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Unniaskiiig unmasked: neural dynamics following stroke
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Anatomy is not destiny

. Recovery from disease involves the interaction of

the biological substrate with behavior. Nowhere is
this more clearly seen than in the setting of a
nevrological disease such as stroke, where mind
and behavior are directly, though sometimes subtly,
affected. During recovery from stroke, a large web
of causal chains lead to an improved condition or to
continued disability. Recovery starts with the

mental and physical process of rehabilitation ther-

apy, which alters the physical state of the brain as it
teaches new strategies and enhances muscle tone.
Subsequently, the altered brain -pétterns in part
determine what further rehabilitative actions the
patient is capable of, leading to a vicious or
virfuous cycle. Although many aspects of these
healing cycles are beyond our conirol and will
likely remain so, there are points at which we can
intervene. In order to achieve the greatest rehabili-
tative effect, we can choose the timing and type of
rehabilitation strategy and pharmacotherapeutic
measures that will produce desitable brain
changes

The difficulty in connecting brain and behavior is_

a prommcnt part of the miore general problem of

causality in neuroscience. Assigning cause is
difficult because of the enormous complexity of
this organ. Like the better understood liver or lung,
the brain is studied using a variety of techniques
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_that necessarily focus on only one aspect of that

organ, whether molecular, anatomical, biophysical
or physiological. In the case of liver or lung,
however, it is not unusual to be able to explain
some global function singly, with a molecular,
cellular, or anatomical explanation. In the brain,
however, anatomy is not destiny, nor is molecular
biology destiny. Complex interactions among dif-
ferent Ievels of organization are responsible for the
remarkable functionality of the brain.

In the dynamics of a cortical map, there are two
major levels of operation. Cellular interactions
depend on both anatomical connectivity and on the
dynamics of physiology. While neural activation
happens very quickly, in the order of milliseconds,
activity-dependent synaptic reorganization occurs
over hours or days. Though occurring on vastly
different timescales, these two mechanisms inter-
act. Synaptic change will occur on the basis of
coincident neural activation, and neural activation

will be determined by the undeslying anatomical

connections..

- In order to determine how the adult brain
compensates when damage occurs, we study the
interactions among structure, physiology, and

behavior. Recovery involves plasticity, hence ana-

tomical change; the anatomical factors cannot be
understood without reference to physiology and
behavior. It should also not be understood without
reference to the underlying molecular receptor
level, since these receptors will be the target of
pharmacotherapeutic intervention in the recovery
process. The goal of computer modeling in our
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studies is to understand the interaction ameng
levels of organization, as cells determine networks
and networks behavior (Sejnowski et al., 1988).

... These intcractions dre not unidirectional; anatomy

determines physiology, which determines behavior,
but behavior also determines physiology, which
determines anatomy.

Plasticity in the adult brain
The goal of our research is to discover and take

advantage of causal links that help or hinder
recovery from stroke. To this end, we must devise a

e oo TOQdEL -#hat. can. account for: what_is seen.in the

physiology of animals and patients, and the
changes they -undergo before and after stroke.
Models give us a quantifiable way to evaluate
qualitative hypotheses concerning the mechanisms
underlying physiological changes observed experi-
mentally. They also suggest new hypotheses
through the emergence of unexpected and unin-
tended consequences. In the end, such models will
lead to a deeper understanding of the processes of
adult plasticity, suggesting better rehabilitation
techniques for those suffering from impaired func-
tion. : g

Cortical damage is often the result of cer-
ebrovascular accident, which leads to the death of
neural tissue. The vascular system has an organiza-
tion and structure that is largely independent of the
underlying brain regions. Since blood vessels are
superimposed onto the nervous system, damage to
the vessels affects parts of several functional neural
areas rather than a single functional area in its
entirety. Because of this, pure cases of single-
region damage are very rare, and the majority of

strokes lead to deficits in many tasks. To recover -

function, the remaining neural tissue must demon-
strate plasticity.

Plasticity in the youthful brain has been well

demonstrated, but our understanding of adult
mechanisms is still lacking. The studies of Hubel

and Wiesel firmly established the concept of a

critical period in early brain development (Hubel,

1996, Hubel and Wiesel, 1998). Studies have

shown that the establishment of ocular dominance,
the ability to detect edges, and general cortical
mappings, can be established only during a critical

developmental stage (Miller, 1995). Such research
suggested that primary cortical organization is, for
the most part, fixed from an early age. Of course, §
adult cortex is remodeling all thé time;-ledming
new memories and abilities. Recent studies of
somatosensory and visual areas have also demon-
strated adult plasticity at the cellular level.
However, fundamental change is probably seldom
called for outside of the domain of ablative diseases
such as stroke (Nudo et al., 1996).

