Tag Archives: Paris

Feel the Music

Hello everyone, one last time! I can’t believe my time studying here in Paris is coming to a close already. It feels like I just arrived and now I only have one day of class left. This whole trip has been such an amazing experience, and I had the opportunity to see so many parts of this beautiful city! One of my recent experiences was Fête de la Musique, which was one of my favorite days here in Paris. Fête de la Musique is a city wide festival where anyone and everyone can play music on the streets of Paris. Walking around for 6 hours, I had the chance to hear many people share their music with the city. It was even more exciting when I found a band or individual playing a song that I recognized! One band played Stand by Me by Ben E. King and later I got to hear Wonderwall by Green Day.

Two men playing Stand by Me by Ben E. King on the streets of Paris

Another recent experience involving music was our class excursion to an exhibit at the Philharmonie de Paris. The exhibit called Exposition Electro was about electronic dance music, including history of the music and interactive pieces relating to the music. It was such an interesting exhibit. I really found my place in a back room that allowed you to make different beats with percussion instruments (I used to play percussion, so I spent a good chunk of my time in this room)

The Percussion room in the exhibition. You could make the instruments play on different beats to create your own music.

One of the most fascinating parts of the exhibit however was an image with a quote on a wall, rather than a musical piece. The quote read “Can a song without words say anything?” After seeing this quote, I started to really think about the way in which music impacts us. I contemplated the way I feel when I listen to music I love, or how I felt in the percussion room. Then, during Fête de la Musique I thought about how everyone in the city was spending a night enjoying and being immersed in music. To answer the question posed by the wall, I believe that the underlying emotion I, and many others, feel towards music allows us to connect to a song even without any words or explicit meaning. But, why is it that we can extract meaning and emotion out of music?

Our auditory cortex is the brain region where all sound information is processed (Purves et al., 2001). The information we hear from our ear is transmitted to the auditory cortex in the temporal lobe of the brain, which is found near your temples. The auditory cortex takes the noise we hear and converts it into sounds that we can understand (Purves et al., 2001).

Location of the auditory cortex

Now, just because we can comprehend the sounds and words being said to us, that doesn’t automatically mean we feel emotion towards it. This emotion comes from a connection to different parts of the brain. One study by Koelsch and colleagues (2005) used functional magnetic resonance imaging (fMRI), a measurement of brain activity based on blood flow to those areas, in order to determine the activity of both the auditory cortex and possibly other brain regions. fMRI was taken during the presentation of both pleasant and unpleasant music. The study found that unpleasant music activated brain regions known to be important for negative emotional processing along with the auditory cortex. The study also found that pleasant music activated a structure called the insula (Koelsch et al., 2005), which has been seen to be important for overall emotional processing (Phan et al., 2002).

Another study done by Koelsch and colleagues (2018) expanded on the knowledge of the 2005 study. The newer study also used fMRI to see activation of brain regions during music that should evoke joy or fear. The authors found that there was actually emotional processing within the auditory cortex, as well as connectivity with other emotion related areas. For example, there was a high connectivity with the limbic system (Koelsch et al., 2018). The limbic system includes structures such as the hypothalamus (important for controlling hormones in the body), the thalamus (processes different information from our senses), the amygdala (important for emotional memory, especially fear), and the hippocampus (important for personal memories). The limbic system is known for being important to emotional responses, and having the body respond accordingly by hormone release, changing breathing levels and heart rate, in order for a person to feel the emotion (Rajmohan and Mohandas, 2007).

Brain structures and location of the Limbic System

The conclusion in both of these studies is that there is high connectivity between the auditory cortex and emotional areas. There is always a level of uncertainty when using fMRI. Since fMRI measures blood flow to a brain area, the image doesn’t necessarily show us the activity of the neurons in that brain region. Therefore, future studies could look more directly at the role of specific structures involved in emotion in music. For example, if a structure important for emotion is damaged, does that change our ability to emotionally respond to music? However, overall these data point towards a strong connection between sound processing and emotional processing, which helps explain our emotional connection to music.

Music has always been a really important part of my life, and I am so glad I had the opportunity to interact with some musical parts of Paris. To me, it is so fascinating that random notes and sounds can make us feel so many different emotions. With and without words, music has the ability to affect our lives profoundly.

 

 

 

 

References:

Koelsch, S., Fritz, T., Cramon, D. Y., Müller, K., & Friederici, A. D. (2005). Investigating emotion with music: An fMRI study. Human Brain Mapping,27(3), 239-250.

Koelsch, S., Skouras, S., & Lohmann, G. (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. Plos One,13(1).

Phan, K., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI. NeuroImage,16(2), 331-348.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Auditory Cortex.

Rajmohan, V., & Mohandas, E. (2007). The limbic system. Indian Journal of Psychiatry,49(2), 132.

 

Image 1-3: Taken by me

Image 4:

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Auditory Cortex.

Image 5:

Limbic System. (2017, June 07). Retrieved from https://www.assignmentpoint.com/science/biology/limbic-system.html

Views (not from the 6)

Throughout our time in Paris, we have seen beautiful artwork in the form of paintings, music, sculpture, dance, and much more. Art is all about perception and I have been so grateful to be able to see and experience Monet’s use of color or Van Gogh’s use of texture. I have had the opportunity to be moved by their brush strokes and see the way they can turn an ordinary scene into a masterpiece. As I walked through the Musée d’Orsay and Musée Rodin, I was in awe of what I was seeing. I could see the level of detail and the individual brush strokes that were so meticulously planned. I had a completely different understanding of how they viewed the world because of their artwork. Looking at Monet’s series of the water lilies, I could tell how light affected his work. Seeing Rodin’s Thinker in real life showed me how much he focused on the hands and facial expressions. Just by seeing the artwork, there was so much I could discern about the artist and time.

Van Gogh’s Wheat Fields

Rodin’s Thinker

 

 

 

 

 

 

 

However, not everyone has the same privilege as I do. People suffering from visual impairments, specifically cortical blindness, do not have the same opportunities as I do to experience and appreciate the visual arts. The way they can perceive art is significantly different because they can’t see the details like we can. This, however, doesn’t mean they can’t be a part of the visual art world! There are a lot more ways to engage visually impaired patients and bring their perspectives of the world to the forefront.

