Author Archives: Monica Vemulapalli

Send Me Your Location

Les Français parlent rapidement à Paris. This translates to the French speak very fast in Paris. A major and obvious change since coming to France has been the language. After being here for a month, I feel as though I’m able to grasp more and more, especially since I’ve been learning French for a long time. However, I still encountered many difficulties such as people automatically speaking to me in English after realizing I’m not a native French speaker. On the other hand, even my friends, with little to no French background, have grasped some French and learned to communicate efficiently most places we go. Either by hearing phrases a lot or communicating with others by gesturing, the French and the Americans can communicate even with a language barrier. It occurred to me how even though the world has so many languages, humans can still communicate universally with one another. If humans can use language to communicate, does language exist in other species too? Well, it depends on how you define language.

A language world map

There are many ways to define it, which is why many scientists cannot agree on whether some animals have a “language” or not. Language is used for the “purpose of communication is the preservation, growth, and development of the species” (Smith and Miller 1968). If we use this definition, most animals have language because most animals communicate with each other. However, what makes human language unique is that humans have voluntary control of language, while animals use language instinctively (Hedeager 2010)

Another language-related skill unique to humans is vocal production learning (VPL), or the ability to change how and what we say in response to auditory inputs (Janik and Slater 2000; Petkov & Jarvis, 2012). Interestingly, VPL has also been shown to occur in two species of bats, Phyllostomus discolor (P. discolor) and Rousettus aegyptiacus (R. aegyptiacus).  Bats are known to communicate through a process called echolocation. Echolocation is the ability to use a biological, built-in sensor to navigate and detect objects. For example, a bat releases high frequency sounds to detect potential prays, and if the sound reflects back from the prey, then it uses this information to hunt. Humans can hear between 10 and 20,000 Hz, while bats detect low-frequency sounds of 1,000 to 200,000 Hz. Frequency is the number of wave cycles that a sound travels in a set time (Biointeractive 2019). Now that we know a little about how bats communicate, we can examine some language-related genetic similarities that are present between us and bats.

One particular study, Rodenas‐Cuadrado et al. (2018), found evidence that three genes, or parts of the DNA passed from parent to offspring, were found to be shared by both bats and humans. FoxP2, FoxP1, and CntnaP2 are well-known genes that are associated with human language (Abrahams et al. 2007). Mutations in the FoxP2 or FoxP1 genes can result in language impairments in children. Mutations in CntnaP2 is known to cause speech and language problems in autism, epilepsy, and intellectual disability (Rodenas‐Cuadrado, Ho, & Vernes, 2014).

R. aegyptiacus

P. discolor

Within the study, two species of bats’ brains were studied to determine how much of the three genes were expressed, or active, via immunohistochemistry, a technique to visualize proteins in brain slices (ProteinAtlas 2019).

P. discolor vs. R.aegyptiacus brains’ slice dissections

Red arrows point to the three language genes found in P.discolor and R. aegyptiacus

The researchers organized the results of the three genes found in the bats’ brains by brain region. FoxP2, FoxP1, and CntnaP2 were all found in the cerebral cortex, an area involved in cognitive function, or being able to process sensory output (Rodenas-Cuadrado et al., 2018). FoxP1 and FoxP2 both were abundantly present in the striatum of the brain (Rodenas-Cuadrado et al., 2018).  The striatum is involved in echolocation in bats (Tressler et al., 2011) and voluntary motor control in both humans and other species (Hikosaka et al., 2000). Another aspect that the researchers looked at was juvenile (2.5 months old) vs. adult (> 1-year-old) bats. They found that juvenile bats had more gene expression than the adults, which can tell us that the juveniles are still developing to enhance their communication and echolocation. A limitation would be the lack of looking at which brain areas are active when echolocation itself is occurring. This could possibly be done using a functional magnetic resonance imaging (fMRI) tool, where a scan detects certain brain areas activated based on oxygen flow. However, the researchers did examine multiple brain slices, which strengthens the claims where they demonstrate that the three genes are expressed.

