Fibroblasts are a cell type that are found throughout the human body; in your lungs, in your heart, below your skin. While there are a wide variety of fibroblasts, typically they are lumped together and regarded as a type of “biological glue” – there to hold everything together by providing components for the extracellular matrix, but not doing much else. However, a recent study at Monash University has proved that this is not entirely the case.
A Science Daily article describes the work of Dr. Milena Furtado, et. al. on cardiac fibroblasts. According to their study, cardiac fibroblasts are actually unique in their genetic makeup in a very significant way: they “remember” that they are specialized heart cells – the result of lingering transcription factors that are absent in other types of fibroblasts. These lingering transcription factors keep cardiogenic genes activated in these fibroblasts, which gives them the potential to contribute to heart development and repair.
This is very exciting, because it potentially offers a new way of treating heart disease. Evolutionarily, fibroblasts occur in a number of vertebrate species and perform very important roles in each of them. However, our understanding of how specialized the fibroblasts are or are not is fairly limited in a number of circumstances. The fact that we are just now discovering that cardiac fibroblasts have the ability to influence heart development and perhaps even more importantly the repair of heart tissue is a testament to this. But this study shows that there is potentially a lot can learn from systems like the fibroblasts, which could in turn have huge implications for the treatment of disease. In the case of heart disease, we currently have no knowledge of how to get the heart to repair itself. So if we could find a way to manipulate fibroblasts in order to get them to help with this process, it might reduce the need for heart transplants and provide a safer alternative to dealing with heart disease. Thus, while it not a guarantee of success, this study shows the importance of exploring new avenues and gaining new perspectives when studying disease.