Published Potential Energy Surfaces and the QM-22 Datasets

Available Data sets – those with links after the name can be downloaded as zip files. The citations for datasets are given.  Detaills of the dataset can be found there.

Format

Number of atoms

Energy (hartree)

Atom label and cartesian coords (angstrom) gradient components if included  (hartree/bohr)

Ethanol

“Permutationally invariant polynomial regression for energies and gradients using backward differentiation achieves orders of magnitude speed-up while keeping high precision compared to other machine learning methods”, Houston et al. J. Chem. Phys. 156, 044120 (2022)

Ethanol_DMC Cert_data.xyz

===================================================================

Malonaldehyde

CCSD(T)/CBS energies

“Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface”, Wang et al., J. Chem. Phys. 128, 224314 (2008)

malonaldehyde

==================================================================

Acetaldehyde (singlet)

CCSD(T) and MRCI energies

“Quasiclassical trajectory calculations of the dissociation dynamics of CH3CHO at high energy yield many products”, Han, et al., J. Phys. Chem. Lett. 2, 1715 (2011).
“Photodissociation of CH3CHO at 248 nm: identification of the channels of roaming, triple fragmentation and the transition state”, Han, et al., Phys. Chem. Chem. Phys. 19, 18628 (2017).

CH3CHO

==================================================================

Acetaldehyde (triplet)

CCSD(T)

“Intersystem crossing and dynamics in O(3P)+C2H4 multichannel reaction: Experiment validates theory”, Fu, et al., Proc. Nat. Acad. Sci. 109, 9733 (2012).

===================================================================

Acetylacetone

MP2 energies and gradient and limited LCCSD(T) energies.  MP2 data from several sources

“Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces” Silvan Käser, Oliver T Unke and Markus Meuwly,  New J. Phys. 2020 22, 055002

Data can be found on on Zenodo (https://zenodo.org/record/3629239#.YIHL3ZNKhQM).

Expanded MP2 data and limited LCCSD(T) data used for Delta-ML PES

Full-dimensional potential energy surface for acetylacetone and tunneling splittings“, Qu et al.  Phys. Chem. Chem. Phys. 2021, 23, 7758

“Breaking the CCSD(T) Barrier for Machine Learned Potentials of Large Molecules: The Case of 15-atom Acetylacetone” Chen Qu, Paul L. Houston, Riccardo Conte, Apurba Nandi, and Joel M.Bowman, arXiv:2103.12333v1 [physics.chem-ph] 23 Mar 2021

AcAc_MP2_5511.xyz

AcAc_CC-MP2_2151.xyz

Notes:  On the second line of AcAc_CC-MP2 each configuration, the first value is the difference between LCCSD(T) and MP2 energies (both energies are referenced to their corresponding global minimum), in hartree. The second value is the MP2 energy relative to the global minimum, in hartree. The gradients are just MP2 ones, and they are NOT computed at LCCSD(T) level

===================================================================

Methane

Dataset (B3LYP energies and gradients) from “Using Gradients in Permutationally Invariant Polynomial Potential Fitting: A Demonstration for CH4 Using as Few as 100 Configurations”, Nandi et al.  J. Chem. Theory Comput. 2019, 15, 2826−2835

ch4_b3lyp_9000.xyz

===================================================================

syn-CH3CHOO

Dataset from “Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products”, Kidwell et al, Nat. Chem. 8, 509–514 (2016)

syn-CH3CHOO

===================================================================

Glycine

Dataset (B3LYP energies and gradients) from “Full-dimensional, ab initio potential energy surface for glycine with characterization of stationary points and zero-point energy calculations by means of diffusion Monte Carlo and semiclassical dynamics“, Conte et al.,  J. Chem. Phys. 153, 244301 (2020)

Gly_70099

====================================================================

Troplone 

Dataset (energies and gradients) from “Permutationally Invariant Polynomial Potential Energy Surfaces for Tropolone and H atom Tunneling Dynamics”,Houston et al, J. Chem. Phys. 153 024107 (2020).


tropo_6768
readme

=================================================================

N-methylacetamide

Dataset (energy and gradients) from “Full and fragmented permutationally invariant polynomial potential energy surfaces for transand cis N-methyl acetamide and isomerization saddle points”, Nandi et al, J. Chem. Phys. 151, 084306 (2019).