The existence of plasticity in the adult brain has
been primarily demonstrated in three ways: periph-
eral manipulation, intracortical microstimulation,
and animal models of stroke, Mostfihossstn B,
rely on the alteration of stimulus characteristics; for ~
example, the removal of a finger or the presence of
constant stimulation (Merzenich and Kaas, 1982;
Wang et al., 1995; Buonomano and ‘Merzenich,
1998). In general, cortical reorganization will occur
so that heavily stimulated areas will see an increase

“in the size of their cortical maps, and weakly

stimulated areas will see a reduction in representa-
tion (Clark et al,, 1988; Robertson and Irvine,
1989; Kaas et al., 1990; Allard et al., 1991; Gilbert
and Wiesel, 1992; Weinberger et al., 1993). Intra-
cortical microstimulation shows another form of
plasticity, in which stimufation of a cortical site
will cause neurons in the vicinity to have receptive
fields similar to the stimulated nenrons {Dinse et
al., 1990; Nudo et al., 1990; Smits et al., 1991;
Recanzone et al, 1992). In animal models of
stroke, the receptive fields of surviving cells
expand, contract, and shift so as to occupy the
space previously covered by the dead cells (Yama-
saki and Wurtz, 1991; Alamancos and Borre), 1995;
Sober et al., 1997; Lytton et al., 1999).

The basic model

~ Computational studies have assumed that recovery

from cortical damage, recovery from peripheral

-damage, or response to a change in stimulus pattern
‘of "anykind"'would“Occir in two phases that

correspond to the vastly different time constants of
neural response and synaptic plasticity. This
assumption has been partially confirred by studies
of long-term potentiation, occutring over a time-
frame several orders of magnitude greater than that
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of neural activation. Animal studies suggest that
behavioral recovery may take place in two or more
phases, consistent with this assumption (Nudo et

. al., 1996; Nudo and Milliken, 1996). According to
"ihe basic computational model, these-two phases

can be grossly characterized as: (1) dynamics; and
(2) plasticity (Armentrout et al., 1994; Goodall et
al., 1997). In the dynamic phase, changes in cell
activity are due to the alteration in inputs to the
remaining cells following an ablation. In the plastic
phase, these alterations in cell activity start to
change synaptic strengths, presumably through a
Hebbian process relating strength increases to

~ paired presynaptic and postsynaptic activity.
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neurons that respond to visual motion. Thus, these
cells do not respond to stationary stimuli but do
respond when something moves in the visual field.
Like cells in other visual areas, these cells have
retinotopic tuning, that is, an individual cell will
respond to a stimulus in one area of the visual field
but will not respond to stimuli in other areas.

" Unlike cells in other visual areas, which may also

be tuned to stimulus orientation or color, these cells
are tuned to the attributes of visual motion: speed
and direction. Small ablations of area MT lead to
changes in the receptive fields of neighboring, non-
ablated cells and to changes in the ability of an
animal to perceive motion (Wurtz et al, 1990;
Yamasaki and Wurtz, 1991).

In order to construct simple computer models of
cortical dynamics, it is useful to generalize the
concepts of receptive field and projective field (Fig.
1). Experimentally, a receptive field is the set of
stimuli that will activate a particular neuron. In
visual area MT, this receptive field includes both
the retinotopic receptive field and the receptive
field for speed and direction. In a sensory system,
the projective field does not always have a clear
operational definition. Ideally, the projective field
of an elemental stimulus would correspond to the
set of neurons activated. However, it is not
generally possible to define an elemental stimulus
nor to measure from multiple cglls in order to
determine which ones have been activated.

Our basic neural network model. for exploring
receptive fields consists of input and processing
layers (Fig. 1, see Appendix for details) (Miller et
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al., 1989; Miller, 1994). The many layers of brain
that lie between photoreceptor and high-order
cortical area are collapsed into these two layers.
Because of this foreshortening, the input layer is

alternately conceived of as a primary Tecepior aiiay

for the purpose of mapping receptive fields, or as a
thalamic or lower-level cortical area for the purpose
of assessing cellular interactions. In our simula-
tions we consider the input layer to be V1 (primary
visual area) and the main processing layer to be
area MT. The V1 layer is simply a set of input
values and not a set of processing units. Each cell in
the MT layer receives stimulation from many cells
in the V1 layer. This convergence can be regarded

-~ ms an“sratomnical receptive field'. Comggspondingly.

Wkt W‘-r-wm,.as;w.mu.q:

the divergence from a single V1 layer unit to a set’
of MT units can be regarded as an ‘anatomical
projective field’. The physiological responses of
individual neurons in the network are not fully
determined by these feedforward projections from
V1 to MT, however. Within the MT layer, there
are lateral connections which provide proximal
excitation and more distant inhibition in a center-
surround or ‘Mexican hat’ pattern (Fig. 1(B)).

