation changed, and all of the

components changed simultaneously. NMF has the ability to identify components that are stable across

di�erent conditions, but combined di�erently. This demonstrates how di�erent conclusions regarding the

robustness and generality of components might be drawn depending on which decomposition algorithm is

used.

In the literature, both PCA and NMF have been used to examine whether stable motor modules are used for

generating movements. Several studies have addressed muscle coordination in standing balance control,

because muscles in various regions of the body tend to act synchronously, and patterns of muscle activation

can be easily related to a direction of body motion. During postural body sway, PCA has been used to identify

components, called M-modes, that correspond to the direction of center of pressure changes used to

stabilize the body (Aruin et al. 1998; Krishnamoorthy et al. 2003a). Similarly, in responses to di�erent

directions of perturbation during  standing balance control, components from NMF, referred to as muscle

synergies, have been identi�ed that correspond to the direction of force applied at the ground to stabilize the

body (Ting and Macpherson 2005; Torres-Oviedo et al.2006). However, as the number of postural

conditions is increased, the underlying M-modes from PCA are found to change (Krishnamoorthy et al.

2004), whereas the muscle synergies from NMF remain consistent (Torres-Oviedo et al. 2006; Torres-

Oviedo and Ting 2010).

p. 113

Rarely are both techniques used in the same study, so that it is di�cult to know whether the di�erences in

the literature re�ect the techniques used, the experimental design, or the particular motor tasks tested.

Moreover, since NMF requires several decisions on the part of the investigator, choosing the right number

of muscle synergies is not necessarily straightforward, which may also lead to di�erent conclusions being
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Introduction to Postural Responses

drawn. Here, we provide examples where both PCA and NMF are performed on actual data from one subject

during postural responses to multidirectional perturbations.

In order to maintain balance in light of an unexpected perturbation of the support surface, humans and

animals must keep the projection of their center of mass (CoM) within the limits of their base of support.

Various strategies may be used when balance is disrupted, requiring the activation of di�erent muscles,

such as taking a step, grabbing a handrail, or maintaining the feet in place to restore balance. When

standing balance is disturbed with a discrete perturbation, �rst the direction of falling is sensed, and then

the appropriate muscles are activated to restore balance. The initial change in muscle activity in the lower

limbs does not occur until approximately 100 ms following the onset of a perturbation, and this initial

muscle activity is called the automatic postural response (APR). Variations are observed even in responses to

the same perturbation direction due to attention, expectation, and the like (Woollacott and Shumway-Cook

2002). When many trials and many perturbation directions are examined, the di�erences observed in

individual muscle activations are di�cult to interpret (Horak and Macpherson 1996; Henry et al. 1998). One

hypothesis is that the nervous system activates these muscles in groups, and decomposition techniques

such as PCA and NMF can be used to identify such groups and the relationships between the muscle

activations (Krishnamoorthy et al. 2003a; Krishnamoorthy et al. 2003b; Torres-Oviedo and Ting 2007).

To generate the postural data examined here, subjects stood on a platform, which was suddenly moved in

one of 12 di�erent directions in the horizontal plane. Electromyographic (EMG) signals were collected from

16 lower trunk and leg muscles from the right side. For each trial, mean muscle activity during three time

windows during the APR was calculated: 100–175 ms following perturbation onset (PR1), 175–250 ms (PR2),

and 

250–325 ms (PR3), as well as one background time window before the perturbation began (Fig. 5.3A).

Therefore, this data set consisted of 16 muscles and 240 conditions (4 time windows × 12 perturbation

directions × 5 trials in each direction). All of the data were arranged in a matrix in which each of the 16 rows

contains the 240 observed values for a single muscle. The values in each row were normalized to the

maximum value in that row, corresponding to the maximum level of muscle activity observed for that

muscle across all conditions. Therefore, for each muscle all values ranged from 0 to 1. Before components

are extracted using NMF, each muscle was also normalized to have unit variance, meaning that the sum of

the squared values in the row equals 1. This allows the variations in each muscle to be considered with equal

importance by the algorithm. One practical consideration is that, for NMF, the data should always be

presented in the format N muscles × M conditions. However, PCA requires the data be transposed, in the

format N conditions × M muscles.

p. 114

p. 115
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Figure 5.3  Example of postural responses to a backward and le�ward perturbation of the support surface. A: Platform

displacement during the ramp-and-hold perturbation. Electromyograph (EMG) responses occur 100 ms a�er the onset of

platform motion (vertical dashed line). Shown here are tibialis anterior (TA), medial gastrocnemius (MGAS), rectus femoris

(RFEM), and rectus abdominus (REAB) EMG responses. Mean EMG activity was calculated for three time bins during the APR

(shaded region), beginning 100 ms (PR1), 175 ms (PR2), and 250 ms (PR3) following perturbation, as well as one background time

period. Ground reaction forces under the right foot are also shown. B: Muscle tuning curves generated from 12 evenly spaced

perturbation directions, taken from time window PR2. Muscle tuning curves vary in magnitude over all perturbation directions,

and their shapes vary from muscle to muscle. In addition to the four muscles shown in A, tensor fasciae latae (TFL),

semimembranosus (SEMB), semitendinosus (SEMT), biceps femoris long head (BFLH), peroneus (PERO), lateral gastrocnemius

(LGAS), erector spinae (ERSP), abdominal external oblique (EXOB), gluteus medius (GLUT), vastuslateralis (VLAT), vastusmedialis
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Components of Postural Responses Identified by PCA and NMF

(VMED), and soleus (SOL) were also collected. Shown are the mean tuning curves ± standard deviations for five trials in each

perturbation direction, presented randomly.