FoxP2 in juvenile vs. adult P.discolor cerebral cortex

Seeing that this study by Rodenas-Cuadrado et al., (2018) examined how bats and humans share three essential language-related genes has made me think that bats and humans are more related than I originally thought! Most animals share a common ancestor who acquired these three language-related genes, but various factors and time brought many changes between species. However, knowing that bats share some language-related genes can open up research on bats and other species to explain how they communicate. Whether it be someone traveling to a foreign country where a different language than their own is spoken or bats using echolocation to communicate, communication is essential to life. Language can mean a lot of things, but in its most basic sense, we all share the process of communicating with one another.

 Bibliography

Rodenas-Cuadrado, P. M., Mengede, J., Baas, L., Devanna, P., Schmid, T. A., Yartsev, M., … Vernes, S. C. (2018). Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. The Journal of comparative neurology, 526(8), 1235–1266. doi:10.1002/cne.24385

Hedeager, U. (2010). IS LANGUAGE UNIQUE TO THE HUMAN SPECIES?.

Smith, F. and Miller, G.A. eds. (1968) The Genesis of Language – A Psycholinguistic Approach. 3rd ed. (1st ed. 1966). Cambridge Massachusetts and London: The MIT Press.

Rodenas‐Cuadrado P., Ho J., & Vernes S. C. (2014). Shining a light on CNTNAP2: Complex functions to complex disorders. European Journal of Human Genetics: EJHG, 22(2), 171–178.

Tressler, J., Schwartz, C., Wellman, P., Hughes, S., & Smotherman, M. (2011). Regulation of bat echolocation pulse acoustics by striatal dopamine. The Journal of experimental biology, 214(Pt 19), 3238–3247.

Hikosaka O, Takikawa Y, Kawagoe R. (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 80(3):953-78.

Janik V. M., & Slater P. J. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60(1), 1–11.

Petkov C. I., & Jarvis E. D. (2012). Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4, 12.

https://www.biointeractive.org/classroom-resources/how-animals-use-sound-communicate

https://www.nhs.uk/conditions/mri-scan/

https://www.proteinatlas.org/learn/method/immunohistochemistry

Language map from https://www.vox.com/2014/7/2/5862696/where-people-speak-what-languages

P. discolor bat image from https://www.smh.com.au/environment/conservation/scientists-investigate-the-weird-genetics-of-bat-wings-20160329-gnsnnf.html

R. aegyptiacus bat image from https://www.reddit.com/r/BatFacts/comments/2pt451/the_egyptian_fruit_bat_rousettus_aegyptiacus/

Last three images all from Rodenas‐Cuadrado et al. (2018)

Give Me A Smile, Mona Lisa!

To smile or not to smile? Was the “Mona Lisa” actually smiling in the painting that would become one of the most famous works of art? The Mona Lisa smile seems to be the heated debate of artists and surprisingly, scientists all over the world. Take a look for yourself and try to see if you see a smile or not.

The Mona Lisa (left) displayed at Musée du Louvre (right) in Paris

Well for me, I don’t see one when I look closely. This made me wonder why some people saw the smile, while others didn’t. To provide context for anyone who is unfamiliar with the Mona Lisa, it was painted by Leonardo Da Vinci from 1503-06. “Mona Lisa” is thought to be a depiction of Lisa Gherardini, a wife of a cloth merchant (Louvre.fr 2019). However, the rest of the information about the painting comes from the painting itself. Professor Florian Hutzler, a psychologist at the Centre for Neurocognitive Research in Salzburg, explains that Da Vinci used artistic techniques to create an optical illusion to trick the viewers into thinkingMona Lisa was smiling. If viewed face on, the smile appears neutral due to the soft shading of the colors but using your peripheral vision, a subtle smile appears from the merging of the brush strokes (Telegraph 2010). To understand why the Mona Lisa might be playing tricks on us, we must first learn how our brain perceives optical illusions.

