Have you ever watched a circus performer juggle for hundreds of people or a master chef expertly flip an omelet? Have you ever seen an elegant display of technique that takes some people years to master and thought to yourself: “yeah I think I can do that”? Well maybe you haven’t, but last week during our visit to the Musée de Chocolat, I had this experience.
Ok maybe not that exact thought process. In truth, when the master chocolatier asked the group: “ok who wants to try,” it was more along the lines of: “yeah, let’s see what happens.” As I took the triangles in my hands I really had no idea what I was doing, but after a small point of clarification, my hands started mixing the chocolate exactly how I had seen him do it. In fact it was going so well that he turned to me and asked: “have you done this before?” To which my reply was simply: “nope.”
The workshop continued in much the same manner where he would show us how to do a step in the chocolate making and I would reenact exactly what I had seen. Afterward I started wondering how a motion so complex could come so naturally to me.
A recent study has analyzed the role of the action observation network (AON), a network of sensorimotor regions in the brain, in the presence of familiar and unfamiliar actions (Gardner et al., 2015). The researchers asked the participants to watch a short video of dance moves and at the end of it, were asked to pick which of two options should follow in the sequence. The control group was asked to follow the dot sequence that was displayed on the same videos and afterwards had to choose which color was the last one pictured. For the duration of the test, participants were in an fMRI machine so that the investigators could record their brain activity. After the testing and recording, the participants rated the familiarity of the actions in the videos.
When Gardner and his colleagues examined the brain scans of each participant group, they found that the action-focused group showed greater activation in their motor cortices than the dot-focused group. Additionally, the more familiar tasks resulted in increased activity in the AON. The researchers then tested for the connectivity between the inferior parietal lobule (IPL), the middle temporal gyrus (MPG), and the inferior frontal gyrus (IFG) and from these tests developed a working model of how this system works in the presence of familiar motion stimuli.
The IFG and MTG receive input from the movement stimulus and relay this information back to the IPL. The connections between these three regions can also be modified by familiarity by a currently unknown pathway.
Now let’s return to my example of chocolate making (mmm… chocolate…). When I watched the professional chocolatier scraping the chocolate around the marble, the movement triggered the AON in my brain. Even though I had never performed this particular action, I have had many years of experience cooking and it is likely that this somehow contributed to the “familiarity modulation” the study discusses ultimately allowing me to make delicious chocolate with my friends.
-Kamin Bouguyon
References:
Gardner, T., Goulden, N. & Cross, E.S. (2015) Dynamic Modulation of the Action Observation Network by Movement Familiarity. The Journal of Neuroscience, 35, 1561-1572.