_ Activity mediated through these connections will

interact with feedforward activity to produce exci-

. tation of the MT units. Because of the complexity
.of these interactions, it is not possible to determine

the activity patterns by reference to the connectivity
alone. Instead we must run simulations, analogs of
physiological experiments, in order to measure
receptive fields by mapping all stimulus locations
that -will produce suprathreshold responses in a
specified MT cell. :

Receptive field changes following ablation

- Physiologically, receptive field expansion and

receptive field contraction are both observed in the
surrounding cells that remain alive following an
ablation (Fig. 2(A,C)). Technically, it is not possi-
ble to sample the same cell both pre- and
postablation. Therefore, it is not possible to say
whether a receptive field of a particular cell has
become larger or smaller. One can however, sample
a large number of cells in the same area both before
and after the ablation. Postablation receptive fields
were in many cases substantially larger than any of
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Fig. 1. (A) Computer model schematic: input layer (V1) and output layer (MT) are both two dimensional hexagonally tesselated
arrays of nodes. Projective fields (left) are defined by the spread of activity to nodes in the output layer following stimulation of a
single node in the input layer. Receptive fields (right) are defined by units in the input layer that can stimulate a given output unit layer
to a supra threshold response. (B) The strength of connections from input to output layer (left) falls off according to a Gaussian
function of lateral distance. Lateral connectivity in the cutput layer is also non-uniform (right}. The region surrounding the excited unit
is laterally excited by the central node, but nodes further away are inhibited. The result is 2 *Mexican hat’ (sombrero-shaped) pattern
of connection weights,
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Fig. 2. (A) Receptive field (RF) expansion following ablation in visual area MT of macague. The pre-lesion receptive area in Vi
{dashed line) expands after the ablation (grey) in the MT layer. RFs are represented in degrees of visual 'space. Adapted from Sober
etal, 1997, Fig. 2. (B) Postlesion expansion in the computer model, Before the Jesion, the model shows a uniform RF in V1 around
the MT unit, Chash marks), After the lesion, the altered MT activation dynamics close to the lesion yield an increase in RF size
{hexagons). (C) RF contraction following ablation in visual area MT of macaque. The pre-lesion receptive area in V1 (dashed line)
expands after the ablation (grey) in the MT layer. Adapted from Sober et al. 1997, Fig. 3. (D) The computer model of RF contraction
also shows postlesion contractions. Again, the prelesion RF (hexagons) is uniform. After the lesion, the RF contracts (hash marks).

those seen before the le.sion, suggesting that there suggesting that others had contracted. These expan-

had been receptive field expansion in many cells. sions and contractions were the basic data we
Often this expansion was asymmetrical with a sought to explain using the computer model.
tendency to expand more in the direction of the The basic model could easily produce expansion

fesion. Other postablation receptive fields were of receptive fields (Fig. 2(B)). This is the phenome-
noted to be smaller than any seen preablation, non of unmasking, the revealing of conmections
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whose functional consequences were previously
not apparent due to coincident inhibition. Expan-
sion occurred because even weak divergent input
~-from the input layer could now excite units that

were previously inhibited disynaptically by g™

cells within the lesion area. Unmasking made the
physiological receptive - field correspond more
closely to the anatomical receptive field. Therefore,
the maximum extent of unmasking was determined
by the width of convergence from the input layer. In
general, greater convergence allowed more recep-
tive field expansion, hence more unmasking. In this
initial model, expansions were relatively modest,
far less than what the divergence from the input

receptive field contraction; these were also not very
substantial (Fig. 2(D)).

- The computer model explains these receptive
field changes

In the premorbid state (béfore the lesion), the cells
that will be ablated provided near excitatory inputs

and far inhibitory inputs. After the ablation these

influences were lost and this produced the sequence

Loss of inhibiton

2

s a2 e layerz cotld wpermit™The. mellsl alse : produceds -
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S gy

of effects that resulted in the expansion and
contraction observed in the model (Fig. 3). The
primary effect of lesion in our model was a loss of
local excitatory and.distal inhibitory" connections
originating from the ablated region. The excitatory
influence was only nearest neighbor, so the major-
ity of excitatory connections within the lesion
targeted other ablated cells and their loss had little
effect on the surrounding regions. The loss of the
inhibitory connections, with their much greater
divergence, produced disinhibition in the ablation
surround, resulting in increased excitability of cells
outside the lesion, with the effect decreasing with
distance. This increased excitability led to increases
in socoptivesfeld 8285 inputs peviotsy unible:
to yield a suprathreshold response now had less
inhibition to counter. Expansion and contraction in
the basic model represented an expanding wave of
consequences from the loss of projections that had -
emerged from the lost neurons. The divergent
excitatory stimulus from the input layer remained
unchanged but the lateral forces were diminished
resulting in an imbalance that was rectified through
a shift in responses until a new steady-state is
reached. (These models always reached a steady

increased Inhibiton

£ »lincreased Activity

@ Decroased Activity

& No Activity

€@ Prelesion RF

¢z Postlesion Expanded RF

Postlesion Contracted RF

Postle!o Expansion  Postlasion Contraction

Fig. 3, Schematic explanation of postlesion expansion (left) and contraction (right). A loss of inhibition from ablated regions in the
cortex {black hexagons), lead to an increase in activity of MT units close to the sblation (light grey hexagon) over the premorbid state.
Inputs from V1 which were not able to yield & supra-threshold response (left light grey lines) are now part of the node's receptive field
(teft light grey oval). The highly activated MT unit (light grey hexagon), causes greater inhibition on units farther away from the
abiation (dark grey hexagon) as a secondary effect. The receptive field for these units will decrease in size, for only strong connections
from: V1 (thick lines) will yield a supra-threshold response.
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state in our simulations; in general a dynamic
system could settle into oscillations or chaos
instead.) The hunt for the new steady state could be

- viewed as a negotiation; as activated units influence

other units and are influenced in turn.