A scientific study conducted in Japan examines how our brains are affected by looking at optical illusions. This study had participants perform a shape task, where they judged if 2 optical illusions were the same, and a word task, where they read aloud Japanese letters. While they were doing these tasks, they measured brain activity with an fMRI (Tabei et al. 2015). An fMRI is a tool that measures blood flow in the brain. We should keep in mind a limitation when working with fMRI imaging. fMRI only shows activation of different brain regions measured by blood flow. However, it does not show how the regions connect to each other. Nevertheless, let’s take a look at what the fMRI showed.

Three areas showed activation in the optical illusion task. The thalamus is a relay center that allows you to process the outside world. The inferior frontal gyrus (IFG) and the medial frontal gyrus (MFG) are both involved in resolving conflicting information, such as deciphering optical illusions (Tabei et al. 2015). The conflicting information, when we turn to The Mona Lisa, is whether she is smiling or not. Remember the next time you look at the Mona Lisa or any optical illusion, your brain is doing a lot more work than you think. So now that we know the science behind visual perception of an optical illusion, why is this optical illusion created in the first place?

Areas of the brain activated more in the optical illusion task (above) than without (below)

Some scientists say that the illusion is the result of facial asymmetry. Interestingly, face asymmetry is something Da Vinci himself might have known about and deliberately painted. He had in depth knowledge on facial musculature and movements, found in his notebooks (Adour 1989). In a neuropsychology study done by Marsili et al., this facial asymmetry explanation was studied. The researchers examined whether facial expressions and emotions are influenced by individuals looking at asymmetrical images. A concept that the researchers introduced as past evidence to support the face asymmetry theory is the Duchenne smile. A Duchenne smile simply means it is genuine and can be seen by upper face activation, also known as the wrinkles around your eyes (Ekman et al. 1990) Conversely, a non-Duchenne smile is non-genuine, where no wrinkles around the eyes are present, the next time you see someone smile, you can identify if it’s genuine or not! Looking at the Mona Lisa after learning this, I can see a non-genuine smile, which the researchers say shows facial asymmetry.

A Duchenne/genuine smile (left) vs. Non-Duchenne/non-genuine smile (right)

To further prove facial asymmetry results in the illusory smile, Marsili et al. asked 42 individuals to judge, by a confidence scale (0 none – 10 most confident) and reaction time, which of the six basic emotions was present on 2 chimeric images. A chimeric image takes two left or two right halves and mirrors them next to each other to form a face (see image below). 92.8% of raters indicated that only the left-left image can be used to confidently predict that she was smiling or happy. This led researchers to conclude that facial asymmetry does exist in the Mona Lisa, providing reason behind the illusory smile (Marsili et al. 2019). Additionally, if the researchers explored chimeric images of the eyes or the upper face, this could strengthen the categorization of the smile as non-genuine. However, Marsili et al. (2019) use their findings to imply that the Mona Lisa was not smiling after all, but the truth will remain a mystery.

c-Left-left chimeric image; d- right-right chimeric image

From the enigmatic smile to the ever-growing attraction that pulls visitors from around the world every day, the Mona Lisa will remain a fascinating object of Renaissance art to everyone. The Mona Lisa smile has been the center of scientific studies, the focus of artists and art historians, and the general public. Learning about the science behind the painting and how one painting’s detail can transform the art-viewing experience intrigues me. After my research on the Mona Lisa, I still feel that the debate will continue. While we may never know the true historical and scientific thought behind Leonardo da Vinci’s art piece and if the woman in the Mona Lisa was actually smiling or not, we can definitely say that our brains are hard at work.