NMA_6607

====================================================================

H3O+, OCHCO+ H2CO/cis-trans HOCO, (HCOOH)2

Datasets (energies only) from “Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces” Qu et at. J. Chem.Theory Comput.14, 3381 (2018)

readme

  1.  H3H3O+_32141
  2. OCHCO  OCHCO+_7800
  3. H2CO/cis-trans HOCO H2CO_ 34750
  4. (HCOOH)2 FAD_ 13475

_______________________END OF DATASETS_________________

Spectroscopic Potentials

Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2–(H2O)20, and VSCF/VCI vibrational analyses of both, Q. Wang and J. M. Bowman, J. Chem. Phys. 147, 161714 (2017). 10.1063/1.4994543

High-Level Quantum Calculations of the IR Spectra of the Eigen, Zundel, and Ring Isomers of H+(H2O)4 Find a Single Match to Experiment, Q. Yu and J. M. Bowman, J. Am. Chem. Soc. 139, 10984-10987 (2017). 10.1021/jacs.7b05459

Ab Initio Potential for H3O→ H+ + H2O: A Step to a Many-Body Representation of the Hydrated Proton?, Q. Yu and J. M. Bowman, J. Chem. Theory Comput. 12, 5284-5292 (2016). 10.1021/acs.jctc.6b00765

An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces, C. Qu and J. M. Bowman, Phys. Chem. Chem. Phys., 18, 24835-24840 (2016). 10.1039/C6CP03073D

Pruning the Hamiltonian Matrix in MULTIMODE: Test for C2H4 and Application to CH3NO2 Using a New Ab Initio Potential Energy Surface, X. H. Wang, S. Carter, and J. M. Bowman, J. Phys. Chem. A 119, 11632-11640 (2015). DOI:  10.1021/acs.jpca.5b09816

Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN+, Q. Yu, J. M. Bowman, R. C. Fortenberry, J. S. Mancini, T. J. Lee, T. D. Crawford, W. Klemperer, and J. S. Francisco, J. Phys. Chem. A 119, 11623-11631 (2015). DOI: 10.1021/acs.jpca.5b09682

Communication: Spectroscopic Consequences of Proton Delocalization in OCHCO+, R. C. Fortenberry, Q. Yu, J. S. Mancini, J. M. Bowman, T. J. Lee, T. D. Crawford, W. F. Klemperer, and J. S. Francisco, J. Chem. Phys. 143, 071102 (2015). DOI: 10.1063/1.4929345

Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity, H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek, and Y.-P. Lee, Nat. Commun. 6, 7012 (2015). DOI: 10.1038/ncomms8012

MULTIMODE calculations of the infrared spectra of H7+ and D7+ using ab initio potential energy and dipole moment surfaces, C. Qu, R. Prosmiti, and J. Bowman, in Thom H. Dunning, Jr., edited by A. K. Wilson, K. A. Peterson, and D. E. Woon (Springer Berlin Heidelberg, 2015), Vol. 10, pp. 141-147. DOI: 10.1007/978-3-662-47051-0_13.

Bend Excitation Is Predicted to Greatly Accelerate Isomerization of trans-Hydroxymethylene to Formaldehyde in the Deep Tunneling Region, Y. Wang and J. M. Bowman. J. Phys. Chem. Lett. 6, 124-128 (2015). DOI: 10.1021/jz5022944.

Ab initio computational spectroscopy and vibrational dynamics of polyatomic molecules: Applications to syn and anti-CH3CHOO and NO3, J. M. Bowman, X. Wang, and Z. Homayoon, J. Mol. Spectrosc. 311, 2-11 (2015). DOI: 10.1016/j.jms.2014.12.012

Isolating the spectral signature of H3O+ in the smallest droplet of dissociated HCl acid, J. S. Mancini and J. M. Bowman, Phys. Chem. Chem. Phys. 17, 6222-6226 (2015). DOI: 10.1039/C4CP05685J.

