Monkey See, Monkey Do

Thinking back to fifth grade field trips, the long lines, the sweltering hot Louisiana sun, and the teachers who thought that the visit would be the pinnacle of fifth grade achievement, I became accustomed to disliking trips to public places like zoos, museums, aquariums, etc. That being said, I never would have imagined finding myself paying 16.50 euros to go to a zoo here in Paris—yet there I was last Saturday, in that very position. Little did I know that that trip would become one of the most memorable ones of my first week in Paris.

Photo Courtesy of Google Maps

 

Parc Zoologique Sign

 

It all started when I met Bruce, a zebra in the zoo who I decided to name myself. There I was–staring at two especially unexciting rhinos and wondering to myself whether there were any animals in this zoo that did anything other than sleep through the day–when, as if on cue, Bruce appeared out the brush and proceeded to feast on a nearby tuft of grass. He was almost close enough to touch, the intricate patterning of his dust-covered black and white stripes catching my eye. Never in my young adult life would I think that I would be so excited to see a zebra, but there I was, gasping and aweing with the eight-year olds beside me.

Bruce and I

 

Bruce wasn’t the only new friend I made that Saturday afternoon. I had yet to see my favorite exhibit—the baboons. As I approached, the first thing I noticed was the large number of people watching from the viewing platforms. This must be a good one, I thought to myself. As I peered through the enclosure, I was surprised by their cacophonous action. There was always some baboon doing something hilarious somewhere in the cage—one chewing on some type of plastic, another swinging from tree to tree, yet another sitting up straight—quite peculiarly with its hands folded in its lap and looking like an old-time English professor.

 

The English Professor

However, I quite literally believe I got stars in my eyes when I caught sight of a newborn baboon with its mother. The baby—I named him Johnny—climbed on its mother’s back for a piggyback ride to the watering hole. When they arrived, Mom sat down, whipped Johnny around to her front side (her back to the viewing platform) and began breastfeeding. Soon enough, two other mothers arrived and started breastfeeding their babies, until there was a ring of nurturing mothers and their children. I was struck by the similarities in these baboons to human mothers—the way they cradled their children, the way they stroked their newborn’s fur as the baby suckled, the protective sidling of the mother whenever a male encroached into her area—with every minute I watched, I could see why these were our closest animal relatives.

Mothering Baboons

 

Being the budding neuroscientist that I am, I started to consider the brain mechanisms for this behavior. In almost every animal species, mothers innately care for their young—this obviously makes sense in an evolutionary perspective, but what are the brain mechanisms for this behavior? What motivates it? What is the neuroscience behind it all?

An article by Kikuchi et al. (2015) addresses the neuroscience of maternal love. The experiment was designed to look at the brain activity of young mothers when viewing video clips of their 16 month old infants showing attachment behaviors. Mothers in an fMRI were shown either a clip of their infant smiling at them while they played together (play situation—PS) or of their infant being in distress when the mother left the room (separation situation—SS). The researchers hypothesized that the parts of the brain mediating maternal behavior would be more activated when the infant was in distress (SS) than when the infant was not (PS). After the fMRI, mothers were asked to rate their subjective feelings (happy, motherly, joyful, warm, love, calm, excited, anxious, irritated, worry, and pity) in response to video clips in PS/SS of their own infants and of other infants.

So, what did the researchers find? There were four brain regions found to be specifically involved in feelings of motherly love: the right orbitofrontal cortex (OFC), the anterior insula, the periaqueductal gray (PAG), and the striatum. After identifying these brain regions, researchers then had to interpret what these results actually meant. Essentially, the OFC and the striatum are involved in the dopamine reward system, which would involve the mother’s motivation to care for her infant. The OFC, insula, and PAG are involved in an information processing system mediating homeostatic emotions for the mother and the realization of motherhood itself. Since the OFC is involved in both systems, it is thought to play an important role in mediating between the two.

Activated regions from Kikuchi et al.

Schematic of brain activation from Kikuchi et al.

 

After all was said and done, researchers found that mothers did, indeed experience higher brain activation in SS than in PS. As subjective ratings of worry increased in the SS, activity in the right OFC increased. Good to know that mom cares.

What’s great about this article is that it provides a simple and straightforward model of measuring brain activation of mothers in response to their babies. It asks the mothers’ subjective feelings in addition to the neurological aspects. However, it can also be said that this method might be too straightforward—mothers are undoubtedly faced with more than two situations of maternal love and attachment. Perhaps in the future, the authors could consider approaching a more complicated model—one with more situations like a feeding or a stress situation. Also, it is definitely a challenge to quantify love in a scientific aspect as these article attempts to do—perhaps it might be too poetic for such a field.