A study done in Poland has suggested that even those with visual impairments can create artwork that is recognizable by individuals without impairments (Szubielska, 2018). In this study, the author asked patients with cortical blindness and others less severe forms of visual impairment to come explore the arts in Poland through guided tours. The author wanted to allow the patients to feel more comfortable with visual art before asking them to attempt to make their own. These visually impaired individuals were given the opportunity to go through art workshops and at the end, their work was displayed to the public for exhibition (Szubielska, 2018). The artwork was shown in very dim lighting or

Sculpture made by visually impaired artist

viewers were given blindfolds to recreate how a lot the visually impaired artists perceived the world. The author found that sculptures made were easier to make out because of their three-dimensional characteristics (Szubielska, 2018).  Even though there was no analysis or calculation of significance, this study shed light on the effects of visual impairments on creativity and helped the general public understand that art can be created without sight (Szubielska, 2018).

 

Through this new platform, people walked through the exhibit and got to experience art through a unique perspective and comprehend the struggles visually impaired people face every day. For example, one visually impaired artist drew a stairwell as a way of expressing his voice that stairs are difficult to maneuver for visually impaired people (Szubielska, 2018). Exposure to this typeof art help shape perspective because recurring experiences help shape the way we perceive the world (Snyder et al, 2015). By displaying the artwork and allowing visually impaired individuals to express themselves creatively, the increase in attractiveness of their work increases because repeated perception of the same stimulus makes them more attractive (Snyder et al, 2015). Overall, even though this exhibition in Poland was very subjective, it was a great start to demonstrating differences in perception and how these experiences can help us gain a broader perspective. Hopefully it can lead to exhibitions by visually impaired artists in Paris and work by Van Gogh and Rodin displayed for visually impaired people to enjoy and appreciate as well!

 

References

Snyder JS, Schwiedrzik CM, Vitela AD, Melloni L (2015) How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience9.

Szubielska M (2018) People with sight impairment in the world of visual arts: does it make any sense? Disability & Society33:1533–1538.

 

Imagaes

Photo 1 and 2 were taken by me

Photo 3: Szubielska M (2018) People with sight impairment in the world of visual arts: does it make any sense? Disability & Society33:1533–1538.

Electric Feel

A section of the museum! Daft Punk, an electric music duo, is French.

While travelling in Paris, I’ve passed quite a few musicians performing on the streets, whether they are singing, playing an instrument, or both. As someone who listens to music almost nonstop, I always find myself feeling a little brighter after I pass by these performers during my daily outings. What can I say? Music makes me happy, and good music happier. It’s not often that one finds time and space just for listening to music, but the “Electro: From Kraftwerk to Daft Punk” exhibit at the Philharmonie de Paris offered me this very opportunity, revisualizing the sonic experience of electronic dance music (EDM) into an immersive physical space. Tracing the origins of EDM to the present and featuring the works by renowned duo Daft Punk, “Electro” left me thinking about EDM for quite some time after I’d left. How do our brains process and respond to music, and how might the case be different for EDM?

I went to Shaky Beats music festival a year ago. The festival had several EDM artists playing.

Research suggests that listening to music is more complex than we might think, as it activates an entire network of cortical and subcortical areas (Zatorre and Krumhansl, 2002). Even the perception of rhythm involves multiple brain regions (Zatorre et al., 2007). When we hear music we like, our reward systems may activate, and when we tap our feet or bob our heads, we do so almost unbeknownst ourselves through activation of the basal ganglia (Trost et al., 2014; Zatorre et al., 2007).

A recent functional magnetic resonance imaging (fMRI) study by Brodal and colleagues examined the relationship between rhythmic music and basal ganglia, an area of the brain typically associated with fine motor skills (Hikosaka et al., 2002; Brodal et al., 2017). To test participants, researchers created a continuous-stimulation design (10.16 minutes long, 120 beats per minute) using an EDM-style composition. Ambient noise generated by the MR scanner was synchronized with the music to mimic an accompanying instrument and to prevent disturbance of participants’ listening experiences. The continuous-stimulation design was a departure from previous studies’ use of short chunks of music, which Brodal and colleagues believed may have caused limitations (Brodal et al., 2017).

Regions researchers observed. (Brodal et al., 2017)

Researchers used stochastic dynamic causal modeling (sDCM), a technology used to examine interactions between auditory perception, rhythm processing, and reward processing, to observe connectivity in the auditory cortex, putamen/pallidum (PP), and ventral striatum/nucleus accumbens (VSNAc) of both hemispheres. The latter two grouped terms were chosen for this study because the low resolution of raw fMRI data prevented distinction between grouped locations.

The sDCM revealed significant connections between all three areas in both hemispheres, as well as reduced functional connectivity in the reward system. Results supported the hypothesis that stimulation from rhythmic EDM-like music decreases connectivity in the right VSNAc from and to the basal ganglia and auditory network. Stimulation also resulted in decreased self-inhibition via the VSNAc, as well as changed hemodynamic parameter of the VSNAc, suggesting an increased level of activation. Furthermore, reduced connectivity was observed in basal ganglia, reward system, basal ganglia and auditory network. Ultimately, results demonstrated reduced reward system connectivity in participants listening to rhythmic music, thus supporting the hypothesis that the ventral striatum/nucleus accumbens region plays a significant role in processing the emotions associated with listening to music (Koelsch, 2014).

As Brodal and colleagues note themselves, one weakness of the study is its methodological constraints. Though evidence already exists on rhythm and the observed effects, researchers’ use of only one music piece prevents confident establishment of a connection, at least in relation to the present study (Brodal et al., 2017). Furthermore, participants’ states while listening to the given music is only compared to one other state, the resting state. Brodal and colleagues note that it is thus impossible to definitively determine whether the observed effects emerged during the resting state (Brodal et al., 2017). Lastly, though not a weakness, laboratory conditions in the Brodal team’s study are far different from normal conditions in which one might listen to music. EDM in particular is often celebrated at large outdoor festivals, and it would be interesting to understand how music interacts with festival environments and other relevant factors to affect our emotions, reward circuits, and capacity for inhibition.

Or who knows? Maybe I’ll see for myself at my next EDM festival. In an era of increasing technologization, electronic music represents not only technology, but also the capability of technology to bring humans together. And it’s comforting knowing that something so powerful can serve us by bringing us joy.

 

References

Brodal HP, Osnes B, Specht K (2017) Listening to rhythmic music reduces connectivity within the basal ganglia and the reward system. Frontiers in Neuroscience. 11:153. https://doi.org/10.3389/fnins.2017.00153.

Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002) Central mechanisms of motor skill learning. Current Opinion in Neurobiology 12(2):217-222. https://doi.org/10.1016/S0959-4388(02)00307-0.

Koelsch S (2014) Brain correlates of music-evoked emotions. Nature Reviews: Neuroscience. 15:170-180. https://doi.org/10.1016/j.plrev.2015.03.001.

Cité de la Musique: Philharmonie de Paris (n.d.) The Electro exhibition.

Trost W, Frühholz S, Schӧn D, Labbé C, Pichon S, Grandjean D, Vuilleumier P (2014) Getting the beat: Entrainment of brain activity by musical rhythm and pleasantness. NeuroImage 103:55-64. https://doi.org/10.1016/j.neuroimage.2014.09.009.

Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews: Neuroscience 8:547-558. https://doi.org/10.1038/nrn2152.

Zatorre RJ, Krumhansl CL (2002) Mental models and musical minds. Science 298:2138-2139. https://doi.org/10.1126/science.1080006.

Image 1-2 taken by myself

Image 3 taken from (Brodal et al., 2017).

Dutch vs. French: Who is happier?

This weekend I had the opportunity to visit Amsterdam with some friends! We explored, went out, and soaked up the Dutch culture as much as we could in one day. While we were there, the environment, or “vibe,” was noticeably different in Amsterdam compared to what I have observed during my last three weeks in Paris. Dutch people seemed to be happier and more welcoming compared to the French.

Gorgeous Amsterdam

This first indication that Dutch people are nicer was that our taxi driver was loud, happy, and making jokes with us. During the ride, he was asking where we were from, giving us advice, and telling us himself how people are happy here. Even throughout the trip, we came across numerous people who would actually smile at us while walking! I kept thinking to myself, “Wow, I can smile here and not get a sketchy response back!” People would talk to us, joke with us, and welcome us into their city with open arms. One man even came up to us when we looked confused to ask if we needed help to get where we needed. It was almost comforting to be around these people because I got that taste of America during my time in Amsterdam.

Meanwhile in Paris, people seem to be serious and in the zone. The crammed metro rides and the stereotyped city life really becomes apparent here in Paris. Although most people are nice and helpful, the impression that they give off seems cold and rigid. Quite honestly, they seem unamused with all the Americans that are in their city. Constantly, people are crammed and trying to get through by pushing and shoving to get where they need to go. With a “pardon” here and there, the Parisian way of life seems more stressful than the seemingly laid back Dutch culture.

Besides the mood that I am interpreting based on my interactions with both groups of people, the Dutch people also seem to be happier. When comparing overall mood of people in these two cities, I assume that people in Amsterdam seem to be happier than people in Paris. I may be completely on a whim here, but I really wonder what kinds of experiences and events can shape people’s moods. Although it is a precarious topic, I wonder if the legalization of marijuana attributes to the better mood and happiness in Dutch people, and if the long-term use can results in something detrimental to mental health.

Cannabis is used to enhance mood and at times quality of life (Fischer et al., 2015). A study analyzed an Australian cohort over time to study outcomes of the people. Quality of life, happiness, satisfaction and socio-demographic characteristics were taken into consideration when analyzing. The results provided by this study showed that frequent cannabis use did not enhance quality of life, and it was actually associated with low quality of life at 21-years old and up (Fisher et al., 2015).

Another study by Bruijnzeel et al. (2019), they authors were studying rats and how emotional behavior or cognitive function can change from adolescence to adulthood. The rats were exposed to tetrahydrocannabinol (THC) or cannabis smoke with increasing doses. Once the rats reached adulthood, anxiety-like behavior, depressive like behavior, and cognitive function were assessed. The results showed that neither THC nor cannabis smokes during adolescence produced significant amounts of alterations in adult rats after the cannabis was abstained.

One study even compared synthetic cannabinoid use with natural cannabis use and their respective cognitive outcomes. The results showed that synthetic cannabinoid users have a higher likelihood of drug abuse, sleep problems, and other psychological problems compared to natural cannabis users (Mensen et al., 2019). Additionally, adolescents cannabis users seem to be more vulnerable to changes in the brain compared to adult cannabis users (Gorey et al., 2019).

All of these papers can be synthesized to conclude that cannabis use does not directly affect long term happiness, especially of an entire culture. It is important to consider that cannabis use, although legal in some places, can be dangerous long term. For example, grey matter volume differences can arise, especially during the vulnerable adolescent stage of life (Orr et al., 2019). I think that some people may seem happier because of alleged cannabis use (purely based off of assumption), but the research did not conclude that the use of marijuana is the direct cause of a seemingly happier society. Based on my literature search, there seems to be a fine line when it comes to using cannabis because there are still long term cognitive changes that can interfere with life (Akram et al., 2019). Although my question and assumption was not answered how I thought it would, it was interesting to see how variable cannabis consumption can be. From this, I still consider the Dutch to be happier than Parisians. However, maybe I am not giving the Parisians the benefit of the doubt, and maybe they are equally happy! We may never know the answer to that question.

Happy Tourists!

 

References

Akram, H., Mokrysz, C., & Curran, H. V. (2019). What are the psychological effects of using synthetic cannabinoids? A systematic review. Journal of Psychopharmacology, 33(3), 271–283. https://doi.org/10.1177/0269881119826592

Bruijnzeel, A. W., Knight, P., Panunzio, S., Xue, S., Bruner, M. M., Wall, S. C., … Setlow, B. (2019). Effects in rats of adolescent exposure to cannabis smoke or THC on emotional behavior and cognitive function in adulthood. Psychopharmacology. https://doi.org/10.1007/s00213-019-05255-7

Fischer, J. A., Clavarino, A. M., Plotnikova, M., & Najman, J. M. (2015). Cannabis Use and Quality of Life of Adolescents and Young Adults: Findings from an Australian Birth Cohort. Journal of Psychoactive Drugs, 47(2), 107–116. https://doi.org/10.1080/02791072.2015.1014121

Gorey, C., Kuhns, L., Smaragdi, E., Kroon, E., & Cousijn, J. (2019). Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. European Archives of Psychiatry and Clinical Neuroscience,269(1), 37–58. https://doi.org/10.1007/s00406-019-00981-7

Mensen, V. T., Vreeker, A., Nordgren, J., Atkinson, A., de la Torre, R., Farré, M., … Brunt, T. M. (2019). Psychopathological symptoms associated with synthetic cannabinoid use: a comparison with natural cannabis. Psychopharmacology. https://doi.org/10.1007/s00213-019-05238-8

Orr, C., Spechler, P., Cao, Z., Albaugh, M., Chaarani, B., Mackey, S., … Garavan, H. (2019). Grey Matter Volume Differences Associated with Extremely Low Levels of Cannabis Use in Adolescence. The Journal of Neuroscience, 39(10), 1817–1827. https://doi.org/10.1523/JNEUROSCI.3375-17.2018

Images

Scholar Blogs and my own images

OMG, More Stairs?!?

