Author Archives: Joy Lee

Logographs and the Louvre

The Lawcode of Hammurabi

The Lawcode of Hammurabi

Like every good tourist of Paris, yesterday I visited the Louvre with Kayleigh. This massive museum is home to breath taking paintings, gorgeous sculptures, and, what I feel far too many visitors pass by without notice, a wide array of different writings from thousands of years ago! I admit that a stone tablet might not look like much at first glance, but even the Code of Hammurabi had less than a handful of people taking pictures when we ran into it (and considering it wasn’t marked on the museum map, it was pure luck that we saw it at all).

Location of the Louvre

Location of the Louvre

My first thought upon seeing these beautiful pieces of history and writing was something very appropriate and intelligent, maybe along the lines of “this is so cool!” My second set of thoughts revolved around how it would be terrible to drop a tablet and ruin who knows how many days of work, and how my clumsiness would probably make me a terrible scribe. But eventually I got around to thinking about the written languages captured on these artifacts and how they differ so much from the alphabets I am used to. Egyptian hieroglyphics aren’t entirely made of logographs– symbols that correspond to an entire word–but there are enough to make the writing system vastly different from the English alphabet. It’s easy enough to imagine that the brain might process these writing system differently. Of course, few people are fluent in reading ancient scripts, but there is a popular language today that uses logographs: Chinese.

Stele d'Ousirous with beautiful drawings and accompanying hieroglyphics

Stele d’Ousirous with beautiful drawings and accompanying hieroglyphics

Previous research has found several differences in the brain regions used during reading more morpho-syllabic language like Chinese versus a more alphabetic language like English. However, these studies have mostly studied participants during artificial language tasks, such as trying to determine whether a stimulus is a real word. This task might be a convenient measure of language related brain activation for experimenters, but nobody in the real world runs around staring at scribbles and trying to decide if what they see is a real word. A 2015 study by Wang et al., on the other hand, looked at not only language use during these artificial language tasks, but also language use in a more naturalistic setting, like reading a story. 

Sarcophagus of Ramesses III

Sarcophagus of Ramesses III

For these experiments, monolinguals in either English or Chinese took part in a naturalistic reading task or a lexical-decision task. In the first task, sixteen adults read and listened to six fairy tales in their respective language. For the lexical decision task, the participants had to determine whether the stimulus shown on a screen was a real word. In the English version, stimuli included real words, pseudowords, and non-words. The pseudowords were “almost” words made from a string of consonants, like “kybkh” or “wrgllt”. Non-words involved randomly rearranged letter strokes––a combination of lines that didn’t even form recognizable letters. Likewise, for the Chinese version, the participants had to determine between real phonograms, pseudo-characters, and artificial character-like stimuli. Unlike the phonograms, which are real Chinese characters that give information about the pronunciation and meaning of a word, pseudo-characters only superficially looked like real Chinese characters. In the artificial characters, either the position of character strokes was reversed or the strokes of a real character were randomly organized so that, like with the English nonwords, the resulting stimulus was nonsensical and completely meaningless.

Activity Levels in the Brain

Activity Levels in the Brain

The participants completed these tasks in an fMRI machine, which the experimenters used to measure brain activity. fMRIs measure a ratio of oxygenated to deoxygenated blood, and since more active areas of the brain require more oxygenated blood, fMRIs can indirectly measure brain activity. When Wang et al. looked at the resulting fMRI data for the lexical decision task. they found several differences in brain activation for Chinese versus English. For example, the Middle Frontal Gyrus (MFG) and the right Fusiform Gyrus (rFFG) show more activation for Chinese than English. Both of these brain areas may be involved in visual word processing, and the MFG may also be activated during meta-linguistic decision making. During the reading task, however, the main differences in the brain between Chinese and English readers involved the left Middle Temporal Gyrus (MTG) and visual areas that aren’t thought to be part of the brain’s reading network. According to Wang et al., these variations in activation may arise from the more visually complex nature of Chinese characters compared to English letters and the ability of certain Chinese characters to convey the meaning of a word without giving information on its pronunciation.