Poetic or not, there is an undeniable beauty in the way a mother cares for her child—whether that mother is human, baboon, or zebra. Either way you look at it, Johnny the baboon is certainly well accounted for.

 

-Ngozi

 

Yoshiaki Kikuchi et al. (2015) The Neuroscience of Maternal Love. Neurosci Common 2015; 1: e991. doi: 10.14800/nc.991.

Photos taken by yours truly.

 

 

Not Being Able to Smell Really Stinks !

Bonjour, tout le monde! I’m having a wonderful time in Paris. Classes have been in session for almost two weeks now, and my classmates and I are having a great time learning both in and out of the classroom. This afternoon, for example, we visited Le Grand Musée du Parfum (The Grand Perfume Museum).

Front entrance of the museum

Rachel and Alicia smelling some fancy perfumes!

This museum does a wonderful job at explaining the intricacies of all things perfume! On the ground floor we were welcomed with audio guides in English. They were a huge plus because my French knowledge is very elementary. The basement floor had multiple rooms that explained the history of perfume. From medicinal qualities, like 17th century plague doctors using aromatic vinegars to protect themselves against contagions, to ceremonial scents, like ancient Egyptians bathing Cleopatra with sacred oil blends in 1st century BC, this floor had countless historical stories about perfume. The top floor is dedicated to the art of the perfumer. It contains multiple rooms that play video loops of perfumers explaining their artistic vision and how they’re inspired to create new perfumes every day.

Ground level of the museum

The remaining floor is all about sensory immersion. There are several little tests visitors can take to understand the role of olfaction in their day-to-day lives. Interactive “Fragrance Games” as well as a “Sensory Garden” make this floor both entertaining and enjoyable for most. Sadly, I was not very entertained. I wasn’t able to participate in the interactive games, and I didn’t enjoy this floor as much as the others. This is because I have hyposmia.

Hyposmia is a condition that means you can’t detect odors as well as the average person. It’s a milder form of anosmia, or inability to smell. When I was 17 years old, I was in an accident that left me with a fractured skull and a severe traumatic brain injury, or TBI. I’m totally fine now, four years later, except I still have a hard time smelling the world around me. Wondering how a TBI could possibly affect someone’s ability to smell? Let me explain.

Here’s a simplified explanation of olfaction. Your olfactory bulb, the main part of your brain responsible for processing odors, is located at the bottom part of the frontal lobe of your brain. It has many connections to higher brain areas to process smells and associate them with memories and emotions. Your nasal cavity has a mucous membrane that contains odor receptors on olfactory neurons that travel through a bone in your skull called the cribriform plate to communicate with your olfactory bulb.

In a head injury, a “coup” occurs at the site of the impact with the object. So, as shown in the picture, if someone hits the front of their head hard enough against a wall, their brain will suffer from a coup injury at the front of their brain. A “countrecoup” injury occurs at the site opposite the impact. So, in the same example, the person would experience a “countrecoup” injury at the back of their brain. This rough, abrupt movement causes the cribriform plate to sever some or all olfactory neurons, depending on the severity of the impact. This movement breaks the connection to the olfactory bulb, causing anosmia. My neurologist first described the process to me as a cribriform plate being sort of a like a cheese grater with olfactory neurons threaded through it. He told me that when my accident happened, my cribriform plate shredded my olfactory neurons like cheese. Yum! Before leaving the hospital with this delicious yet sad image, my doctor gave me a bit of hope. He told me that olfactory neurons are one of the only ones in the human body that have the natural capability to regenerate! Despite my wishful thinking, it has been four years now since my injury, and I have very little to no perception of smell. So I have to wonder: is it really true? Will I really be able to smell again someday? I did a little PubMed searching, and here’s what I found.

Researchers at Boston University recently did some research to learn more about regenerated olfactory neurons and their ability to function properly. Previous studies have shown that olfactory neurons do, in fact, have the ability to grow back, or regenerate (Schwob, 2002). The more important aspect of regaining smell, though, is where these neurons reconnect to the olfactory bulb.

If neurons don’t reconnect to the right areas of the brain after damage, then your perception of what you’re smelling would be off. The receptors from your nasal cavity have to link up with the exact area of your brain to tell you what you’re smelling. This process is kind of like an operator making sure an incoming call is directed to the right person. You don’t want to be connected to your Aunt Beth if you’re really trying to call your best friend. Similarly, if you smell something like chocolate, that neuron needs to connect to the area in your brain responsible for perceiving the smell of chocolate.