When I came to Paris, I thought I was prepared for everything: the bakeries, the museums, the landmarks, the culture — but nothing could have prepared me for the walking I was about to do. Unlike the suburban areas around Emory or my hometown of Topeka, Kansas, where a car is considered necessary for most outings, the streets of Paris are easily traversable by foot, and public transportation is much more accessible. And in a city so beautiful, I had a hard time refusing the ease of foot travel. Still, with the recent muggy weather, walking hasn’t felt quite as pleasant. People always say “no pain, no gain,” and I began to wonder what all my walking was doing for me brain-wise.

My steps before and after I came to Paris. As one can see, my steps significantly increased after I came to Paris, May 22th.

Turns out, there’s a lot to be gained from regular aerobic exercise. Consistent research has pointed to the role of physical activity in cognitive function and has grown in volume over the past decade (Soga et al., 2015). General movement has been suggested to contribute to brain plasticity, which in turn facilitates interaction between cognitive and motor functioning (Doyon and Benali, 2005). Furthermore, research has also linked physical activity to academic performance (Castelli et al., 2007). While these results doesn’t necessarily mean that taking up routine walking or running will guarantee better grades or memory, the two do seem to be invariably related.

Amidst this burgeoning research, Colcombe and colleagues decided to research the cortical mechanisms beneath cardiovascular fitness-related changes in cognitive function (Colcombe et al., 2004). Functional magnetic resonance imaging (fMRI) was used to study how changes in fitness might affect the brain. Researchers particularly focused on the anterior circular cingulate (ACC), an area of the limbic system linked to brain structures responsible for sensory, motor, emotional, and cognitive information (Bush et al., 2000).

The study took place in 2 segments, with Study 1 involving high-fit (HF) older adults, and Study 2 involving adults randomly assigned to either a cardiovascular fitness training (CFT) group or a stretching and toning group (control) (Colcombe et al., 2004). All participants in both groups underwent a flanker task in which they filtered and identified incongruent cues (Colcombe et al., 2004). The flanker test allowed researchers to study participants’ ability to filter and respond to relevant information (Colcombe et al., 2004). Researchers then compared cortical mechanisms triggered by incongruent clues to those triggered by congruent ones, to see whether HF adults would demonstrate higher activation in attention- and control-related regions (Colcombe et al., 2004).

fMRI scans of the ACC illustrate activation of different cortical areas in the task-related activity (Colcombe et al., 2004).

Sure enough, fMRI scans supported the study’s hypothesis that older adults with high levels of measured cardiovascular fitness would demonstrate significantly more activation in cortical regions linked with attention selection and control (Colcombe et al., 2004). These cortical regions include the medial frontal gyrus (MFG), superior frontal gyrus (SFG), and superior parietal lobe (SPL) (Colcombe et al., 2004). Significantly less activation was observed in the ACC, which is linked with behavioral conflict and adaptation of attentional control (Colcombe et al., 2004).

One weakness of the study by Colcombe and colleagues is the cross-sectional approach taken in Study 1. Being observational, cross-sectional studies are vulnerable to non-response bias, which can lead to a participant pool unrepresentative of the population (Sedgwick, 2014). Furthermore, data can only be collected during one set period of time, leaving researchers unable to create long-term representations of cause and effect (Sedgwick, 2014). However, it is important to note that longitudinal studies might also be difficult to complete with older participants, due to possible interference from disease or other age-related complications (Sedgwick, 2014). Ultimately, the research by Colcombe and colleagues was important at the time of its publication because it expanded upon existing research regarding the underlying cortical mechanisms of cardiovascular fitness.

More recent research by Brockett and colleagues suggests that physical exercise may contribute to extensive plasticity and increased cognitive functioning (Brockett et al., 2015). Rats who ran for moderate durations of 12 days were able to better discriminate than control rats in a task testing medial prefrontal cortex (mPFC) function, though little difference was seen between both groups in a task testing perirhinal cortex (PRC) function (Brockett et al., 2015). In a second experiment, runner rats took less trials and errors than control sedentary rats to reach criteria for simple discrimination, reversal, extradimensional shift (Brockett et al., 2015). Researchers also tested whether running influences astrocytes, non-neural brain cells that communicate with neurons and suggest links to synaptic plasticity, learning, and memory (Brockett et al., 2015). Co-labelling of astrocytes with visual markers revealed increase in astrocytes cell body area in the hippocampus, mPFC, and OFC (Brockett et al., 2015). These results aligned with data from the behavioral tests, suggesting that physical exercise can enhance cognitive performance in tasks that activate the hippocampus, mPFC, and OFC (Brockett et al., 2015). The lack of significant change to the PRC suggests that routine running lacks observable relation to the PRC. Ultimately, results suggest greater cognitive performance in tasks reliant on the prefrontal cortex, as well as enhanced synaptic, dendritic, and astrocytic measures in several regions. This evidence supports the hypothesis that physical exercise contributes positively to plasticity and cognitive functioning. Together, both papers by Colcombe, Brockett, and their colleagues have contributed to the growing understanding that exercise generally promotes greater cognitive functioning.

Brockett and colleagues’ research has made me wonder how much I would have to run to achieve the human equivalent of a rat’s 12-day regimen. As a student, it’s incredibly easy to get sucked into the grind and become deskbound. But the grind is exactly why brain power is important for the students, and optimizing my brain power in exchange for a few minutes and some physical effort has started to sound like a much better idea than the old me would have thought.

References

Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. Public Library of Science ONE 10(5): e0124859. https://doi.org/10.1371/journal.pone.0124859.

Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences. 4(6):215-222. https://doi.org/10.1016/S1364 6613(00)01483-2.

Castelli DM, Hillman CH, Buck SM, Erwin HE (2007) Physical fitness and academic achievement in third- and fifth-grade students. Journal of Sport and Exercise Psychology 29(2):239-252. https://doi.org/10.1123/jsep.29.2.239.