The degree of disinhibition was not great enough
to allow the weakest convergent feedforward pro-
jections to excite the MT unit. Although the degree
of convergence (the size of the anatomical receptive
field) is not an absolute limit for receptive field

‘expansion, it is a practical limit. If inhibition is

weak enough, then activity can spread laterally
through the slice, allowing activation of MT units

- that do-not receive any direct projections fram V1., .

However, excessive lateral spread willlead to a2~
" hyperexcitable ‘epileptic’ petwork in which any

stimulus will cause continuous activation of all
cells.

The increased activity levels of units with
expanded receptive fields had a secondary effect,
increasing the inhibitory influence on other units
within their ring of inhibitory projection (Fig.
1(B)). This generally led to decreased activity
levels in these cells and made it more difficult for
feedforward inputs from the input layer to excite
them to threshold. Contraction in the basic model
was thus a secondary consequence of the increased
excitability of the units which showed receptive
field expansion. Because sets of cells near and far
from the ablation are mutually inhibitory, the
reduction in activity of the far cells reduced their
inhibitory effect on the near cells, allowing these to
become still more active and produce greater
inhibition in return. This effect of mutual inhibition
can lead to a winner-take-all situation, in which one
cell completely overwhelms the other. This does
not occur here due to the continuing activation from
the input layer.

Although the model did produce the basic effects
of expansion and contraction, the contractions seen
were minimal, leading us to miss them on our first
set of simulations. We therefore explored other
explanations for receptive field contraction, recon-
sidering our assumptions. Such reconsideration is a
major aspect of computer modeling, a field which
enjoys the distinction of making a virtue of failure.
In this case, the failure to replicate substantial
receptive field contractions led us back to the lesion
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histology, where further examination showed a
reduction in binding proteins associated with
inhibitory neurons (Sober et al, 1997). This
suggested that there might exist a functional
disinhibitory halo, which would be expected to
augment both expansion and contraction of recep-
tive fields. This was confirmed in the model. The
disinhibitory halo model showed both very large
expansions (Fig. 4(A)), as well as more pronounced
contractions (Fig. 4(B)). Expansion  augmentation
is particularly pronounced within the disinhibitory
halo itself since these cells are almost entirely
without inhibitory influence and are therefore
excitable by the relatively weak stimulation coming

“froni distarity conveiging ifipats: Subsequently, the

increased hyperactivity of these units produced
increased inhibition in the inhibitory ring, allowing
for the more pronounced contractions. Although
the explanation for expansion and contraction is the
same as seen in the basic model, the effect is
substantially augmented by the further disinhibition
(Fig. 5). As expected, overall activation tended to
be greater with the elimination of inhibition.
However, activation changes were surprisingly
minor (Fig. 5(B})).

The spread of activity change associated with
ablation need not stop with second order effects.
Given sufficient divergence from the input layer,
one would anticipate that the decreased excitability
of the cells in the receptive field contraction zone
might produce another areca of receptive field
expansion still further out. We have not yet
explored this prediction in detail, but it suggests a
way in which reversible cortical lesions with
cooling or lidocaine might be used to allow rapid
assessment of effective divergence by demonstra-
tion of a standing wave of alternating peaks and
troughs of both activity and receptive field size.

Behavioral implications

Beyond the receptive field level of MT neural
responses lies a level of processing that will take
the information, determine what is being seen and
act on the basis of that information (Oram et al.,
1998). In essence this involves a decoding of
information present in MT. We have not made an
effort to model the details of neural processing

e e T
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Fig. 4. (A) Receptive ficld (RF) expansion is more dramatic in the disinhibitory halo model, particularly for those excitatory nevrons
that lie in the disinhibitory halo itself. (B) RF contraction is also more pronounced in the disinhibitory halo model. The mechanism
is the same as was seen in the simpler model but the increased activation of excitatory neurons in the disinhibitory halo causes a greater

secondary inhibition more distally, producing greater contraction.

involved in this decoding. Nor do we wish to
" speculate as to the nature of conscious experience,
but only to explore simple statistical methods that
could be used to interpret the ‘code’ generated by
the firing of cortical neurons that correspond to the
external object. Another way of looking at this
situation is in terms of Bayes’ theorem, establish-
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ing the probability that the stimulus is moving in a
certain direction based on the conditional probabil-
ity of a particular set of cells firing in such a case
and the overall probability distribution of cell firing
and stimulus likelihood.

As noted above, dynamic alterations are the first
of two major phases of response that depend on the
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Fig. 5. {A) Both receptive field (RF) expansion and contraction are greater in the disinhibitory halo model. Cells within the ablation
radius have receptive fields of size zero. (B) Despite the different MT connection weights in the basic and disinhibitory models, the
level of activation relative 0 RF size were very similar. In both models, maximum activity of the cells was highly correlated with RF
size, The main difference between models was that the disinhibitory model had cells achieving activation levels beyond what occurred

in the basic model.
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vastly differing time constants of neural dynamics
and synaptic plasticity. Although we have not yet

explored these true plastic changes, they have been .
-explored by other authors {Grajski and Merzenich, -

1990, 1990a; Xing and Gerstein, 1994; Sutten and
Reggia, 1994; Goodall et al., 1997). In general,
these authors have assumed that synaptic plasticity
will follow some form of Hebbian algorithm, with
increase in connection strength between simultane-
ously active cells and perhaps decreases between
asynchronously active ceils. There remains uncer-
tainty as to whether plasticity is primarily confined
to the feedforward projections from the input layer,

2z.to the intrinsic connections, or is proseat in-beth

locations.