In response to horizontal plane disturbances, each muscle was preferentially activated for particular

perturbation directions (Fig. 5.3B). The muscle “tuning curves” demonstrate the directional sensitivity of

the muscles. Each muscle is active maximally in a given direction, and less so for other directions. Some

muscles have a single preferred direction (e.g., vastusmedialis, VMED), whereas others have multiple tuning

directions (e.g., rectus abdominus, REAB). The muscle tuning curves demonstrate that each direction of

perturbation evokes a di�erent combination of muscle activity. The error bars on the muscle tuning curves

also illustrate trial-to-trial variations observed in postural responses. Therefore, across perturbation

directions, and even within a perturbation direction, di�erent patterns of muscle activity are evoked. Does

this mean that each muscle must have an independent neural command specifying its level of activation

(Macpherson 1991)? Using NMF and PCA, we can test the hypothesis that the observed variations can be

explained by the activation of a few muscle synergies (Fig. 5.1). In the following section, we will compare

how NMF and PCA describe postural response data, address practical issues of selecting the appropriate

number of components, and examine the robustness of the components across di�erent postural tasks,

speci�cally, two-legged versus one-legged perturbation responses.p. 116

p. 117

Here, we compare �ve components selected by NMF and PCA to describe the postural response data for

normal, two-legged stance (the procedure for selecting the number of components will be described in a

later section).

The components identi�ed by PCA are composed of muscle contributions that are both positive and

negative, and are activated by weighting coe�cients (or scaling factors) that may also be positive or

negative (Fig. 5.4A). This example illustrates again that the components are identi�ed in order of the

percentage of variance that each explains. The �rst component describes the mean level of activity of the

muscles across all conditions, and therefore has positive contributions from all of the measured muscles,

with strong contributions from TA and PERO (Fig. 5.4A, W1pca). The �rst component is also strongly

activated for forward (90-degree) and backward (270-degree) perturbation directions, which evoke much

more muscle activity than lateral perturbation (Henry et al. 1998). The subsequent components have

contributions from fewer muscles, and these contributions are both positive and negative. Additionally, the

activation coe�cients may be positive or negative for di�erent perturbation directions, and the magnitude

of activation decreases with each subsequent component.
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Figure 5.4  Components and activation coe�icients identified from postural response data using principal components

analysis (PCA) and non-negative matrix factorization (NMF). A: Components identified using PCA may have positive and/or

negative muscle contributions and activation coe�icients. Each bar represents the contribution of that muscle to that

component. Percentages indicate the amount of total data variability accounted for by each component. Activation coe�icient

tuning curves from PR2 are shown as mean ± standard deviation of five trials. B: Tuning curves created from a single trial in each

direction for two muscles reconstructed using the components identified in A. The contribution from each component is added

or subtracted to form the reconstructed muscle tuning curve. The original data are shown with a dashed black line and the

reconstructed data are shown with a solid black line. The variability accounted for (VAF) by the reconstruction as well as r  values

are shown for each muscle tuning curve. C: Components identified using NMF have only positive muscle contributions and

activation coe�icients. Percentages indicate the amount of total data variability accounted for by each component. Activation

coe�icient tuning curves from PR2 are shown here as mean ± standard deviation of 5 trials. D: Two muscle tuning curves

reconstructed using the components identified in C. The contribution from each component is added to form the reconstructed

muscle tuning curve. The original data are shown with a dashed black line and the reconstructed data are shown with a solid

black line. The variability accounted for (VAF) by the reconstruction as well as r  values are shown for each muscle tuning curve.

2

2

The way in which PCA decomposes data can best be illustrated by examining how the components

contribute to an individual muscle tuning curve. Due to the positive and negative values taken both by the

components and the activation coe�cients in PCA, contributions from di�erent components can be added

and subtracted to obtain the total predicted muscle activity. An example of this can be seen in the

reconstruction of the VMED tuning curve from the individual contributions from each component (Fig.

5.4B), which are found by multiplying the height of the VMED bar in each component with the activation

coe�cient for a given direction. Thus, each of the contributions resembles a scaled and possibly inverted

version of the activation coe�cient tuning curves of each component (Fig. 5.4A). The resulting tuning curve
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for VMED is generated by adding all �ve curves together (Fig. 5.4B, bottom). Although the peaks of the

various contributions can vary, the resulting VMED tuning curve peaks near 90 degrees, and is roughly zero

between 180 and 360 degrees. The response  of the VMED to the 90-degree perturbation is high, and is

due to positive contributions from W1pca, W2pca, W4pca, and W5pca and a negative contribution from W3pca

(Fig. 5.4B, bars). Similarly, in the region between 180 and 360 degrees, negative and positive contributions

from all the components cancel each other out, so that the resulting tuning curve is near zero. To

reconstruct the tuning curve of MGAS, the same curves are scaled di�erently and added together. The near-

zero activity of MGAS in the 90-degree perturbation direction results from the cancellation of positive and

negative contributions, primarily from W1pca and W2pca. In general, when using components identi�ed by

PCA, the reconstructions tend to underpredict the recorded muscle activity.

p. 118

In contrast to PCA, the components and activation coe�cients identi�ed by NMF contain only positive

values, as constrained by the algorithm. They are identi�ed in no particular order, as evidenced by the

percentage of total variance accounted for by each component (Fig. 5.4C). Each component has large

contributions from a few muscles, and smaller contributions from several other muscles, illustrating the

multijoint coordination required for postural control. Each component has a corresponding activation

coe�cient that is tuned for a particular range of perturbation directions. These activations are also positive,

and the magnitude of activation is similar across all �ve of the components.