Colcombe SJ, Kramer AF, Erickson KI, Scalf  P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America            101(9):3316-3321. https://doi.org/10.1073/pnas.0400266101.

Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology 15(2):161-167. https://doi.org/10.1016/j.conb.2005.03.004.

Sedgwick P (2014) Cross sectional studies: Advantages and disadvantages. BMJ 348. https://doi.org/10.1136/bmj.g2276.

Soga K, Shishido T, Nagatomi R (2015) Executive function during and after acute moderate aerobic exercise in adolescents. Psychology of Sport and Exercise 16:7-17. https://doi.org/10.1016/j.psychsport.2014.08.010.

Image 1 taken by myself.

Image 2 from Colcombe et al., 2004.

What Colorful Language!

We always see it in the movies: the younger child and the father laying together in the grass, gazing up at the midday sky. She asks what color the sky is, and he says blue without hesitation. Such a simple answer to what is, in reality, such a complex question. Over the past few weeks, to combat my occasional homesickness, I’ve found myself looking up to the sky, wondering if my parents can see the same sky back home in Georgia. When we discussed the colors of the sky in class, it encouraged me to investigate the simple answer to the question: what color is the sky?

Just one example of the types of colorful skies one could witness here in Paris.

The real answer, it turns out, depends on a variety of factors; the time of day, location of the viewer, location of the sun, the viewer’s visual abilities, language, mood, etc. From personal experience, I believe the same sky can be different colors to the same viewer in different states of mind. For example, individuals experiencing sadness have a greater tendency to “focus on the tree instead of the forest” (Gasper 2002), which translates to not seeing the full visual picture and instead fixating on visual detail, such as the shade of one item instead of the collective colors in a room. In a more scientific sense, a red-green colorblind viewer would have a different visual opinion of a sunset than a normally sighted individual. But what about language?

Interestingly enough, language and culture also exert a large influence on color perception; different languages have different words for different colors, and some only have one word for a whole category of colors. The color category perception effect (Zhang 2018) describes this phenomenon in which “people were more likely to distinguish colors from different colors than those that landed in the same area.” Those who speak languages that have more words for different colors would, under this theory, be better able to distinguish various shades than those who speak a language with fewer words for color. Based on this perception of color, two people from different cultures could view the sky in different shades. The figure below displays how the color wheels of the English and Greek lexicon differ due to variations in groupings.

Image result for the color wheelImage result for color wheel in greek

There is evidence that language centers in the brain are activated with color perception; in an experiment performed by Siok et al., when stimuli are observed from different linguistic categories, there is a greater activation of visual cortex areas 2/3 – the areas responsible for color vision. This enhanced V2/3 activity coincided with enhanced activity in the left posterior temporoparietal language region, which suggests a top-down control from the language center to modulate the visual cortex (Siok 2009). In other words, increased activity in language perception areas of the brain correlates to increased modulation of color vision before you’ve had the chance to pay conscious attention (Athanasopoulos 2010).

This is especially relevant in Paris; as an English-only speaker in a world of French speakers, I can’t help but wonder how differences in our color-related vocabulary translate to questions like that of the sky’s color. It is known that language effects sensory perception in its earliest stages (Athanasopoulos 2010), but would learning French color vocabulary change my perception of what colors I see? A previous experiment (Theirry 2009) demonstrated a difference in brain activity for both a native Greek and English speaker, the former of which makes a lexical distinction between light blue (ghalazio) and dark blue (ble). This is shown in the figure below, which demonstrates a greater Visual Mismatch Negativity response for the Greek participant when they were observing a blue stimulus due to greater lexical representation for this color.

A report of differences between speakers of different languages in early color perception. The shaded area represents presentation of a specific marker between 170 and 220 milliseconds post-stimulus. Notice the difference in negative response between Native English and Native Greek for the color blue.

In summary, the influence of language is one often underestimated when considering why we see the colors we do. I believe perception of color is a uniquely integrative experience, combining elements of culture, background, language, personality, and individuality to create specific visuals distinctive to one person. This seems all the more evident in Paris; everything is so new, so fresh and exciting that I cannot help but feel that the very colors of Paris hold something special that I have not seen elsewhere. So what color is the sky? You may be surprised, as I was, to find your answer constantly changes.

Citations:

Athanasopoulos, P., Dering, B., Wiggett, A., Kuipers, J., & Thierry, G. (2010). Perceptual shift in bilingualism: Brain potentials reveal plasticity in pre-attentive colour perception. Cognition, 116(3), 437-443. doi:10.1016/j.cognition.2010.05.016

Gasper, K., & Clore, G. L. (2002). Attending to the Big Picture: Mood and Global Versus Local Processing of Visual Information. Psychological Science, 13(1), 34-40. doi:10.1111/1467-9280.00406

Siok, W. T., Kay, P., Wang, W. S., Chan, A. H., Chen, L., Luke, K., & Tan, L. H. (2009). Language regions of brain are operative in color perception. Proceedings of the National Academy of Sciences, 106(20), 8140-8145. doi:10.1073/pnas.0903627106

Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B., & Kuipers, J. (2009). Unconscious effects of language-specific terminology on preattentive color perception. Proceedings of the National Academy of Sciences, 106(11), 4567-4570. doi:10.1073/pnas.0811155106

Zhang, J., Chen, X., You, N., & Wang, B. (2018). On how conceptual connections influence the category perception effect of colors: Another evidence of connections between language and cognition. Acta Psychologica Sinica, 50(4), 390. doi:10.3724/sp.j.1041.2018.00390

 

Where’s the AC?

Hi everyone! We finished our second full week in France, and are on to our third. The time is flying by! I am really enjoying my time here, and am learning a lot in the two classes we are taking. In our Arts on the Brain course, we talked a bit about varying perceptual experiences. Specifically, we started by talking about how our perception of the color of the sky can be different depending on the time of day and the experiences we have had. This discussion shows that perceptual experiences are not the same from person to person.

A picture of the Paris sky at sunset (Martinez et al., 2017)

I had a conversation with someone about the temperature in Avignon, where we travelled to this weekend. They were freezing, while I was enjoying the beautiful breeze. The 65-70 degree weather with a breeze was absolutely beautiful to me. However, the 85 degrees during the day was much too hot. This conversation combined with my recent interest in differing perception, and adding in the fact that French people don’t love air conditioning, lead me to start wondering about the ways in which people may perceive temperature differently. Similar to our different perception of the color of the sky, do we differ in our perception of temperature as well?