Reactive Potentials

A new (multi-reference configuration interaction) potential energy surface for H2CO and preliminary studies of roaming, X. Wang, J. M. Bowman, and P. L. Houston, Philos Trans A Math Phys. Eng. Sci. 375, 2092 (2017).  DOI: 10.1098/rsta.2016.0194

Energy Disposal and Thermal Rate Constants for the OH+ HBr and OH+ DBr Reactions: Quasiclassical Trajectory Calculations on an Accurate Potential Energy Surface, A. G. S. de Oliveira-`Filho, F. R. Ornellas, and J. M. Bowman, J. Phys. Chem. A, 118, 12080-12088 (2014). DOI: 10.1021/jp509430p

Reaction Dynamics of Methane with F, O, Cl, and Br on ab Initio Potential Energy Surfaces, G. Czako and J. M. Bowman, J Phys Chem A 118, 2839-2864 (2014). DOI:  10.1021/Jp500085h.

A Global Potential Energy Surface Describing the N(2D) + H2O Reaction and a Quasiclassical Trajectory Study of the Reaction to NH + OH, Z. Homayoon and J. M. Bowman, J. Phys. Chem. A 118, 545-553 (2014). DOI: 10.1021/jp410935k

Full- dimensional, ab initio potential energy surface surface for CH3OH→CH3 +OH, Qu and J.M. Bowman, Mol. Phys. 111, 1964 – 1971 (2013). DOI: 10.1080/00268976.2013.765609

Zero-point Energy is Needed in Molecular Dynamics Calculations to Access the Saddle Point for H+HCN → H2CN* and cis/trans-HCNH* on a New Potential Energy Surface, X. Wang and J. M. Bowman, J. Chem. Theory Comput. 9, 901-908 (2013). DOI: 10.1021/ct301022q

Mode Selectivity for a “Central” Barrier Reaction: Eight-Dimensional Quantum Studies of the O(3P) + CH4 → OH + CH3 Reaction on an Ab Initio Potential Energy Surface, R. Liu, M. Yang, kó, J. M. Bowman, J. Li, and H. Guo, J. Phys. Chem. Lett. 3, 3776−3780. (2012). DOI: 10.1021/jz301735m

Intersystem crossing and dynamics in O(3P)+C2H4 multichannel reaction: Experiment validates theory, B. Fu, Y.-C. Han, J. M. Bowman, L. Angelucci, N. Balucani, F. Leonori, and P. Casavecchia, Proc. Natl. Acad. Soc. U.S.A., 109, 9733-9738 (2012). DOI: 10.1073/pnas.1202672109

Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 → HCl + CH3 and H + CH3Cl reactions, G. Czakó and J. M. Bowman, J. Chem. Phys. 136, 044307 (2012). DOI: 10.1063/1.3679014 (18 pages)

Dynamics of the Reaction of Methane with Chlorine Atom on an Accurate Potential Energy Surface, G. Czakó and J. M. Bowman, Science 334, 343-346 (2011). DOI: 10.1126/science.1208514

An ab initio spin-orbit-corrected potential energy surface and dynamics for the F + CH4 and F + CHD3 reactions, G. Czakó and J. M. Bowman, Phys. Chem. Chem. Phys. 13, 8306-8312 (2011). DOI: 10.1039/C0CP02456B

Global potential energy surfaces for O(3P)+H2O(1A1) collisions, F. Conforti, M. Braunstein, B. J. Braams, and J. M. Bowman J. Chem. Phys. 133, 164312 (2010); DOI:10.1063/1.3475564 (10 pages)

Roaming Pathway Leading to Unexpected Water + Vinyl Products in C2H4OH Dissociation, E. Kamarchik, L. Koziol, H. Reisler, J. M. Bowman, and A. I. Krylov, J. Phys. Chem. Lett. 1, 3058-3065 (2010). DOI: 10.1021/jz1011884

Quasiclassical trajectory calculations of correlated product distributions for the F+CHD3 (v1=0,1) reactions using an ab initio potential energy surface, G. Czakó and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009). DOI: 10.1063/1.3276633 (18 pages)

Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. A. R. Sharma, B. J. Braams, S. Carter, B. C. Shepler, and J. M. Bowman, J. Chem. Phys. 130, 174301 (2009). DOI: 1063/1.3120607 (9 pages)