The reconstruction of the individual muscle tuning curves illustrates the di�erences between PCA and NMF

in the way the components are combined to predict the recorded data. As with PCA, the height of the VMED

bar in each NMF component is used to scale the contribution of each component’s tuning curve. In this case,

since VMED is virtually zero in W2nmf and W3nmf, these components make essentially no contribution to the

VMED tuning curve. In contrast to the case with PCA decomposition, the activity of VMED at 90 degrees is

due to the additive contributions of three components W1nmf, W4nmf, and W5nmf (Fig. 5.4D).

Using NMF, there is no cancellation of features (Fig. 5.4D). Each muscle’s activity is reconstructed by adding

the contributions from each muscle synergy, all of which are positive. Once a feature of the tuning curves is

expressed in the contribution of a given component, it cannot be subtracted out. For MGAS, the tuning curve

consists primarily of contributions from W3nmf, which causes high activity of MGAS between 180 and 360

degrees, and W5nmf, which is responsible for a low level of activity of MGAS between 0 and 180 degrees.

The separation of the contributions from each component makes it possible to use the patterns of muscle

activity within each component to make predictions about the activity of other muscles. In this case, the

activity of MGAS between 180 and 360 degrees can be attributed to W3nmf, which coactivates high MGAS

activity with high extensor activity in the LGAS, GLUT, and SOL. When MGAS is active between 0 and 90

degrees, its activity is due to W5nmf, which coactivates small MGAS activity with high �exor and hamstring

activity in SEMB, TA, and SEMT. This demonstrates that MGAS  activity in di�erent perturbation

directions results from fundamentally di�erent muscle coordination patterns. It may be a prime mover in

180- to 360-degree perturbations, and a stabilizer in 0- to 90-degree perturbations. The analysis

demonstrated that MGAS is strictly covaried with SOL from 180 to 360 degrees, and strictly covaried with TA

from 0 to 90 degrees. A traditional correlation analysis would reveal MGAS to be strongly correlated to SOL,

and weakly correlated to TA, but it would not be able to decompose the di�erent portions of MGAS activity

to one or the other.

p. 119

Here, the coe�cient of determination (r ) and variability accounted for (VAF), which are measures of

goodness-of-�t between the predicted and recorded EMG signals, demonstrate that NMF components can

explain the recorded muscle responses more closely than PCA components (NMF average r  for all muscles:

0.84, average VAF: 95.5%; PCA average r  for all muscles: 0.81, average VAF: 58.9%). Both r  and VAF are

de�ned as the coe�cient of determination, or percent variability accounted for in the dataset (1 – sum of

squares error/total sum of squares). The Pearson correlation coe�cient, r, is based on a linear regression

2

2

2 2
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Selecting the Appropriate Number of Components Using NMF

with an o�set and thus compares only shapes of two curves, allowing for their actual values to di�er. VAF is

based on a linear regression that must pass through the origin, and therefore requires that the actual values

of the measurements be equal to have a high percent of variability accounted for. In the standard Pearson

correlation coe�cient (r ), the sum of squares is taken with respect to the mean, whereas in the uncentered

case (VAF), it is taken with respect to zero. In this postural example, PCA reconstructs the shape of the

tuning curve well, but not the o�set; as expressed by the reasonably high r  values, but much lower VAF. In

contrast, NMF reconstructs the level of activity well, and allows for more di�erences in the shape of the

curve, which is evidenced in the high VAF values.

2

2

In both NMF and PCA, the investigator must determine the number of components required to su�ciently

explain the data. With PCA, a cuto� of the total percent variability explained is typically chosen, and the

components with the largest contributions are chosen to meet that criterion. A similar criterion can be used

in NMF, in which the analysis is run multiple times, each with a di�erent number of components, and VAF

can be plotted as a function of component number (Fig. 5.5A). In this postural data example, a cuto� of 90%

VAF selects four components. Note, however, that the VAF due to one component is very high, so that high

VAF values can be misleading in the overall variability because generally they represent a small portion of

the data having a large amplitude that contributes the most to the overall data variability.

D
ow

nloaded from
 https://academ

ic.oup.com
/book/8542/chapter/154404485 by Em

ory U
niversity School of Law

 user on 26 July 2024



Figure 5.5  Scree plots showing variability accounted for (VAF) between the original data and the reconstruction using non-

negative matrix factorization (NMF) components for the data shown in Figure 3. A: VAF for increasing number of components

over the entire data set. B: VAF for increasing number of components for four individual muscles: REAB, TFL, GLUT, VMED. One

component accounts for variability in GLUT relatively well, three components can explain VMED variability, but five is better at
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explaining variability in TFL and REAB. C: VAF for increasing number of components across individual perturbation directions.

Shown here are the four cardinal directions, but the number of components needed was selected by looking at these types of

plots for all muscles and all perturbation directions.

