2021
Smith AC and MH Hickman. Host defense mechanisms induce genome instability in an opportunistic fungal pathogen. BioRxiv, https://doi.org/10.1101/2021.04.01.438143
Avramovska O, Rego E, and MA Hickman. Tetraploidy accelerates adaptation under drug selection in a fungal pathogen. BioRxiv https://doi.org/10.1101/2021.02.28.433243
Smith AC, Dinh J, and MA Hickman. Two infection assays to study non-lethal virulence phenotypes in C. albicans using C. elegans. in press, JoVE
2020
Feistel D, Elmostafa R, and MA Hickman. Virulence phenotypes result from interactions between pathogen ploidy and genetic background. Ecology & Evolution; 2020;00:1–13. [link]
Smith AC and MA Hickman. Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States. mSphere 5: e00433-20. [link]
Humphrey KM, Zhu L, Hickman MA, Hasan S, Maria H, Liu T, and LN Rusche. Evolution of distinct responses to low NAD+ stress by rewiring the Sir2 deacetylase network in yeasts. Genetics 214: 855-68. [link]
2019
Avramovska O and MA Hickman. The magnitude of Candida albicans stress-induced genome instability results from an interaction between ploidy and antifungal drugs. G3; 9:4019-4027. [link]
Feistel D, Elmostafa R, Nguyen N, Penley M, Morran L and MA Hickman. A novel virulence phenotype rapidly assesses Candida fungal pathogenesis in healthy and immunocompromised Caenorhabditis elegans hosts. mSphere, 4:e00697-18. [link]
2017
Gerstein AC, Lim H, Berman J, & MA Hickman. Ploidy tug-of-war: evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen. Evolution, 71: 1025-1038. [link]
2016
Ciudad T, Hickman MA, Bellido A, Berman J, & G Larriba. The Phenotypic Consequences of a Spontaneous Loss of Heterozygosity in a Common Laboratory Strain of Candida albicans. Genetics, 203: 1161-1176. [link]
2015
Hickman MA, Paulson C, Dudley A & J Berman. Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics, 200: 781–794. [link]
- Press Coverage: Recommended in Faculty of 1000
2014
Tsai HJ, Baller JA, Liachko I, Koren A, Burrack LS, Hickman MA Thevandavakkam MA, Rusche LN, Dunham MJ, & J Berman. Origin replication complex binding, nucleosome depletion patterns and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres. mBio, 5: e01703-14. [link]
2013
Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang YM, Su CH, Bennett RB, Wang Y, & J Berman. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature, 494: 55-59. [link]
- Press Coverage: Gow, N. (2013) Multiple mating strategies. Nature, 494: 45-46.
- Recommended in Faculty of 1000
2011
Abbey D, Hickman MA, Gresham D, & J Berman. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains. G3, 1: 523-530. [link]
Hickman MA, Froyd CA, & LN Rushe. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Euk Cell, 10(9): 1183-92. [link]
2010
Hickman MA & LN Rusche. Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. PNAS, 107(45): 19384-9. [link]
2009
Hickman MA & LN Rusche. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genetics, 5: e1000710. [link]
2007
Hickman MA & LN Rusche. Substitution as a Mechanism for Genetic Robustness: the Duplicated Deacetylases Hst1p and Sir2p in Saccharomyces cerevisiae. PLoS Genetics, 3: e126. [link]
- Press Coverage: Louis, EJ. (2007) Evolutionary genetics: Making the most of redundancy. Nature, 449: 673-674.
Hickman MA & LN Rusche. “Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes” J. Heitman, JW Taylor, JW Kronstad and LA Casselton (eds) Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press