 

References

K.K. (1989). Adour Mona Lisa syndrome: Solving the enigma of the Gioconda smile. The Annals of Otology Rhinology and Laryngology, 98, pp. 196-199

Marsili, L., Ricciardi, L., & Bologna, M. (2019) Unraveling the asymmetry of Mona Lisa smile Cortex; doi: 10.1016/j.cortex.2019.03.020

Bogodistov, Y., & Dost, F. (2017). Proximity Begins with a Smile, But Which One? Associating Non-duchenne Smiles with Higher Psychological Distance. Frontiers in psychology8, 1374. doi:10.3389/fpsyg.2017.01374

Ekman P., Davidson R. J., Friesen W. V. (1990). The Duchenne smile: emotional expression and brain physiology: II. J. Pers. Soc. Psychol. 58 342–353. 10.1037/0022-3514.58.2.342

Tabei, K., Satoh, M., Kida, H., Kizaki, M., Sakuma, H., Sakuma, H., & Tomimoto, H. (2015). Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study. PloS one10(6), e0128750. doi:10.1371/journal.pone.0128750

Spillmann L, Dresp B. (1995). Phenomena of illusory form: can we bridge the gap between levels of explanation? Perception.;24(11):1333–64.

Thibault, M. Levesque, P. Gosselin, U. Hess (2012). The Duchenne marker is not a universal signal of smile authenticity—but it can be learned! Social Psychology, 43 (4), pp. 215-221

“Work Mona Lisa – Portrait of Lisa Gherardini, Wife of Francesco Del Giocondo.” Mona Lisa – Portrait of Lisa Gherardini, Wife of Francesco Del Giocondo | Louvre Museum | Paris, www.louvre.fr/en/oeuvre-notices/mona-lisa-portrait-lisa-gherardini-wife-francesco-del-giocondo.

“Mona Lisa Smile Created Using ‘Trick’.” The Telegraph, Telegraph Media Group, 15 Mar. 2010, www.telegraph.co.uk/culture/art/art-news/7450451/Mona-Lisa-smile-created-using-trick.html.

Image of Mona Lisa from louvre.fr

Image of Musée du Louvre taken by me

Image of fMRI from Tabei et al. 2015

Image of Duchenne smiles from Bogodistov et al. 2017

Last image from Marsili et al. 2019

Does Losing One Sense Heighten the Others?

The old, classic French architecture with the intricate balconies, the array of colorful pastries in the local pâtisserie (pastry shop) and boulangeries (bakery), and the breathtaking views of the Eiffel tower all encompass the city of Paris. Living in such a bustling and scenic city for the summer, I am fortunate enough to use all five of my senses to experience and embrace the French culture. Our vision allows us to experience colors, shapes, sizes, and more. While exploring  Paris, I was surprised to see quite a few blind people using the metro. I wondered how they learned to navigate their way around the Parisian metro system and life itself in such a visually stimulating city.

A common architectural style I’ve seen throughout

Some say that because blind people have lost their sense of vision, their other senses are heightened. Is this really true? Well to first understand how they use their other senses; we first have to understand what causes blindness. Blindness can be the cause of damage in various parts of the visual pathway, starting from the eye and ending at the visual cortex in the back of the brain within an area called the occipital lobe.

Audition, or the ability to hear and listen, helps us communicate with another, but also enjoy sounds like music. The rush of the metro coming and leaving, the bouts of sound signaling the doors to close, and the screeching against the tracks when it’s moving all encompass the experience of riding on the Paris metro system. One study looked at whether early blind adults have a better ability to detect pitch, a characteristic of the auditory cortex in the temporal lobe of the brain. 15 blind participants and 15 controls participated and were asked to discriminate thresholds of speech and non-speech stimuli (musical instruments and tones). The results show that the blind participants were able to discriminate thresholds better than thresholds. Interestingly, within the normal controls, the older the participants, their threshold of detection increased. However, the same effect didn’t occur in those who were blind, meaning that their threshold of detection didn’t increase as one would expect with age. (Arnaud et al 2018)

Now let’s switch senses and examine gustation or taste. Everyone I’ve seen in France has a unique love and great attachment to food. The four, five-hour meals, the array of pastries, and the complexity into their simple dishes constitute the Parisian dining experience. One particular study found that during gustation, congenitally blind participants showed weaker activation in the primary taste cortex compared to controls. The researchers also found that in the blind, the occipital cortex, the main area to process vision, was not used during taste processing, a contrast to controls. The researchers hypothesize that this is because blind people are underexposed to a large variety of tastes, explaining their lower activation. (Gagnon et al 2015)

The classic lineup of pastries in a pâtisserie in Paris.