As a first approximation, the Hebbian algorithm
simply serves to imprint firing relationships that are
already present and would therefore not be
expected to produce major alterations in receptive
field morphology (Hebb, 1949). However, a variety
of plastic processes occur in intermediate time
frames (Fisher et al., 1997), suggesting that the
dichotomy between dynamics and plasticity may
not be clean. Furthermore, as noted above, the
relation between dynamics and plasticity is not one
way: dynamic change begats plasticity but plastic-
ity is structural change that begats dynamic
change.

This inner loop of dynamic/plastic interactions is
embedded in an outer foop of behavioral/molecular
interactions, A physical neurorehabilitative therapy
acts at the behavioral level, presenting particular
stimuli in a damaged sensory system or suggesting
movement sequences to treat a disabled motor
system. Simultanecusly, molecular alterations are
affected by pharmacological therapies. In order to
begin to understand these interactions, we must
consider how neural activity produces sensor-
imotor coordination, as well as how behavior alters
neural activity.

Uncertamty regarding the locus of piastxclty also
arises when considering the behavioral level. We
have shown that a stroke will involve alterations in
receptive fields. Extending the statistical or coding
viewpaint mentioned above, these changes repre-
sent an alteration in the encoding of the external
stimulus. If the decoding strategy leading to
behavior were to remain unchanged, function
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would suffer. For that reason, full behavioral
recovery will require changes in decoding strategy
that match the alterations in encoding. We have

‘hypothesized that the immediate receptive field

changes, manifestations of the disorder, are also the .
first steps towards recovery. Therefore, we expect
that there will be an alteration in decoding strategy
as well. .
‘The original model, presented above, simply
provided the location of the perceived object
without identifying any of its other attributes (Fig.
1). Of course, visual areas also encode other
stimulus attributes, such as color, shape or motion.

3 e eh BTGB AaBa T, Thesneuronstaze. L il

specialized to encode information about speed and
direction of motion. In order to model the animal’s
calculation of speed and direction, it was necessary
to model the response of individual neurons to
these attributes.

We organized the inputs in order to get repre-
sentations of location, speed and direction of an
input stimulus (Fig. 6). To keep things as simple as
possible, input was represented as a stimulus with
attributes of location, direction of motion, and
speed. Input was cosine-filtered in both the direc-
tion and speed domains. Similarly, each MT-layer
unit in the original model was replaced with a set of
units, each of which was assigned a preferred
direction and speed. As in the original modei, MT-
layer units were connected to each other through a
Mexican hat pattern of excitatory and inhibitory
weights.

Behavior as a synthesis of neural activation

Following Georgopoulis and colleagues (1982,
1986), we chose to model the deceding of informa-
tion by assuming that each MT neuron contributes
to the representation of the stimuius by “voting® for
a vector, which corresponds to that neuron’s
preferred direction and speed. That is, firing in a
particular MT cell is interpreted as a vote for the
hypothesis that the stimulus is the neurons’ pre-
ferred stimulus. We tested three basic algorithms
for how the collected ‘vector votes’ of many MT
units could be synthesized into a single representa-
tion of the stimulus: winner-take-ail, vector average
and vector sum, The winner-take-all algorithm is
commonly used in artificial neural networks
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Fig. 6. (A) Estimation of the behavioral consequences of receptive field changes required a multi-level mode] which used an algorithm -
for determining the interpretation of neural activity. At the lowest level, the stimuli themselves have a speed and direction in addition
to location. The next layer is a filter arvay with individual input units selective for location, speed, and direction. This is the “V1 layer®
or input layer. The third layer is the MT layer whose units also have velocity selectivity based on their connections from the selective
units in the input layer. The final layer is the perceptual output which produces a stimulus velocity and location estimate based on the
activity of individual MT units that are activated according to one of three algorithms. These three algorithms assessed are shown to
the right: in vector average the preferred directions of the active vectors are weighted according to their activity and the resulting vector
is then normalized to give the percept; in vector sum the same process is done, omitting the normalization; in winner-take-all the
direction of the single most active vector is taken as the percept. (B) The visual system is a complex amray of centers. The computer
model reduces this complexity to layered two-dimensional arrays. The shaded portion of the schematic represents the motion pathway
feading to area MT.

because of the simplicity; the unit with the greatest encoding, or the ‘grandmother neuron’, because a
activity wins, in the sense that its direction and single neuron is able to make an identification. The
speed preference is taken as the direction and speed two other algorithms are simple distributed repre-
of the stimulus. This is related to the idea of local sentations where the information is represented




across an ensemble of neurons (Georgopoulos et
al., 1982; Georgopoulos et al., 1986). In the vector
sum algorithm, the magnitude of the final repre-