View of Avignon, France from the Palais de Papes

I realize that many people say that people from the north are better at handling the cold. And obviously, the French are better at handling the heat than I am (I miss the AC!). Why are some people more comfortable in different temperatures?

Thermoreceptors are what allow us to detect temperature. These allow us to sense and then respond to the temperature stimuli (Zhang, 2015). Temperature acclimatization is defined as the process in which a person becomes adjusted to their environment’s temperature, through physiological changes (Acclimatization, 2019). This acclimatization would explain people’s differing perceptions of temperatures.

Sensors within the skin, including a thermoreceptor (Pain is Only Skin Deep, 2016)

When someone who is in a cold environment for a short amount of time, the response is to shiver in order to conserve heat. However, when someone has been in a cold environment for a longer period of time, or a chronic cold environment, then the response to regulate heat changes (Castellani and Young, 2016). Eventually shivering decreases, but heat production remains the same.  This is due to brown adipose tissue in the body (Lans et al., 2013). However, this isn’t due to an increase in brown adipose tissue, but instead an increase in non-shivering thermogenesis, or heat production, within the existing tissue (Vosselman et al., 2014). This shows that there are physiological changes in our body when we are exposed to different climates. Non-shivering heat production is increased in people who are in cold environments more often.

It was really interesting to see these changes, but I would say there is research I would be interested to see within this topic. For example, I would be interested to see if there is a change at the neuronal level, such as within the thermoreceptor. Also, is the activation in the brain of people acclimated to the cold different from those who aren’t? Also, I would be interested to know if there is a change for hotter climates, or if it just the decrease of non-shivering thermogenesis. I couldn’t find any research on this, but if any of my readers have heard about this, let me know in the comments!

It is really interesting to know that we have different physiological changes that allow us to be more acclimated to certain climates. Our differing perceptions of the world is so fascinating across all of our senses. This new information might help explain why there is no AC here, so for now I will just enjoy the 65-degree weather when I have the chance and hope I acclimate to warmer weather eventually!

 

 

 

 

 

Works Cited:

Acclimatization (adjusting to the temperature). (2019, January 11). Retrieved from https://uihc.org/health-topics/acclimatization-adjusting-temperature

Castellani, J., & Young, A. (2016). Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Autonomic Neuroscience: Basic and Clinical,196, 63-74.

Lans, A. A., Hoeks, J., Brans, B., Vijgen, G. H., Visser, M. G., Vosselman, M. J., . . . Lichtenbelt, W. D. (2013). Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation,123(8), 3395-3403. doi:10.1172/jci68993

Vosselman, M. J., Vijgen, G. H., Kingma, B. R., Brans, B., & Lichtenbelt, W. D. (2014). Frequent Extreme Cold Exposure and Brown Fat and Cold-Induced Thermogenesis: A Study in a Monozygotic Twin. PLoS ONE,9(7). doi:10.1371/journal.pone.0101653

Zhang, X. (2015). Molecular sensors and modulators of thermoreception. Channels,9(2), 73-81.

Photos:

Image 1: Martinez, E., Emily, Meghan, Cynthia, Aubrie, Emily, . . . Desert Safari. (2017, January 06). The 5 Best Sunset Spots in Paris. Retrieved from https://www.theglitteringunknown.com/5-best-sunset-spots-in-paris/

Image 2: My own photo

Image 3: Pain is only skin deep. (2016, February 22). Retrieved from https://kaitlinforwardbiochem.tumblr.com/post/139793441303/pain-is-only-skin-deep

 

 

Beauty is in the Eye of the Beholder

Mount Sainte-Victoire by Paul Cézanne.

The short time that I’ve been in Paris has felt so much longer than a few weeks. Last week, I spent several hours at the Musée d’Orsay, where I finally fulfilled my dream of viewing impressionist masterpieces face-to-face. A few nights later, I was looking through the photos that I’d taken during my recent travels, when one particular photo of a building caught my eye. Something about the image irked me. The asymmetry, I realized, was throwing my mind into a sort of desire to fix the photo. I began to wonder: What makes something beautiful, and what does symmetry have to do with it?

 

A building I saw when walking to the Soup Bar and thinking I didn’t like the way it looked.

 

A study by Makin and colleagues used a “gaze-driven evolutionary algorithm” to examine three factors: 1) Do people evaluate symmetry instinctively? 2) Do people prefer perfect symmetry or slightly imperfect imagery? 3) When people grow familiar with symmetry, do they lose fascination with it? Researchers employed eye-tracking technology to observe for factors that attracted 54 test subjects’ gazes (Makin et al.,2016). Observation of event-related potentials (ERPs) following exposure to abstract patterns suggested that ERPs responsible for aesthetic evaluation (beautiful vs. ugly) did not fire during evaluation of symmetry. In regards to the three questions initially posed, overall results suggested that, though symmetry was a significant factor in participants’ selection, 1) people do not automatically evaluate symmetry, and rather prefer slight imperfection; 2) people do not express marked preference for either symmetry or slight imperfection; 3) people’s interest in symmetry does not change following familiarization.

Based on this study, it seems like symmetry plays a part in all of our visual imagery preferences, though likely not to a critical extent. Perfect isn’t perfect. The question of aesthetic preference brought my thoughts back to what I’d seen at the d’Orsay. I began thinking about Cézanne and Monet, and what I’d read.

When Cézanne split from the impressionist project of “worshipping light” (Lehrer 103), he began a ceaseless quest to mimic the fleeting nature of the physical world. The images we see slowly take shape as they filter from V1 to V5. As Jonah Lehrer writes, “If the mind didn’t impose itself on the eye, then our vision would be full of voids” (Lehrer 117). Cézanne’s nonfinito technique taps into this process. Unlike the classic impressionists, Cézanne’s use of blank space mimicked the brain’s process of filling in emptiness to create meaning in otherwise meaningless sensory information.

Take, for example, a thin gray stripe, a “fragile scratch against the sprawling void” (Lehrer 115). Alongside the ambiguous forms of trees, a river, and the sky, it adopts a sensible identity as a mountain range, as our mind has already identified a coherent nature scene. Cézanne’s art alludes to the senselessness of reality and our capability — and need —  to make sense of it.