Whether using PCA or NMF, using the overall variability accounted for to select the number of components

may not generate adequate reconstructions of data, particularly when there are certain conditions in which 

generally less activity occurs, but which nonetheless are an important feature of the dataset. In the postural

control example, the overall level of muscle activity is higher in forward and backward directions. When

choosing a smaller number of components, the muscle activity in forward and backward directions tends to

be well-explained, whereas activity in lateral directions may not be well-reconstructed. Because muscle

activity in lateral directions represents a small fraction of the total variability, it is di�cult to discern from

the overall VAF scree plot when such variations are accounted for. In both analyses, large di�erences in the

magnitude of the variability across conditions always poses a problem when selecting components.

p. 120

p. 121

A number of additional criteria can be imposed to ensure that desired features of the dataset are

reconstructed. For our postural control example, we further examined the variability accounted for within

subsets of the data. We examined the VAF of each muscle, which ensures that each muscle’s tuning curve is

well-reconstructed. In certain cases, when a muscle’s contribution to the overall variability is low, the

features of its tuning curve may not be well reconstructed by the selected number of components, requiring

additional components to be added. We then examined the data by perturbation direction, ensuring that the

di�erences in the relative levels of activity by direction do not cause muscle activity in certain directions to

be ignored. In these cases, rather than having a smooth increase in VAF as components are added, there tend

to be jumps when the salient features are accounted for. Therefore, we specify a minimum %VAF that

should be accounted for in all muscles and all perturbation directions, as well as require that the addition of

the next component should not drastically improve the VAFs. Ultimately, however, only an experienced

researcher examining the reconstructions of the original raw data traces can determine whether the

features accounted for are physiological or are artifacts.

The scree plots from the postural response example demonstrate how �ve components were selected in this

case (Fig. 5.5). Examining the overall VAF (Fig. 5.5A) reveals that one component seems su�cient to explain

the variability in the data, using a 75% VAF criterion. However, examining the scree plots for individual

muscles reveals that �ve components are  necessary in order for each of the muscles to achieve 〉75% VAF

(Fig. 5.5B). These curves demonstrate that the activity of GLUT is well accounted for by the �rst component,

but that activity of the other muscles is not. Three components are necessary for VMED to pass the 75%

threshold. However, the addition of the second and third components does not change the VAF of TFL and

REAB, as illustrated by the �at part of the lines. The fourth and �fth synergies account for the variability in

TLF and REAB, respectively. Note that the addition of a sixth component does not drastically improve the

VAF in any muscle. Therefore, �ve muscle synergies were chosen. Examining the variability accounted for

across the various perturbation directions leads to a similar conclusion (Fig. 5.5C). Most directions have 〉

75% VAF using only one or two components, but there is a sizeable improvement from four to �ve

components for backward perturbations (270 degrees).

p. 122

Finally, the composition of the components should be examined as additional components are added. The

sharp jumps in the scree plots of VAF by muscle and by perturbation direction suggest that including an

additional component may cause a previous component to split (Fig. 5.5B, sharp jump in REAB VAF from

four to �ve components). The number of components selected as su�cient to explain the data should be

high enough such that the components have stabilized, and the addition of new components does not
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signi�cantly change the previous components. In this example, the composition of the components when

six components (not shown) were used was compared with the �ve components identi�ed here and shown

not to alter the composition of the �ve components. Additionally, the reconstructions of the data and the

activation coe�cients of the sixth component can be used to deduce its contribution to features in the data.

If the additional component accounts for a feature, such as a particular burst of muscle activity or tuning

direction, that is unaccounted for by the other components, then it may be important; the investigator must

decide whether this is a critical and/or physiological feature. If the activation coe�cients appear to be

evenly distributed across all perturbation directions, it is unlikely to account for a feature associated with

muscle activation in a given direction, but is more likely noise.

Using NMF Versus PCA to Test Motor Control Hypotheses: Standing
and Walking

Although it is possible to apply either PCA or NMF to any data matrix, the results may not necessarily

provide insight into the underlying physiological mechanisms. It is important to ensure that the results are

not artifacts of data collection or experimental design. Both techniques allow the dimension of the dataset

to be identi�ed. However, the maximum dimension is limited by the number of muscle signals analyzed, as

well as by the number of disparate conditions examined. Therefore, it is critical that the  data matrix

itself be of high enough dimension such that a reduction in dimension is meaningful. The extraction of

components relies on muscles being coordinated in di�erent patterns. Therefore, the number of muscles

recorded must be adequately high to capture di�erent patterns of covariation, and the number of

experimental conditions or possible variations observed must be of high enough dimension to capture

di�erent coordination patterns among the muscles. If muscle activation patterns are truly independent, this

will also be re�ected in the component analysis.

p. 123

For example, the early studies of postural responses examined only two directions of perturbation (forward

and backward). It was suggested that there were only two muscles synergies necessary, one active for

forward perturbations, and another for backward perturbations (Nashner 1977; Horak and Macpherson

1996). However, these �ndings revealed experimental rather than physiological constraints. If NMF or PCA

were applied only to forward and backward perturbations, they would arrive at a similar conclusion because

the data only represent two conditions. By examining multiple perturbation directions, it becomes clear that

more than two muscle synergies are needed to describe the full repertoire of postural responses

(Macpherson 1988; Macpherson 1991; Henry et al. 1998), but a new muscle synergy is not necessary for each

perturbation direction (Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007). Similarly, the total

number of components that can be extracted is limited by the number of muscles that are recorded. It also

depends upon muscles being coactivated during certain conditions and not others. Therefore, if only a few

muscles are recorded, it is possible that they would each comprise a single synergy if they are independently

activated. Conversely, if they are always coactivated, then they will comprise only a single muscle synergy.