‘sentation is obtained by skaply adding up all of the ... -

contributions of the neurons that are firing, after
weighting them in proportion to their firing rates:
Hence, the representation is proportional to the
number of units that contribute, with consequences
for the case of stroke when this number is
significantly reduced. Finally, the vector average
algorithim uses a normalization step following the
sumnmation of the vectors, making the final repre-
sentation independent of number of umits that
~ ~Lontribute. .. e e .

i e

RF changes predict ‘behavioral dysfunctmn

In animal studies, small ablations in visual area MT
cause a behavioral deficit. This can be detecied by
having the monkey do a visual tracking task, in
which he is required to saccade to a location within

the motion scotoma and then pursue the target as it

moves out of the scotoma (Fig. 7A). Although a
saccade {o a stationary target would be accurate, the
initial saccade in this task is incorrect, because the
target starts moving as soon as it appears. If the
target is moving away from fovea, the saccade is
hvpnmetng and if the target is moving towards
fovea, it is hypermetric, since the monkey is
underestimating the velocity of the target. Fur-
thermore, when the eyes start to pursue the object,
they fall progressively behind. The location of these
two symptoms of the motion scotoma, the error in
initial saccade and too-slow pursuit speed, corre-
sponds to the visual ficld subserved by the
combined receptive fields of the ablated cells. With
small ablations, this is only an area of motion
obscuration, not the complete motion blindness that
has been reported clinically in human stroke.
Therefore, the eye pursues the stimulus in the right
direction. The only evidence of deficit is that the
eye does not keep up with the stimulus, the speed is
underestimated and the eye falls behind. Once the
target is no longer in the scotoma, the eye quickly
saccades to catch up and then pursues at the proper
rate thereafter.

We were able to produce the underestimation of
object speed characteristic of the behavioral sco-
toma using either the vector average or vector
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summation algorithm (Fig. 7B). Using vector
summation, speed estimation was reduced in the
area of the scotoma due to the absence of neurons

voting for .the proper. direction and speed. The

underestimation was particularly marked in the
case of vector sum because the overall strength of
the sum was reduced simply by virtue of fewer
vectors being added in. In the original model
without the disinhibitory halo, this would produce
speed underestimation even outside the area of the
scotoma, due to the lack of response from neurons
that were previously activated via divergence. This
hale of underestimation could, however, be largely

~-€0N apensated.,by,xbe.addnmn -of the dxsmhlbxtory

-----

'haio, ‘which tended io mcrease "the overall vector

sum, restoring the sum to that normally seen. By
contrast, vector averaging was not susceptible to
this surround effect since the overall signal strength
was restored by the normalization process. The
vector averaging algorithm produced speed under-
estimation within the scotoma, since disinhibited
units on the lesion periphery still contributed their
‘velocity votes” — many of which were in different
or even opposite directions compared to the true
stirnulus — t0 a sum that was then normalized. The
winner-take-all algorithm, on the other hand, did
not generally produce any scotoma since the
neuron that was most strongly activated still tended
to be a neuron with the correct speed and direction
tuning.

Although inconclusive with respect to behavioral
data, the three algorithms assessed do make
different predictions regarding the expected deficit.
Winner-take-all suggests that the deficit would be
minimal or absent. Vector sum makes the opposite
prediction; the field of behavioral deficit should be
larger than the field of physiological deficit. Vector
average implies that the behavioral and physio-
logical deficit zone should match. It should be
noted that these alporithms are all highly simplified
and are by no means mutually exclusive. Therefore,
the observed speed underestimation within the
scotoma, being relatively mild, could be evidence
of a change in the emphasis accorded various
complementary decoding algorithms. Given the
ability of winner-take-all to preserve perception in
this situation, more attention might be paid to a
single highly active neuron under these circum-
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Fig. 7. (A) The pursuit task starts with the eye pointed at a central fixation point. The target comes on somewhere off to the side and
immediately starts moving. The animal is expected to saccade to the target and then follow it with pursuit eye movement. The saccade
itself is generaily unimpaired by the MT lesion since other visual areas, both cortica! and subcortical, signal the location of the target
as it appears. However, the MT lesion results in some impairment in deterinining the velocity of the target, causing the pursuit eye
movement to lag behind. This behavior suggests a perceptual deficit; the animal is underestimating velocity. (B) This velocity
underestimation can be demonstrated by the model which shows different degrees of underestimation depending on the location of the
target in the retinotopic zone of the lesioned area. The underestimation also depeads on the representationat alporithm used (see text).

This case illustrates results using the vector average algorithm,

stances. This would represent an alteration in
decoding strategy, as the brain learns to read the
output of the damaged area differently than it did
previously.

Other alterations in decoding strategy might be
less drastic. For example, if a vector sum algorithm
is being used, then a new decoding strategy would

involve reweighting inputs from the damaged area.
Compensation would require an increase in all
surviving weights, in order to reestablish magni-
tude to compensate for the lost input, Alternatively,
taking a Bayesian viewpoint, any new decoding
would involve reassigning.of probability distribu-
tions and prior probabilities. As a simple example,




side and

he larget
suit eye

velocity
on of the
see text).

in all

ample,

ST

the ablated cells would be assigned a zero probabil-
ity of firing, and conditional probabilities
associated with their not firing would be elimi-
nated.