Vered Aviv concludes that abstract art promotes new meaningful neural connections that lead to higher-level brain states. The brain process after viewing abstract art “is apparently rewarding as it enables the exploration of yet undiscovered inner territories of the viewer’s brain” (Aviv, 2014). “‘The eye is not enough… One needs to think as well.’ Cézanne’s epiphany was that our impressions require interpretation; to look is to create what you see” (Lehrer, 2008).

Research by Hochstein and Ahissar proposes that “Vision at a glance reflects high-level mechanisms, while vision with scrutiny reflects a return to low-level representations” (Hochstein and Ahissar, 2002). Impressionism attempted to recreate an ‘impression’ of nature, a fleeting moment. Though Cézanne’s works outgrew impressionism with its abstract techniques, Monet’s works remained comparably decipherable and photographic. One might compare Cézanne’s works with what Hochstein and Ahissar call vision at a glance, and Monet’s to vision with scrutiny, a prolonged observation and interpretation of a perceived landscape. If “Cézanne’s art was a mirror held up to the mind” (Lehrer, 2008), then “‘Monet [was] only an eye’” (Lehrer, 2008), a lens.

Lehrer writes that “[Cézanne] forces us to see, in the same static canvas, the beginning and end of our sight… The painting emerges, not from the paint or the light, but from somewhere inside our mind” (Lehrer, 2008). Though recent research has since revealed much more about art, visual interpretation, and various other related processes, Cézanne was an anomaly of his time, a painter with a vision that was simultaneously humanistic and scientific.

When photography first developed during the era of impressionism, French painters rebelled because “the camera was a liar… Because reality did not consist of static images. Because the camera stops time, which cannot be stopped” (Lehrer, 2008). I wonder what Cézanne would have thought in my position. Maybe he would have already identified by then the inherent futility in taking the “perfect” picture, or recognized that my disappointment in the photo lay in the inherent dishonesty of photography.

Or maybe Makin and colleagues were onto something when they suggested that symmetry isn’t a necessary condition of beauty. After all, it was the imperfections and the fleeting nature of Cézanne’s fruit and Monet’s flowers that left them floating through my consciousness long after I returned to my apartment. In the end, I guess, beauty is in the eye — and the brain — of the  beholder.

References

Makin ADJ, Bertamini M, Jones A (2016) A gaze-driven evolutionary algorithm to study aesthetic evaluation of visual symmetry. i-Perception March-April:1-18. https://doi.org/10.1177/2041669516637432.

Aviv V (2014) What does the brain tell us about abstract art? Frontiers in Human Neuroscience 8:85. https://doi.org/10.3389/fnhum.2014.00085.

Hochstein S and Ahissar M (2002) View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 36(5):791-804.

Lehrer J (2008) Paul Cézanne: The process of sight. In Proust was a neuroscientist (Reprint ed.). pp. 96-119. Mariner.

Image 1 (Lehrer, 2008)

Image 2 was taken by myself.

So You Think You Can Dance: Paris Edition

A hip-hop dance battle wasn’t on my list of places to go or things to do in Paris. But after watching my first live hip-hop dance performance, I can say that I don’t regret it one bit. As a dancer myself, I admire watching dance performances because I’ve been in their footsteps. However, the dance I do, which is called raas, a classical Indian dance where we spin dandiya sticks, is drastically different from hip-hop. Or so I thought…

Our team dancing at one of the competitions we attended.

The hip-hop battle, called Onze Bouge, which translates to 11 moves, took place at Place Léon Blum on a Saturday night. When we got there, the dance battles already started, and we squeezed into the crowd to watch. Right next to the speakers, I felt my heart pounding but watching the dancers reminded me of when I was on stage, dancing in front of hundreds. However, even with the stress of competing in front of others, I always thought of dancing as a stress reliever. Interestingly, there has been research conducted on the role of dance reducing some types of stress. In one study, researchers looked at how dance or movement training (DMT) in older adults influenced their cortisol, a well-known stress hormone. They found that the DMT group compared to the control group, the adults that didn’t do any DMT, had lower cortisol post training. (Vrinceanu et al 2019)

Another similar study had the same group, DMT, but the researchers studied the effect of dance and movement on declining cognitive abilities and depressive symptoms. The sample of older adults was randomly organized into DMT, exercise, or control groups. The main findings were that DMT significantly decreased depression, loneliness, and negative mood while improving daily functioning and cortisol levels. These findings suggest that dance can be a therapy for older adults to improve daily functioning in aspects where depression and stress might impact them. (Ho et al. 2018) I, for one, know that I definitely feel my mood lighten and my stress levels subside after dance practice.

Dancers’ brains were also active when watching other dance performances more than non-dancers’ brains. A study states that dancers’ brains did differ in function and structure, but only in areas where the dancers’ used their brains more. Their results showed that dancers themselves had activated an area of the brain called an action observation network (AON) more than non-dancers when viewing dance. The AON is a network of brain regions that are involved in motor and sensory skills. (Burzynska et al 2017)

The areas of the brain that were active in dancers watching other dancers perform.

Other than the connection between the brain and dance, another fascinating characteristic I noticed that overlapped between the battle and my experience with raas competitions was the judging. Some of the stress, or at least the stress I experience, comes from this aspect of competing. However, I tend to notice that the judges tend to usually pick the teams with the most elaborate steps or at least the steps that look externally impressive, which intuitively makes sense. And there’s science behind it to prove this. A study looked at hip hop dance and how expert vs. non-expert dancers’ range of motion influenced the judges’ scores. The researchers found that the range of motion of the dancer’s body was highly correlated to a higher judging score, stating that scores are usually based on outwardly appealing elements. The (Sato et al. 2016)

A young hip-hop dancer performing a move that requires a high range of motion.

Based on all these research studies on dance’s impact on people’s bodies, brains, and how it influences the judges, I was surprised to find that dance has been a popular topic in a lot of science research! As a dancer and someone who loves watching dance performances, I was intrigued by all the science on how dancing impacts your brain and body. France is a center for all things artistic from dance to paintings to architecture. Getting to watch dance in Paris was unexpected but rewarding because I got to experience a taste of hip-hop in France. However, I learned that, for me, dance is universal, and whether it’s in Paris or Atlanta, dance has its appeal all around the world.

References

Vrinceanu T, Esmail A, Berryman N, Predovan D, Vu TTM, Villalpando JM, Pruessner JC, Bherer L. (2019) Dance your stress away: comparing the effect of dance/movement training to aerobic exercise training on the cortisol awakening response in healthy older adults. Stress. :1-9.