Dr. Cheung and his colleagues recently conducted a study to find out whether or not regenerated olfactory neurons are able to connect to their corresponding area of the brain. In order to do this, they used mice whose olfactory bulbs glow when activated. This allowed researchers to map where in the brain new olfactory neurons reconnected to after damage. They used an odor that is toxic to olfactory neurons to damage one side of the brain of the mice. Then, after a period of time for the mice to recover from the damage, images were taken of their brains after exposure to different odors. These images allowed for researchers to see where the neurons that regenerated during the recovery period connected to the brain.

They found that when comparing the unaffected hemisphere of the brain and the recovered one, similar areas of the olfactory bulb were activated in response to multiple odors. This means that when neurons in the damaged hemisphere regenerated, they were able to connect to their respective areas of the olfactory bulb. However, they also found that more significant damage limits the renewing ability of olfactory nerves. Severely damaging the olfactory neurons and the nasal tissue they originate in caused scarring of this tissue. Because of this, there was almost no activation in the damaged hemisphere in response to odorants even after a full recovery period. This means that in severely damaged brains, not only did regenerated neurons not find their way back to their targeted areas of the olfactory bulb, most of them didn’t regenerate at all (Cheung et al., 2014).

My new friends helped me pick out a new perfume!

I really appreciated the way this study was conducted. Instead of being satisfied with their results in the first part of their study, Cheung and his colleagues went one step further to see if severe damage would have a greater effect on neuron pathway restoration. I would like to have seen them try a method of physically damaging the neurons, like severing them, in one group as well as chemically damaging them. I wonder if the physical damage would produce results that are more similar to the severely damaged group.

So, would the damage to my olfactory neurons from my TBI be classified as severe? Will my olfactory neurons ever regenerate and find their rightful place connected to my olfactory bulb? Or is the only reason I can detect smell even a little bit due to only a few of my olfactory neurons regenerating? Unfortunately, I can’t answer any of these questions with one hundred percent certainty. Hopefully further research in this area will help me with these answers. Until then, I guess I’ll just stick to visually interactive museums instead of smelly ones and continue to let my friends help me pick out perfume.

Despite not being able to participate in the fun games on the first floor, I had a really great time at Le Grand Musée du Parfum! If you’re ever in Paris, you should totally visit.

Le Grand Musée du Parfum’s location in Paris

References:

Cheung MC, Jang W, Schwob JE, Wachowiak M (2014) Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb. Frontiers in Neural Circuits. 7: 1-16.

Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat. Rec. 269: 33-49.

Pictures from the museum were taken by myself.

Pictures illustrating coup/countercoup injuries and the olfactory bulb were taken from Creative Commons.

Map section was taken from GoogleMaps.

The Bridge Between Recollection and Inception

Dear family and friends,

The priority I set for myself in coming to Paris (besides academics of course, duh!) is sightseeing. This is my first time in Paris, which means every turn I take is a new location I have yet to explore. Thus, even with the unwelcome addition of jet lag and travel-induced dehydration I have already visited several attractions . Notable mentions include the Eiffel Tower, the Galeries Lafayette, the Arc de Triomphe, and the Notre Dame Cathedral. However, the most exciting place I have visited is one you may not recognize – a bridge named Pont de Bir-Hakeim. While I know absolutely nothing about the walkway’s historical significance, I do know one very important detail. It is the bridge that Leonardo Dicaprio and Ellen Page march across in Christopher Nolan’s 2010 blockbuster film Inception. By now you have probably figured that when I say “exciting” it is almost entirely subjective. Nonetheless, the bridge is quite picturesque and presents a great view of the Eiffel Tower.

 

View of the Eiffel Tower from Pont de Bir-Hakeim

 

Pont de Bir-Hakeim

When I first saw the bridge I was a few hundred meters away. It immediately looked familiar to me; however, I could not place in my memory where I had seen it before. After several minutes of contemplation: poof! Memories flooded my mind of the scene in Inception and the joy I felt after watching the film ten times. I was so delighted that I moved the bridge to the top of my to-do list and visited it several days later with some friends. My successful recollection got me thinking – how could I recognize the bridge before remembering specific details about it? It turns out neuroscience has an answer!