Quasiclassical trajectory calculations of the HO2 + NO reaction on a global Potential Energy Surface, C. Chen, B. C. Shepler, J. M. Bowman, Phys. Chem. Chem. Phys. 11, 4722–4727 (2009). DOI: 1039/B823031E

Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F + CH4 ® HF + CH3 reaction, G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009). DOI: 10.1063/1.3068528 (19 pages)

“Roaming” dynamics in CH3CHO photodissociation revealed on a global potential energy surface, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 112, 9344-9351 (2008)

Quasiclassical trajectory study of the reaction H + CH4(u3=0,1) ® CH3 + H2 using a new ab initio potential energy surface, Z. Xie, J. M. Bowman, and X. Zhang, J. Chem. Phys. 125, 133120 (2006)

The calculated infrared spectrum of ClH2O using a new full dimensional ab initio potential surface and dipole moment surface, J. L. Rheinecker and J. M. Bowman, J. Chem. Phys. 125, 133206 (2006).

An ab initio-based Global Potential Energy Surface describing CH5+ ® CH3++ H2, Z. Jin, B. Braams, and J. M. Bowman, J. Phys. Chem. A 110, 1569-1574 (2006)

Ab initio Global Potential Energy Surface for H5+ ® H3+ + H2, Z. Xie, B. J. Braams, and M. Bowman J. Chem. Phys. 122, 224307 (2005).

Ab initio potential energy and dipole moment surfaces for H5O2+, X. Huang, J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005).

Construction of a global potential energy surface from novel ab initio molecular dynamics for the O(3P) + C3H3 reaction, S. C. Park, B. J. Braams, and J. M. Bowman, J. Theor. Comput. Chem. 4, 163-173 (2005).

Experimental and theoretical study of the infrared spectra of BrHI and BrDI, M. J. Nee, A. D. Osterwalder, D. M. Neumark, C. Kaposta, C. C. Uhalte, T. Xie, A. L. Kaledin, J. M. Bowman, S. Carter, and K. R. Asmis, J. Chem. Phys. 121, 75297268 (2004)

Non-covalent Interaction Potentials

Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions, Y. Wang, J. M. Bowman, and E. Kamarchik, J. Chem. Phys. 144, 114311 (2016). 10.1063/1.4943580

Trajectory and Model Studies of Collisions of Highly Excited Methane with Water Using an ab initio Potential, R. Conte, P. L. Houston, and J. M. Bowman, J. Phys. Chem. 119, 12304-12317 (2015). DOI: 10.1021/acs.jpca.5b06595

Full-dimensional, High-level ab initio Potential Energy Surfaces for H2(H2O) and H2(H2O)2 with Application to Hydrogen Clathrate Hydrates, Z. Homayoon, R. Conte, C. Qu, and J. M. Bowman, J. Chem. Phys. 143, 084302 (2015). DOI: 10.1063/1.4929338

Quantum dynamics of CO-H2 in full dimensionality, B. Yang, P. Zhang, X. Wang, P. C. Stancil, J. M. Bowman, N. Balakrishnan, and R. C. Forrey, Nat. Commun. 6, 6629 (2015).
Permutationally Invariant Fitting of Many-Body, Non-covalent Interactions with Application to Three-Body Methane–Water–Water, R. Conte, C. Qu, and J. M. Bowman, J. Chem. Theory Comput. 11, 1631-1638 (2015). DOI: 10.1021/acs.jctc.5b00091

“Plug and play’’ full-dimensional ab initio potential energy and dipole moment surfaces and anharmonic vibrational analysis for CH4–H2O, C. Qu, R. Conte, P. L. Houston, and J. M. Bowman, Phys. Chem. Chem. Phys. 17, 8172-8181 (2015). DOI: 10.1039/c4cp05913a

A New Many-Body Potential Energy Surface for HCl Clusters and Its Application to Anharmonic Spectroscopy and Vibration–Vibration Energy Transfer in the HCl Trimer, J. S. Mancini and J. M. Bowman, J Phys. Chem. A 18, 7367–7374 (2014). DOI: 1021/jp412264t.

Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO, R. Conte, P. L. Houston, and J. M. Bowman, J Chem Phys 140 151101 (2014). DOI: 10.1063/1.4871371