Again, su�cient experimental conditions must be tested to demonstrate that the muscles could be coactive

or independent, depending upon the condition. Such manipulations in pedaling revealed that certain

muscles that are always coactive during forward pedaling may have di�erent patterns of activation in

backward pedaling (Ting et al. 1999).

Once it is established that the number of muscles and conditions is appropriate and can provide enough

variability to extract a smaller number of components, the robustness of such components can then be

tested across tasks (Krishnamoorthy et al. 2004; Cheung et al. 2005; d’Avella and Bizzi 2005; Torres-Oviedo

et al. 2006). The generality of muscle synergies has been shown in a few studies in which synergies were

shared between multiple tasks, such as frog kicking, jumping, and swimming, and in human

walking/running, and pedaling forward and backward (Raasch and Zajac 1999; Ting et al. 1999; Cheung et
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Are Muscle Synergies Stable or Artifact? Shared Versus Specific Components

al. 2005; d’Avella and Bizzi 2005; Cappellini et al. 2006; Torres-Oviedo et al. 2006). Although some

synergies are used in multiple tasks, sometimes new synergies emerge when a new motor task is presented

(Ivanenko et al. 2005) or the activation of the synergies may be adjusted (Cappellini et al. 2006).p. 124

Here, we provide two examples of the di�erences between NMF and PCA when applied to test the robustness

of muscle synergies (a) across postural tasks, and (b) during walking.

p. 125

Here, we used PCA and NMF to test whether muscle synergies are stable across postural tasks by comparing

the components extracted from perturbations in two-legged stance extracted above (Fig. 5.4) to those from

perturbations during one-legged stance. Subjects stood on their right leg and were subject to 12 directions

of perturbations of smaller velocity and amplitude than in two-legged stance. One- and two-leg data were

recorded in the same session, so that the activity of the 16 lower trunk and leg muscles from the stance side

could be directly compared.

When PCA was applied to the one-leg data set to identify muscle synergies, two of the components

extracted were similar to those identi�ed from the two-leg postural responses (Fig. 5.6A). The �rst

component (W’1pca) is comprised of small contributions from all of the muscles, representing the average

responses, so these would be expected to remain the same. Because the similarity between components

from one- and two-legged stance are mainly based on the mean level of muscle activity, the VAF provides a

better representation of the similarity than r  (r =0.0291, VAF = 82%). The third component from one-leg

responses, W’3pca (Fig. 5.6A, gray bars),  looks similar to the second one identi�ed from two-leg

responses, W2pca (Fig. 5.6A, black bars), suggesting it is more highly activated in two-leg responses. The

other components, most of which account for a smaller percentage of variance, are quite di�erent in the

one-leg task compared to the two-leg task (max r  = 0.176, max VAF=17.5%). Therefore, if PCA were used to

identify muscle synergies, the conclusion would be that di�erent muscle synergies are used for one- and

two-leg postural responses.

2 2

p. 126

2
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Figure 5.6  Comparison between components identified from one-leg postural responses compared to those identified from

two-leg postural responses. A: Comparison of components and activation components identified using principal components

analysis (PCA). Black bars and lines are two-leg responses (same as in Figure 5.4), and gray bars and lines are one-leg responses.

Percentages on the le�-hand side of each component represent the percent total variability that each component accounts for.

Numbers to the right of each component are indicators of how closely the component from one-leg responses matches the one

from two-leg responses. Both r  and uncentered r  (variability accounted for; VAF) are shown. The first component from one-leg

(Wʼ1pca) and two-leg responses (W1pca) matches fairly well, and the third component from one-leg responses (Wʼ3pca) matches

the second component from two-leg responses (W2pca). Subsequent components do not match; due to the orthogonality

constraint of PCA, when one component changed, subsequent components changed also. B: Comparison of components and

activation coe�icients identified using non-negative matrix factorization (NMF). The same components are used in one-leg and

two-leg responses, with the exception of one component that is specific to either condition. The additional component used in

one-leg responses is tuned for 0-degree perturbations, which presumably are accounted for by the le� leg in two-leg responses.

The same components, or muscle synergies, can explain the di�erent individual muscle activations observed between these two

tasks, by only changing the activation of the muscle synergies.

2 2
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Using Time As a Condition: Muscle Synergies During Walking

When NMF was applied to the one-leg data set to identify muscle synergies, however, four of the �ve

components were very similar to those used during the two-leg balance responses (r =0.27 – 0.76,

VAF=51%–85%, Fig. 5.6B). The muscle contributions to each of these four components was similar, and the

activation coe�cient tunings shifted slightly to account for di�erences in individual muscle tuning curves.