... As. noted above, the receptive fields. of cells -
surrounding the lesion expand dramatically follow-

ing cortical ablation; this expansion is often
asymmetric with greater expansion towards the
lesion. Our model suggests that this expansion
plays an important role in the continued perception
of speed and direction in the center of an ablation.
The enlarged receptive fields effectively saved part
of the input space that would otherwise entirely
lose its representation in cortex. In essence, these

.«enlarged teceptive fields provided a band-aid over ..
the area of input space that had been processed by

the neurons killed by the lesion.

In the absence of these expansions, a portion of
visual space would lose its cortical representation
entirely because it would not fall in the receptive
fields of any live neurons. The behavioral deficits
that follow cortical lesion certainly suggest that
such damage disrupts the brain’s ability to process
stimuli. Nevertheless, it is quite significant that for
moderate-sized lesions this inability is reflected as
an inappropriate response to stimuli rather than a
complete lack of response (Yamasaki and Wurtz,
1921}, Perhaps the receptive field band-aid makes
a critical difference in that it allows postlesion
stimuli to be misprocessed (as evidenced by
inappropriate postlesion behavior) rather than not
processed at all. This erroneous processing can then
be corrected by Hebbian plasticity (Hebb, 1949). In
general, neural network learning algorithms are
good at rewiring networks that respond inappro-
priately, using the error to move the network
towards greater accuracy. In the absence of any
response, however, it is impossible to generate the
correct error signal needed to move the network in
the proper direction. This suggests that large
lesions that destroy large tracts of cortex exceeding
the typical divergence of projecting cells will be
qualitatively different in their ability to recover
functionatly.

Changes in directional receptive fields

The behavioral model’s estimation of direction
following an ablation was also strongly affected by

a5

the amount of interaction between directionally
tuned units in the MT layer. In the absence of
substantial surround inhibition influencing direc-
tion cells, direction tuning was substantially the

- same-both before and-after-iiielesion. In this case,

direction cell response was determined mainly by
the properties of feedforward stimulation, and was
not sculpted by lateral interactions within the MT
layer. Using the vector summation algorithm,
stimulus speed estimation is dependent on the
number of summed vectors, but using the vector
average algorithm, it is not. In the absence of
change in direction tuning of the individual direc-
tion cells, the smaller number of cells postlesion

gave:a reduction-inuspesgh-estimation. when.using & i

the vector sum algorithm but no alteration in speed
estimation with the vector-average algorithm.

By contrast, in the presence of substantial
surround inhibition influencing direction tuming,
direction tuning loosened after the lesion, meaning
that a particular unit would respond to a wider
range of directions. This was caused by the same
mechanisms that caused spatial tuning loosening
(spatial receptive field expansion) in the basic
model. In the behavioral model, directional-selec-
tivity inputs drove each MT unit for a certain range
of directional input, just as spatial-selectivity units
drove éach MT unit for a ceriain spatiai range. As
in the spatial case, the actual directional tuning of
an MT unit was narrower than that specified by this
function because of lateral inhibition from other
MT units. Lesions to the MT layer loosened MT
unit tuning (that is, made tuning more similar to the
driving function) by eliminating lateral inhibition.
Also analogously, the inhibition was reduced both
by the removal of cells with inhibitory connections
and by the loss of inhibitory interneurons in the
disinhibitory halo, ‘

With lateral inhibition in place the ablation
resulted in expansion of directional tuning curves
as well as a reduction in the number of units. Now,
both the summation and averaging of algorithms
predicted speed underestimation. In the case of
vector summation, this happened for the same
reason as in the no-lateral-inhibition case — there
are simply fewer vectors being summed, and the
result is a shorter vector. In the case of vector
averaging, the expansion of the directional tuning
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curve introduced omnidirectional noise into the set
of vectors to be averaged. Once averaged in with

which in some cades po:i;fea%m the wrong direc-
tion, reduced the magnitude of the final output
vector, :

Therapeutic implications.

_In addition to physical rehabilitation strategies, new

possibilities are emerging for pharmacological and
surgical therapies. Computer modeling of the
processes underlying recovery will be particularly

wseful g making . theZF0hnection . between - the

cellular and molecular level of these interventions
and the behavioral level. Overall, the interventions
that have been proposed can be classified as
follows: (1) ‘alteration of cellular dynamics; (2)

 alteration of activity-dependent plasticity; and (3)

replacement of neurons or augmentation of existing
neurons (i.e. nerve growth factors), Gross network
dynamics is addressed in this paper, but the
complexities of single neuron dynamics are not
explored. Activity-dependent plasticity has been
considered in a number of recent papers (Pearson et
al., 1987; Grajski and Merzenich, 1990; Reggia et
al., 1992; Cho and Reggia, 1994; Sutton et al.,
1994, Xing and Gerstein, 1996). The role of
sprouting or cellular replacement remains more
difficult to predict at present but will also be
amenable to modeling as more facts emerge.