Now just where are all these brain areas I’ve listed off? Time for a mini neuroanatomy lecture! The following lovely illustrations brain give a side view of the brain, with the front of the brain towards the left and the back of the brain towards the right.

The Left Middle Frontal Gyrus

The Left Middle Temporal Gyrus

Now this next illustration of the Fusiform Gyrus is looking inside the brain, as if it were cut right down the middle between the eyes. The front of the brain is on the right side and the back of the brain is on the left.

The Right Fusiform Gyrus

So what do all of these data tell us? The gist of this study shows that the brain areas processing the Chinese writing system seem to differ slightly from the brain areas used to process English, but these differences depend on the particular language task involved. These distinctions in brain activation for the two experiments show that we can’t assume the same areas of the brain used in lab tasks like lexical decision making match the areas used in more natural tasks like story reading. Hopefully future experimenters will keep this in mind when they study language processing in the brain!

The Winged Victory of Samothrace. This statue doesn't have much to do with writing, but she was one of my favorite things to see in the Louvre.

The Winged Victory of Samothrace. This statue doesn’t have much to do with writing, but she was one of my favorite things to see in the Louvre.

Exploring the Louvre was absolutely wonderful. I only wish I’d had time to see more of the artwork. With only a few days left before I leave Paris, I probably won’t get a chance to visit again during this trip, but hopefully I’ll see Paris again someday!

Bibliography

Wang X, Yang J, Yang J, Mencl WE, Shu H, Zevin JD (2015) Language differences in the brain network for reading in naturalistic story reading and lexical decision. PloS one 10:e0124388.

https://commons.wikimedia.org/wiki/File%3AGray727_fusiform_gyrus.png

https://commons.wikimedia.org/wiki/File%3AGray726_middle_temporal_gyrus.png

https://commons.wikimedia.org/wiki/File%3AGray726_middle_frontal_gyrus.png

Bouba and Bagels

Paris! Land of crepes and croissants, escargot and éclairs, and absolutely exquisite baguettes. While sandwiches currently make up the vast majority of my diet, I’ve also delved into more exciting culinary exploits on occasion. A few days ago I tried escargot for the first time, and the week before, duck confit. I’ve also tasted mouth watering lemon tarts, mille feuille, and a host of other desserts whose names I do not know, courtesy of my terrible French (I may be a linguist, but I’ve never been particularly good at picking up languages).

A delicious lemon tart I ordered by enthusiastically pointing at it.

A delicious lemon tart I ordered by enthusiastically pointing at it.

I came to Paris two weeks ago with just enough knowledge of French to manage taking the train to my dorm room at Cite U–which, considering the number of people who speak English in France, boiled mostly down to “Bonjour”, “Pardon”, and “Parlez-vous anglais?” Since then, I’ve managed to pick up a handful of words, almost all of them about food (clearly, I have my priorities in order). Still, the majority of my ordering at cafes and restaurants involves pointing at what I want or butchering the words for and hoping it all ends well with my taste buds happy and my stomach full (it usually does).

However, my lack of French language skills occasionally makes for interesting culinary experiences. The first time I ordered a bagel from Morry’s Bagels, I picked out the word “saumon” and “oeuf” and assumed the bagel contained some combination of salmon and egg. To my pleasant surprise, the filling was salmon eggs, not salmon and egg. A few days ago I visited a patisserie nearby for a sandwich, but since they were all out of sandwiches with ingredients I understood, I used my classic point and pay method to get a sandwich that contained some sort of fish. I think. The connection between cuisine and language goes beyond potential difficulties with ordering food, however.

Morry's, a delicious shop that sells bagel close to the class.

Morry’s, a delicious shop that sells bagel close to the class.

A salmon egg bagel from Morry's.

A salmon egg bagel from Morry’s.