The �fth component from two-leg stance (W2nmf) had a large contribution from REAB, a hip �exor,

whereas the �fth component in one-leg stance (W’5nmf) has primarily SOL activity, an ankle extensor. This

is likely because subjects were more likely to use a hip strategy in two-leg stance compared to one-leg

stance. Further, the component used in one-leg stance (W’5nmf) was strongly activated for rightward (0

degree) perturbations. Note that, in the two-leg stance, none of the �ve components were tuned for

rightward perturbation directions (Fig. 5.6B). This suggests that when both legs can be used to respond to a

rightward perturbation, subjects use muscles in the left leg to restore their balance, but when the left leg is

not available, an additional component in the right leg must be activated to compensate for the loss of

stability provided by the left leg. These results show that there are similar components that are used across

postural tasks, suggesting that the muscle synergies derived from NMF are physiological constraints that

the nervous system uses for muscle coordination, and not simply artifacts of the experiment or analysis.

2

Although the example demonstrates the possibility of stable components across tasks, thorough cross-

validation tests should be performed to ensure that the components are indeed stable across tasks.

Therefore, to draw stronger conclusions about the physiological basis of the components, the results of

analyses across di�erent subsets and combinations of the data should be compared (e.g., Torres-Oveido and

Ting 2010). Apart from extracting components independently from control (e.g., two-leg) and test (e.g.,

one-leg) tasks, the components from the control condition can be used to reconstruct the test data. If they

do not explain a su�cient percentage of the variability, then condition-speci�c components may be

extracted from the remaining variability of the data (Cheung et al. 2005). Additionally, components

extracted from the control and test data pooled into one large data set should render similar results. If the

same components are identi�ed in all of these cases, it is more likely that the technique has identi�ed

underlying physiological features of the data. In our example using NMF, the same components are

identi�ed in one-leg and two-leg stance using all  these di�erent combinations (not shown). In contrast,

PCA generates di�erent components depending on which data combination is used.

p. 127

When applying PCA and NMF to a continuous motor task, such as locomotion, time can be considered to be a

condition. Similar to the di�erent directions of postural perturbations, di�erent coordination patterns

across muscles are observed at di�erent timepoints in the locomotor cycle.  However, if muscles are

activated in a similar pattern across time, such as in an isometric task, the use of time as a condition may

not provide enough variability in the data to allow for meaningful interpretation. In this example, subjects

walked freely at a slow (0.7 m/s) pace for at least ten steps each trial. Data were recorded beginning at heel

strike of the third to fourth step, so that subjects had already reached a steady-state gait, and each trial

includes at least three full stride cycles. Seven trials were included in the data matrix. Sixteen EMG signals

were recorded in one leg (Fig. 5.7).

p. 128
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Figure 5.7  Example of muscle activity during a forward walking trial. Shown are eight muscles of the 16 recorded. The subject

was walking at a speed of approximately 0.7 m/s. The shaded gray boxes indicate stance phase.

To create the data matrix, the mean activity was computed in 10 ms bins over the three steps in each trial.

Binning has the advantages of smoothing the data, reducing the total number of conditions, thus reducing

computation time, while maintaining much of the detail in the variations of the EMG within and across

cycles. Note that the muscle activation patterns do not resemble the idealized sinusoidal EMG patterns often

found due to smoothing or averaging. Additionally, the pattern of muscle activity and the duration of the

stance phase vary from step to step, as does the number of bins. There is no need to stretch or shorten the

data across time to obtain a consistent number of data points per stride. When creating the data matrix,

di�erent trials are simply concatenated end to end.

It is important to distinguish between two mutually exclusive hypotheses that can be tested by decomposing

walking data into muscle synergies. For both PCA and NMF, the components Wi are assumed to be �xed, p. 129

p. 130
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whereas the activation coe�cients or scaling factors ci are allowed to vary (Clark et al. 2010). Here we

choose W’s to refer to �xed muscle activation patterns, whereas we allow c’s to vary across time. The data

must be structured such that the muscles are the observations (rows for NMF, columns for PCA) and the

time windows are the conditions (columns for NMF, rows for PCA). Conversely, it is possible to hypothesize

that the timing patterns are stereotypical across cycles, and that the muscle coordination patterns vary

(Ivanenko et al. 2004; Cappellini et al. 2006). Fixed timing patterns might be generated by a central pattern-

generating neural circuit, with their muscle targets changing with phase. In this case, it is necessary to

stretch the cycles in time so that they all have the same number of points. In this case, the data should be

transposed, such that the time points are the observations, and the muscles are the conditions, with

repeated trials or cycles concatenated. However, in neither analysis can both the components and the timing

patterns vary. Either muscular coactivation patterns or timing patterns must be assumed to be the same

across all conditions.

p. 131

Here, we compare six components extracted from one subject’s walking data using PCA and NMF (Fig. 5.8).
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Figure 5.8  Components and activation coe�icients identified from walking data using principal components analysis (PCA)

and non-negative matrix factorization (NMF). A: Components identified using PCA may have positive and/or negative muscle

contributions and activation coe�icients. Percentages indicate the amount of total data variability accounted for by each

component. The shaded gray boxes indicate stance phase. Activation coe�icients from one trial of walking (the same trial as in

Figure 5.7) are shown. Components from PCA have contributions from many muscles. The first few components have activation

patterns that are aligned with particular phases of the gait cycle, whereas the last few have less identifiable patterns. B: TA

muscle activity from a single trial reconstructed using the PCA components identified in A. The original data are shown with a

dashed black line and the reconstructed data are shown with a solid black line. Variability accounted for (VAF) and r  indicate

goodness-of-fit. C: Components identified using NMF have only positive muscle contributions and activation coe�icients.