Ho RTH, Fong TCT, Chan WC, Kwan JSK, Chiu PKC, Yau JCY, Lam LCW. (2018) Psychophysiological effects of Dance Movement Therapy and physical exercise on older adults with mild dementia: A randomized controlled trial. J Gerontol B Psychol Sci Soc Sci.

Sato N, Nunome H, Ikegami Y. (2016) Key motion characteristics of side-step movements in hip-hop dance and their effect on the evaluation by judges. Sports Biomech. 15(2):116-27.

Burzynska, A. Z., Finc, K., Taylor, B. K., Knecht, A. M., & Kramer, A. F. (2017). The Dancing Brain: Structural and Functional Signatures of Expert Dance Training. Frontiers in human neuroscience11, 566. (2nd image from figure within article)

Watson, Galadriel. “Dancing Hones Your Body, But What Does It Do to Your Brain?” Dance Magazine, Dance Magazine, 30 Jan. 2018, www.dancemagazine.com/dancers-brains-2523641417.html.

First and last images were taken by me

bottoms up! cognition down?

drinking but make it ~~patriotic~~

Walking around the city of Paris, it is hard to miss the fact that we are in a country submerged in a long, liquid history with wine and a current population dedicated to upholding this wine drinking culture.  “For many individuals, drinking wine has become an identity-building process by which they become part of a new form of civil community constructed around a nostalgic view of a rural and authentic France” (Demossier, 2010, p. 13). Apparently, the French are quite a nostalgic bunch then, and at all times of the day. Whether it’s with a well-plated charcuterie board, a medium rare steak, or sans any food in front of them, I cannot recall a time when I did not walk through a Paris street without seeing anyone sitting outside at a café terrace without a glass of wine accompanying them.

a typical scene of Parisian merriment

As a nation with casual drinking during meals ingrained into the collective psyche, I was interested in seeing whether this difference in mentality would manifest in a difference in drinking habits – binge drinking in particular – among the young people of France and America. Binge drinking (BD) is typically defined as heavy alcohol use of four or five drinks over a short period of time. From 2009 to 2013, the prevalence of those partaking in BD among university students in France was about 30% in the period of a month (Tavolacci et al., 2016). During this same period of time, the percent of 18-22-year-olds in America binge drinking within a month wavered around 40% (White and Hingson, 2014). The underlying factors leading to the prominence of binge drinking is a bottle to be uncorked another time, but today I will be looking into the effects of binge drinking on cognitive function in young people.

We’ve all seen the short-term side effects of binge drinking – in fact I think I saw some of it walking around the Bastille area of Paris one day after dinner – but what about the unseen and long-term effects in the brain? As binge drinking is usually associated with those of college age whose primary occupation is often school, I wanted to see how much researchers know about what is happening to a brain and its function with frequent alcohol use.

In a 2009 study, 42 binge drinkers and 53 controls from between age 18-20 were tested. Scalp electrodes were used to measure event-related potentials (ERPs), which are measured brain responses that are a result of a specific sensory, cognitive, or motor event and a way to evaluate brain function. Subjects were asked to perform a visual working memory task, a task where visual information must be remembered and manipulated quickly when prompted, and then the components of their ERPs were compared. The results indicated that there was the presence of an electrophysiological difference between the binge drinker and the control group, and that higher levels of attentional efforts were required from the binge drinking group to differentiate between relevant and irrelevant information to effectively process working memory (Crego et al., 2009).

 

an example of the components of what an ERP may look like based on electrode measurements

 

Another study in 2011 tested 40 binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males) between the ages of 16 to 19. Researchers conducted neuropsychological testing, substance use interviews, and a spatial working memory (SWM) task, which requires retention and manipulation of visuospatial information, during functional magnetic resonance imaging (fMRI). Links between BD status and gender were found in brain regions spanning the bilateral frontal, anterior cingulate, temporal, and cerebellar cortices. In all regions, female binge drinkers showed less SWM activation than female controls; however, male binge drinkers actually showed greater activation of SWM which linked to better spatial performance (Squeglia et al., 2011). The results of this study seemed to indicate that females may be more vulnerable to the neurotoxic effects of binge drinking during adolescence, while male brains may be more resilient to the harmful effects of binge drinking (where does the male privilege end??).

an example of a simple spatial working memory task

While ERPs and SWM are ways to assess brain function, I believe they can’t fully encompass cognitive performance, which synthesizes aspects of memory, attention, and reasoning. Overall, I believe the exact effects of binge drinking on the human adolescent brain will always be difficult to elucidate because of the many confounding factors that cannot be controlled for in correlational studies. However, this does not mean that this topic should be any less deserving of research because of the important implications the results can have for adolescents around the world and their brain health. For now, perhaps we should all follow the example of the Parisians and enjoy in moderation. Cheers for now!

 

Bibliography

Crego A, Rodriguez-HolguõÂn S, Parada M, Mota N, Corral M, Cadaveira F.(2009). Binge drinking affects attentional and visual working memory processing in young university students. Alcohol Clin Exp Res. 33(11):1870–9. 10.1111

Demossier, M. (2010). Wine Drinking Culture in France: A National Myth or a Modern Passion? (French and francophone studies) (p. 13). Retrieved from https://books.google.com.

Marie-Pierre Tavolacci, Eloïse Boerg, Laure Richard, Gilles Meyrignac, Pierre

Dechelotte, et al., (2016) Prevalence of binge drinking and associated behaviours among 3286 college students in France. BMC Public Health, BioMed Central, 16, pp.178.

Squeglia, L.M., Schweinsburg, A.D., Pulido, C. & Tapert, S.F. (2011) Adolescent Binge

Drinking Linked to Abnormal Spatial Working Memory Brain Activation: Differential Gender Effects. Alcoholism: Clinical and Experimental Research, 35, 1831-1841.

White, A. & Hingson, R. (2014) The burden of alcohol use: excessive alcohol consumption and related consequences among college students. Alcohol Res, 35, 201-218.

Image 1: from Demossier (2010) p. 10

Image 2: http://www.wikileaks.info/lifestyle/nightlife-in-paris/

Image 3: http://faculty.washington.edu/losterho/erp_tutorial.htm

Image 4: https://www.researchgate.net/publication/263156210_Nicotine_Impairs_Spatial_Working_Memory_while_Leaving_Spatial_Attention_Intact__Time_course_and_disruption/figures?lo=1&utm_source=google&utm_medium=organic