What about olfaction? The smell of freshly baked baguettes is a classic staple when one walks into the boulangeries of Paris. The process of olfaction, or the sense of smell, starts with the molecules in a smell activating odor receptors in the nose. This connects to neurons in a part of your brain called the olfactory bulb and up to the olfactory cortex, where the smells are registered and processed into your memory. This was explored in a study where they showed that the blind showed better results in odor discrimination and odor threshold tasks than their control counterparts. However, both groups had shown no difference in identifying the odors. An additional aspect of this study they looked at was whether there was a difference in identifying smells in between congenital and acquired blind subjects. The results showed that there was no difference in the data between the two groups. (Comoglu et al 2015)

The areas of the brain involved in perceiving our senses.

The final sense that we will examine is touch. Sensory receptors detect and send back information to the brain, specifically to an area called the primary somatosensory cortex. Was the perception of touch enhanced in those that were blind? A group of researchers investigated whether visual judgments made by touch differed in those who were blind compared to controls. All of the participants rated different materials by touching and identifying them. In this study, the researchers found that there was no difference between those who were blind and controls in terms of identifying or categorizing them. (Baumgartner et al 2015)

The 70 different materials or touch stimuli that the participants had to identify

Now that we explored all the senses, we can come to a conclusion that although blind people have adapted with using their other senses, only some senses have proved in specific studies to be heightened in those individuals. Taste, smell, and audition are shown to have better discriminatory thresholds versus normal participants, but touch does not show any difference between the blind and normal participants. However, we must keep in mind that blind people also seem to compensate with their other senses, which a lot of researchers have addressed as the reason for their “heightened” perception. All of our senses deserve importance and personally, my time in Paris has made me appreciate every new experience that I come across.

Bibliography

Arnaud L, Gracco V, Ménard L. Enhanced perception of pitch changes in speech and music in early blind adults.Neuropsychologia. 2018 Aug;117:261-270. doi: 10.1016/j.neuropsychologia.2018.06.009.

Gagnon L, Kupers R, Ptito M. Neural correlates of taste perception in congenital blindness. Neuropsychologia. 2015 Apr;70:227-34. doi: 10.1016/j.neuropsychologia.2015.02.027.

Çomoğlu Ş, Orhan KS, Kocaman SÜ, Çelik M, Keleş N, Değer K. Olfactory Function Assessment of Blind Subjects Using the Sniffin’ Sticks Test. Otolaryngol Head Neck Surg. 2015 Aug;153(2):286-90. doi: 10.1177/0194599815583975.

Baumgartner E, Wiebel CB, Gegenfurtner KR. A comparison of haptic material perception in blind and sighted individuals.Vision Res. 2015 Oct;115(Pt B):238-45. doi: 10.1016/j.visres.2015.02.006.

First two photos taken by myself

Image of brain- http://www.d.umn.edu/~jfitzake/Lectures/DMED/SensoryPhysiology/GeneralPrinciples/Figures/SensoryCortex.jpg

Image of materials from Baumgartner et al 2015

So You Think You Can Dance: Paris Edition

A hip-hop dance battle wasn’t on my list of places to go or things to do in Paris. But after watching my first live hip-hop dance performance, I can say that I don’t regret it one bit. As a dancer myself, I admire watching dance performances because I’ve been in their footsteps. However, the dance I do, which is called raas, a classical Indian dance where we spin dandiya sticks, is drastically different from hip-hop. Or so I thought…

Our team dancing at one of the competitions we attended.