Components from NMF tend to have strong contributions from only a few muscles. Activations coe�icients for some components

(W1nmf, W2nmf, W3nmf, and W6nmf) are aligned with particular phases of the gait cycle, whereas others may be stabilizing

components since they are active throughout the entire trial (W4nmf and W5nmf). D: TA muscle activity from a single trial

reconstructed using the NMF components identified in C. The original data are shown with a dashed black line and the

reconstructed data are shown with a solid black line. VAF and r  indicate goodness-of-fit.

2

2

Similar to the postural response example, the �rst component identi�ed using PCA primarily describes the

mean level of muscle activity, and the later ones described deviations from that mean. The �rst two

components contained primarily positive contributions from nearly all of the muscles. The �rst component

was activated positively at the beginning and end of stance and activated negatively in swing, whereas the

second component was positively activated in swing but negatively activated in stance. The subsequent

components all had both negative and positive contributions from di�erent muscles, and their activation

coe�cients over time decreased in amplitude, but increased in frequency. Although the �rst three
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components had peaks that corresponded to identi�able events in the gait cycle and various EMG activity

(Fig. 5.7), the last three had high-frequency oscillations that were not localized to a particular phase in the

locomotor cycle. Reconstructing the TA EMG signal reveals that the activity during swing phase is composed

of contributions from two components primarily, although there are small contributions from all

components (Fig. 5.8B). Both components contribute to the large peak in TA activity. However, the smaller,

secondary burst is due to a positive contribution from W2pcathat is largely cancelled by a negative

contribution from W3pca. (Fig. 5.8B). Note that the r  value is quite high, indicating a good match of shape,

whereas the VAF level is low, indicating that the predicted EMG amplitudes do not match measured values.

2

The six components extracted using NMF were quite di�erent from those found using PCA. Each component

consists of large contributions from a small number of muscles, and the muscles tend to be grouped

according to joint or function. Some of the components were activated at speci�c points during the gait

cycle, such as W3nmf being activated at early  stance and again at late stance, W1nmf activated during early

swing, and W6nmf during late swing. Other muscle synergies were activated throughout both stance and

swing, suggesting that they may be used for stabilization (W4nmf and W5nmf). As in the postural example,

the bursts of activity appearing in the activation coe�cients resemble the bursts observed in the original

EMG data (Fig. 5.7). Only two NMF components contribute to TA EMG activity (Fig. 5.8D). W1nmf contributes

most of the TA activity, including the large burst in early swing phase. The contribution from W6nmf adds a

small secondary burst.

p. 132

Again, the components extracted during walking must also be cross-validated over a number of di�erent

test extractions to be sure that they are stable and not artifacts of the way the data are represented. In our

NMF analyses, we �nd components to be stable across time bins sizes of 10 to 100 ms during walking.

Components are also stable if fewer trials are analyzed, or if faster walking speeds are analyzed. Moreover,

the components extracted from one speed can account for variations in EMG occurring with changes in

walking speed (Clark et al. 2010). However, the components change if EMGs are averaged across strides, and

less of the variability from stride to stride is accounted for by components extracted from averaged data.

Conclusion

Are linear decomposition techniques useful for understanding motor control (Macpherson 1991; Tresch and

Jarc 2009)? Ultimately, no decomposition technique is perfect, and much discretion and interpretation must

be exercised on the part of the investigator when drawing conclusions from any such analysis.

Computational analyses cannot replace the judgment and intuition of the researcher, and ultimately the

results must make sense in a physiological context. Therefore, it is critical that the implicit hypotheses,

assumptions, and constraints inherent in any technique be understood in order to use it usefully in motor

control or other scienti�c research. In the best-case scenario, a linear decomposition can be a tool that can

formally test a hypothesis that the researcher formulates by looking at the raw data and observing the

synchrony and variability across multiple EMG signals. It allows di�erent periods of activity within a muscle

to be attributed to di�erent underlying components. In the end, the relationship between the derived

components and the original data may potentially allow a researcher to draw conclusions about the

underlying neural mechanisms if the components do not represent limitations of the recordings,

experimental conditions, or other data artifact. Ultimately, to make any sort of physiological conclusion, the

extracted components must be interpreted in terms of the known underlying physiological mechanisms and

biomechanical outputs. The examples presented here demonstrate intuitively the workings of NMF and

PCA, with the aim of informing and aiding in the interpretation  of data. Such exercises can be performed

to better understand any kind of decomposition technique, each with its own advantages and disadvantages

(Tresch et al. 2006).

p. 133
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Is the added computation useful for understanding motor tasks? In some cases, the answer may be “no,”

particularly for any kind of initial analysis of a motor task or experimental condition. The technique must

appropriately match the hypothesis. Component decompositions can be useful when examining the detailed

workings of complex multimuscle coordination. It is useful for comparing complex muscle coordination

across di�erent tasks or trials in which muscle activity changes, but the underlying coordination principles

may be the same, as we have shown in fast and slow walking (Clark et al. 2010), or one- and two-legged

postural control (Torres-Oviedo and Ting 2010). In cases in which repeated measures are not possible, such

as in patient populations, highly variable motor patterns are di�cult to analyze from traditional techniques

that rely on averaging. In this case, a component decomposition can identify whether common underlying

elements are being activated across di�erent trials or tasks (Clark et al. 2010). Similarly, the underlying

components may provide a better measure of similarity or di�erences across individuals than the

comparison of individual EMG traces (Ting 2007; Ting and McKay 2007). It is possible to identify whether

individuals with di�erent EMG patterns have similar underlying components but activate them di�erently,

or if instead they have di�erent numbers or composition of underlying components (Torres-Oviedo and

Ting 2007; Clark et al. 2010).

