How Does Blood Clot?

Share with your network

The blood clot process begins whenever our skin or blood vessel wall breaks and blood starts coming into contact with the outside. That triggers a series of chemical reactions that result in the formation of a clot, which aims to stop the bleeding and help the vessel heal.

Initially, blood vessels in the area will constrict, to ensure that blood flow is decreased. During this process, small blood particles called platelets will start binding together in the damaged area, creating what is called a platelet plug. This leads to the next step of the process, in which several blood clotting factors are activated and create a chain of reactions that leads to the creation of fibrin, a fiber-like protein that helps increase the size of the clot and stabilize it.

If the clotting process does not stop when appropriate, dangerous clots can be formed in other parts of the body. This is why there is a rigorous control system ensuring that the clotting reaction stops when the vessel is sufficiently blocked to prevent bleeding. However, there are certain blood disorders that lead to increased clotting, such as thrombophilia.

High cholesterol concentrations can form plaques in arteries, making it difficult for blood to flow in the area. If these plaque breaks open, they will form a clot that travels in the blood stream. Most heart attacks and strokes happen when a plaque suddenly bursts.

Blood clots can also form when something obstructs the regular flow of blood in the body. If blood pools in the blood vessels or heart, the platelets are more likely to stick together. Atrial fibrillation and deep vein thrombosis (DVT) are two conditions where slowly moving blood can cause clotting problems. If undetected, these conditions can lead to serious heart problems or even death, which is why clotting factors are often included in blood analyses when the patient has a known risk for these diseases.