One of the key components of the definition of “language” that every linguistics student learns is arbitrariness. Languages, for the most part, are arbitrary; the sounds of a word do not denote the meaning (Monaghan et al., 2014). Nothing about the sounds in “poulet” makes a non-French speaker automatically think of chicken. However, while you may not be able to derive the meaning of a word from its sounds, you might be able to know some of its properties. In the famous “Kiki” and “Bouba” study by Dr. Ramachandran and Dr. Hubbard, participants looked at spiky or more rounded shapes and decided which nonsense word matched which shape. The angular shapes had a high correlation with “kiki”, while the more rounded shapes correlated with “bouba” in both English speakers and Tamil speakers (Ramachandran and Hubbard, 2001).

How does this relate to food?

 

My first taste of Duck Confit. I'm not sure if I would rate it more "bouba' or more "kiki", but I would definitely rate it "ridiculously delicious".

My first taste of Duck Confit. I’m not sure if I would rate it more “bouba’ or more “kiki”, but I would definitely rate it “ridiculously delicious”.

Well, in 2011, Gallace et al. published a study looking at word-food associations. Ten participants sat in a darkened testing room and tasted several different foods such as Brie, strawberry yogurt, lime jam, or salt and vinegar crisps (aka potato chips), all covering a wide range of flavors and textures. After tasting one sample of each food, the participants rated the food for 24 different nonword, food related, and non-food related opposing pairs. Nonword pairs included, for example, “kiki” at one extreme and “bouba” at the other, while an example of non-food related ratings could be “fast” vs. “slow”, or “salty” vs. sweet for food-related ratings. So, for example, after tasting some strawberry yogurt, the participant might have to decide if the yogurt tasted more “kiki” or more “bouba”, more salty or more sweet, more slow or fast, and so on. After finishing each of the 24 ratings the participant would taste the next food sample, and continue on until they sampled and rated all food items. Each participant tasted and rated each food a maximum of 10 times.

The experimenters found a significant association between certain foods with particular nonwords more than others. The participants rated plain chocolate as more “bouba”, in comparison to mint chocolate, and salt and vinegar-flavored crisps were rated as more “takete” than cheddar cheese or Brie. However, these correlations do not line up neatly so that all the “bouba” foods have a particular taste or texture. This complex association may be due to how many of the other senses, such as smell and vision, interact with taste. To explain these associations, Gallace et al. go on to speculate that the connections between the gustatory areas and the frontal and temporal lobes in the brain may explain this connection between taste and sound, similar to how Ramachandran and Hubbard hypothesized that the connections and coactivation of visual and auditory areas lead synesthetes to “see” sounds (Ramachandran and Hubbard, 2001). Interestingly enough, a study from 2013 found that while a remote population from Noerthern Namibia matched the same shapes and sounds to Westerners, they did not match the same tastes to sounds (Bremner et al., 2013). Thus, the connection between taste and sound is complex and most likely affected by culture.

As a double major in linguistics and neuroscience, I’ve learned about the “Bouba” and “Kiki” study many times, but it wasn’t until I arrived in Paris that I heard about the connection between sounds and taste. I’m excited to have found a connection between three of my passions–– food, neuroscience, and linguistics––and I can’t wait to discover what other connections to neuroscience I can make as I eat my way through Paris!

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think...

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think…

Bibliography

Bremner AJ, Caparos S, Davidoff J, de Fockert J, Linnell KJ, Spence C (2013) “Bouba” and “Kiki” in Namibia? A remote culture make similar shape-sound matches, but different shape-taste matches to Westerners. Cognition 126:165-172.

Gallace A, Boschin E, Spence C (2011) On the taste of “Bouba” and “Kiki”: An exploration of word–food associations in neurologically normal participants. Cognitive Neuroscience 2:34-46.

Monaghan P, Shillcock R, Christiansen M, Kirby S (2014) How arbitrary is language?. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130299-20130299.

Ramachandran V, Hubbard E (2001) Synesthesia and Language. Journal of Consciousness Studies 8:3-34.