Decomposition can also be useful for understanding the function of the underlying components. These

analyses are di�cult and do not always work. They require many practical considerations to accommodate

limitations of the analysis techniques, and require the investigator to guess at the correct variables that are

being controlled. But if a relationship is not found, it does not mean that there is no functional role for that

component. Previous work in postural control has shown in cats that muscle synergies are recruited to

control forces at the ground (Ting and Macpherson 2005; Torres-Oviedo et al. 2006). Such an analysis

includes biomechanical variables as additional observations (rows) in the data matrix and extracts

functional muscle synergies, which are composed of both muscles and functional variables (Torres-Oviedo

et al. 2006). However, the application of NMF to biomechanical variables poses a challenge because negative

and positive changes in forces necessarily result from di�erent muscle groups requiring them to be

partitioned physiologically (Ting and Macpherson 2005; Torres-Oviedo et al. 2006; Valero-Cuevas 2009).

Because changes in velocity and position require the integration of forces, the relationship between muscle

activity and kinematics is highly redundant, and also di�cult to predict without explicit models (Gottlieb et

al. 1995; Lockhart and Ting 2007). This redundancy is evident in studies relating the activation of

components found using PCA to center-of-pressure shifts in human  balance control using the

uncontrolled manifold hypothesis (Latash et al. 2002; Krishnamoorthy et al. 2003a; Ting and Macpherson

2005). These studies demonstrate that, although functional roles of individual components may be

identi�ed, the variability in their activation may not be re�ected in the variability of the output because they

are precisely coordinated by higher mechanisms in the nervous system to reduce variations in the desired

motor task. Alternately, biomechanical simulation and analysis techniques allow the functional role of the

muscle coordination patterns identi�ed by the extracted components to be explicitly tested (Raasch et al.

1997; Berniker et al. 2009; Neptune et al. 2009). Additionally, the feasibility of robustly using such

components to coordinate a repertoire of movement can also be explored (Raasch and Zajac 1999; Valero-

Cuevas 2000; Valero-Cuevas et al. 2003; Kargo and Giszter 2008; McKay and Ting 2008). However, it is

di�cult to build appropriate dynamics models and to record from all of the muscles involved in a movement

to use such techniques. Moreover, models of the neural control mechanisms that shape and use the

components e�ectively need to be explored (Berniker et al. 2009). Again, in order for any of these

techniques to be useful in relating muscle activity to functional variables, the investigator must have a good

understanding of their raw data and the underlying physiological and biomechanical mechanisms in order

to interpret the results of the component analysis appropriately.

p. 134

Do the identi�ed components extracted using computational techniques re�ect the organization of neural

circuits for movement? One of the attractive features of components from NMF is that they generate a

parts-based type of representation that appears similar to both neurophysiological observations, as well as
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to predictions from “sparse-coding” algorithms in sensory systems (Olshausen and Field 2004). The idea is

that in a retinotopic, somatotopic, or other sort of spatial sensory map in the nervous system, only a small

region is activated for any given stimulus, such as a location in space, or a part of the body. This “sparse”

coding means that a minimum of neurons is used to encode a particular feature from among all of the

information contained in that map. But, as in PCA, it is also possible to imagine a system in which neurons

in the entire map are activated given a particular stimulus, and their net output results in the identi�cation

of a particular stimulus. The sparseness property has also been proposed for motor system, and is proposed

to improve energetic expenditure by reducing the number of neurons involved in any given behavior, as well

as improving computational e�ciency, thus reducing the total number of elements that need to be modi�ed

during motor adaptation (Olshausen and Field 2004; Fiete et al. 2007; Ting and McKay 2007). Accordingly,

localized regions of motor cortex are activated to perform a given movement, and muscle synergies for

reaching have been proposed to result from cortico-motoneuronal cells that project to multiple muscles

(Scott and Kalaska 1997; Graziano and A�alo 2007). Similarly, reticulospinal neurons  active during

postural control (Schepens and Drew 2004; Schepens and Drew 2006; Schepens et al. 2008; Stapley and

Drew 2009) also project to multiple muscles in the limbs and trunk, and interneurons in the spinal cord may

facilitate coordination of muscles within and between the limbs during locomotion (Quevedo et al. 2000;

McCrea 2001; Drew et al. 2008).

p. 135

Although, NMF components may provide one computational tool among the many needed to understand

the sensorimotor transformations involved in determining how we move, much research is warranted

before any of the questions about the utility and interpretability of the resulting components can be

resolved. Component decompositions allow large datasets of EMG data and other variables to be

decomposed into components that must be interpreted and compared to the organization of neural control

systems upstream, and their functional biomechanical outputs downstream. NMF is especially useful for

examining neural and muscle activity signals that are inherently non-negative. PCA may prove more useful

for analyzing biomechanical variables that take on both positive and negative values without consideration

for muscle activity. The continued development of physiologically relevant decomposition techniques

combined with experimental and computational studies may eventually allow us to better understand how

learning, adaptation, and rehabilitation occurs in the motor system.
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