The hip-hop battle, called Onze Bouge, which translates to 11 moves, took place at Place Léon Blum on a Saturday night. When we got there, the dance battles already started, and we squeezed into the crowd to watch. Right next to the speakers, I felt my heart pounding but watching the dancers reminded me of when I was on stage, dancing in front of hundreds. However, even with the stress of competing in front of others, I always thought of dancing as a stress reliever. Interestingly, there has been research conducted on the role of dance reducing some types of stress. In one study, researchers looked at how dance or movement training (DMT) in older adults influenced their cortisol, a well-known stress hormone. They found that the DMT group compared to the control group, the adults that didn’t do any DMT, had lower cortisol post training. (Vrinceanu et al 2019)

Another similar study had the same group, DMT, but the researchers studied the effect of dance and movement on declining cognitive abilities and depressive symptoms. The sample of older adults was randomly organized into DMT, exercise, or control groups. The main findings were that DMT significantly decreased depression, loneliness, and negative mood while improving daily functioning and cortisol levels. These findings suggest that dance can be a therapy for older adults to improve daily functioning in aspects where depression and stress might impact them. (Ho et al. 2018) I, for one, know that I definitely feel my mood lighten and my stress levels subside after dance practice.

Dancers’ brains were also active when watching other dance performances more than non-dancers’ brains. A study states that dancers’ brains did differ in function and structure, but only in areas where the dancers’ used their brains more. Their results showed that dancers themselves had activated an area of the brain called an action observation network (AON) more than non-dancers when viewing dance. The AON is a network of brain regions that are involved in motor and sensory skills. (Burzynska et al 2017)

The areas of the brain that were active in dancers watching other dancers perform.

Other than the connection between the brain and dance, another fascinating characteristic I noticed that overlapped between the battle and my experience with raas competitions was the judging. Some of the stress, or at least the stress I experience, comes from this aspect of competing. However, I tend to notice that the judges tend to usually pick the teams with the most elaborate steps or at least the steps that look externally impressive, which intuitively makes sense. And there’s science behind it to prove this. A study looked at hip hop dance and how expert vs. non-expert dancers’ range of motion influenced the judges’ scores. The researchers found that the range of motion of the dancer’s body was highly correlated to a higher judging score, stating that scores are usually based on outwardly appealing elements. The (Sato et al. 2016)

A young hip-hop dancer performing a move that requires a high range of motion.

Based on all these research studies on dance’s impact on people’s bodies, brains, and how it influences the judges, I was surprised to find that dance has been a popular topic in a lot of science research! As a dancer and someone who loves watching dance performances, I was intrigued by all the science on how dancing impacts your brain and body. France is a center for all things artistic from dance to paintings to architecture. Getting to watch dance in Paris was unexpected but rewarding because I got to experience a taste of hip-hop in France. However, I learned that, for me, dance is universal, and whether it’s in Paris or Atlanta, dance has its appeal all around the world.

References

Vrinceanu T, Esmail A, Berryman N, Predovan D, Vu TTM, Villalpando JM, Pruessner JC, Bherer L. (2019) Dance your stress away: comparing the effect of dance/movement training to aerobic exercise training on the cortisol awakening response in healthy older adults. Stress. :1-9.

Ho RTH, Fong TCT, Chan WC, Kwan JSK, Chiu PKC, Yau JCY, Lam LCW. (2018) Psychophysiological effects of Dance Movement Therapy and physical exercise on older adults with mild dementia: A randomized controlled trial. J Gerontol B Psychol Sci Soc Sci.

Sato N, Nunome H, Ikegami Y. (2016) Key motion characteristics of side-step movements in hip-hop dance and their effect on the evaluation by judges. Sports Biomech. 15(2):116-27.

Burzynska, A. Z., Finc, K., Taylor, B. K., Knecht, A. M., & Kramer, A. F. (2017). The Dancing Brain: Structural and Functional Signatures of Expert Dance Training. Frontiers in human neuroscience11, 566. (2nd image from figure within article)

Watson, Galadriel. “Dancing Hones Your Body, But What Does It Do to Your Brain?” Dance Magazine, Dance Magazine, 30 Jan. 2018, www.dancemagazine.com/dancers-brains-2523641417.html.

First and last images were taken by me