In this paper, we have discussed how dynamics
provides an initial band-aid effect that may provide
immediate coverage which minimizes the disability
in the short-term. As noted, this will also set up the
patterned activity needed for activity-dependent
plasticity changes. This increased receptive field
size is likely to correlate with increased activity
levels, putting this putative benefit squarely at odds
with the need to reduce activity levels after stroke
in order to prevent excitotoxicity due to calcium
entry. One method proposed to counteract excito-
toxicity is NMDA blockade, which will of course
have a direct effect on activity-dependent plastic-
ity.

Optimization of desirable activity-dependent
plastic changes will require not only evaluation of
the amount of activity during stroke recovery, but

these. poise. .components,.

also consideration of the best timing for plasticity.
To take an obvious example, it may be preferable to

- enhance plasticity during periods of active physical

rehabilitation and perhaps suppress plasticity dur-
ing the immediate post-stroke period when patients
are inactive. There remains controversy regarding
the nature of the plasticity rules governing stroke
recovery, with some evidence suggesting that these
rules might differ somewhat from those of devel-
opment,

Neuron transplants have recently been pioneered
in humans who have suffered strokes (Bonn, 1998).

CItis unknown whether these nieurons may even-
o tually"ﬂll-ui Calens diF e‘f,i‘i}*‘ .iﬁ”u yxmgmﬁ‘ it bﬁﬁ'b a

simply provide growth factors that produce new
connections in remaining indigenous neurons. In
the latter case, this procedure may have the same
effect as direct administration of nerve growth:
factors, It is unclear whether sprouting due to these
factors will be activity dependent or not. If it is

activity-dependent, it is not known whether it will

be governed by rules appropriate for the limited
neural plasticity of adult learning or by the rules
utilized in childhood for the much more substantial
alterations of early development. If the latter,
perhaps the process has a critical period compara-
ble to that of early brain development. -

Conclusions

Computer modeling nicely complements the ecu-
menical spirit of pathophysiological investigation
common to neurclogy and psychiatry. In both of
these areas, as to a lesser extent in internal
medicine, the complexities of disease causation and
expression require that the physician simultane-
ously assume various perspectives, including
cellular, chemical, neural and behavioral, when
assessing a patient. He or she must then estimate
how the intersection of these influences is leading
to worsening disease or to. recovery. Similarly,
computer modeling, although not having to venture

inte such medical arcana as HMO reimbursement

policies, explores the intersections of biological
and behavioral processes at vastly different scales.
In the current studies, we have looked at inter-
actions of cellular and network dynamics and
considered their effects on behavior as well as the




lasticity. effects that behavior will have on dynamics in tum.
erable to We have shown how the limitations of the original
physical model suggested further investigations which
sty dur- revealed an unexpected histological finding— the
. patients disinhibitory halo. We have also provided some
egarding .explanations, although not yet testable predictions,
'g stroke at the behavioral level. Our model suggests a value
hat these to neural overactivation in the immediate post-
of devel- stroke period: associated expanding receptive fields

may provide a band-aid effect and encourage
ioneered plasticity leading to continuing recovery. This
n, 1998). would suggest that pharmacological reduction of
ay even- excitation to prevent excitotoxicity might best be
ircuits or restricted to a limited period immediately after a
uce new stroke. '

MT and V1 were represented by two 20 x 20 grids

ztothese ¢

LIitis of nodes with edge wrap arround. Activity (a,) of

erit will MT unit k was defined by

e culs R

tbstantial dajdt=—a, -7+ d(a) (2 Viib+ z M,“a,-)

e latter, J=1 =t

ompara- (12)
dla) =~ 4(ai/A - ay (1b)

with 7=0.2 and A= 5. The V weight matrix was the
projection from V1 to MT, b; were inputs from V1,
and the M weight matrix expressed lateral con-.
nectivity within MT. Function $(a) was used to
eliminate drive when unit activity approached 0 or
A, thereby keeping a, within these bounds.

Connections from V1 to MT were topographic
‘with wrap-around to prevent edge effects. The
-elements of matrix V were excitatory (positive) and
Calculated from radial coordinates 7 of the hex-
gonally tessellated units as distance from target
t. Divergence from a given V1 location to the
, ' units had Gaussian spatial fall-off

V(r)=k. e 100" (2)

Bhere k=10 is the normalizing constant and
3 0 is the divergence parameter.

Similarly, M was calculated from excitatory E(r)

nics b nhibitory I(7) functions with wrap-around in

layer. Lateral MT excitatory connections

~0ld (8=0.5). For simple ablations, units_ were . .
* elimindtéd from the model by locking theirstates at -
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were highly divergent and declined in strength
exponentially:

E(r)y=c-e™™ 3

with ¢=0.02, A=0.8, r =1 (no seilf connection).

- Lateral inhibiti_on in the model was modeledasa._ ... .

reduction in negative connection strength onto local
MT units.

Kry=c.-g~ b “@)

with €=0.0157, A=1.5, r=2. These combine by
E(r) — K(r) to form the "Mexican Hat> shape. :
Receptive fields were calculated by serially
activating each of the 400 inputs and recording
whether a given MT unit responded above thresh-

zero. For disinhibitory halo ablations, this lesion
was surrounded by a zone in which inhibitory
connections were reduced by 50%.
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