 

Standing in Leo’s footsteps (Photo by Chandler Lichtefeld)

To start, recognition memory is formally split into two categories: recollection and familiarity. Both occur in response to a previously experienced stimulus e.g. an event, person, or object. Recollection describes a person’s ability to retrieve specific details about the previously experienced stimulus. Familiarity is one’s feeling that the stimulus was previously experienced, without retrieval of explicit details. To simplify, think of recollection as “remembering” and familiarity as “knowing.” Recently, a group of researchers set out to clarify the neural correlates of each recognition process. Led by Dr. Jeffrey Johnson at the University of Missouri, researchers used functional magnetic resonance imaging (fMRI) to measure the brain activity of 20 participants during a memory task (Johnson et al. 2013). This memory task consisted of two parts: an encoding phase and a retrieval phase. During the encoding phase, word stimuli were presented visually to the participants. Words denoted single objects such as tools, animals, and food. Participants memorized the words by either putting them in a sentence (sentence condition) or associating their physical manifestation with an outdoor scene (scene condition). Basically, the encoding task required participants to use different methods to (hopefully) remember word stimuli. Next, the retrieval phase tested the participants’ ability to remember the previously presented word stimuli. Here, old word stimuli from the encoding phase and new word stimuli were presented on a neutral background. During presentation of words, participants could answer in several ways. Answering “R” meant that the subject remembered details about the word i.e. they remembered the sentence they made or the scene with which the word was associated. Therefore, answering “R” indicated that the subject could “recollect” details about the previous word. If unable to remember details, participants answered based on their confidence that the word was old or new. For example, answering with ”confident old” indicated that the subject was only “familiar” with the word.

So… what did the results show?

According to the imaging data, recollection-driven recognition activates different brain areas than familiarity-driven recognition. In other words, the mental processes behind recollection (remembering) are different than that of familiarity (knowing). Specifically, recollection (when participant sanswered “R”) activated the angular gyrus, left ventral parietal cortex, retrosplenial and posterior cingulate cortex, ventromedial PFC, bilateral hippocampus, and the bilateral posterior parahippocampal cortex. On the other hand, familiarity (when participants answered with “confident old”) activated the left intraparietal sulcus, precuneus, anterior cingulate, and dorsolateral PFC (Wow – that is a mouthful). Thus, according to this group’s rationale, it would seem that my initial recognition of Pont de Bir Hakeim was due to unique “familiarity” brain circuitry. As soon as I remembered details about the bridge, my “recollection” brain areas activated and brought forth memories of the movie’s bridge scene. Cool stuff, no?

 

Neural correlates of familiarity and recollection

 

 

 

 

 

 

 

Although the researchers failed to present some behavioral data due to too few trials, I thought that this study was well designed overall. They used copious background studies to support the rationale for their experimentation and produced results that clarify our current understanding of recognition-based memory. An interesting next step might be to examine latency time between familiarity and recollection in cases where one eventually remembers why a stimulus is familiar. Perhaps then I could understand why it took me a few minutes to recollect the bridge!

 

Until next time,

Christian

 

References

Johnson JD, Suzuki M, Rugg MD (2013) Recollection, familiarity, and content-sensitivity in lateral parietal cortex: a high-resolution fMRI study. Front Hum Neurosci 7:219.

All pictures were taken by myself and Chandler Lichtefeld (The picture of Leonardo DiCaprio and Ellen Page is a screenshot from my iTunes copy of Inception)

The brain activity figures were taken from the primary article by Johnson et al.

The Baby Schema Scheme

Coming off the Metro on my first day in Paris, one of the most immediate sights was that of a woman and her two children sitting on the ground and holding a sign that read, “famille Syrienne”. Throughout the rest of the week, I saw countless homeless people and families, many with children under the age of three. Not only did the homeless often have children, but a large amount also had one or two dogs. While walking to class one day, I even saw a man with a puppy that couldn’t be over two months old. This sparked a question in me- does the appearance of a baby or puppy increase the chance of charitable giving from others?

Figure 1: Homeless Syrian woman with her baby

I believe most people would think the answer to that question is obvious; if given the option to donate to homeless person with a baby or a homeless person without, the logical decision, in terms of effectiveness of the donation, would lean towards the family. However, if we put aside logic-based decision making and focus on spur-of-the-moment choices, would having a baby or puppy make a difference?

Before I did research on experiments from the past, I conducted my own small observational study. At the Bastille Métro Station (Figure 2), I observed the number of people who gave money to both a woman with a baby (Figure 1) and a woman without for five minutes each. Out of 63 people who passed adjacent to the woman with a baby, 4 gave her change, for a percentage of 6.35%. Out of 56 people who passed adjacent to the woman without a baby, only 1 person gave change, for a percentage of 1.79%. Although this observation cannot be statistically analyzed to imply much, as it was a very short study with very few variables controlled, it seems as though the presence of the baby had helped to increase the chance of a donation.

Figure 2: Location of Bastille Station in Paris

In order to find out more information on the neurobiological processes involved in this difference, I read through a study performed by Glocker et al. (2009) on how the “baby schema” modulates the reward system in nulliparous women (women who have never given birth). The baby schema is the physical features of babies, such as a round face and big eyes, that motivates caretaking behavior and attracts attention. This short article modified different aspects of baby schema and observed the levels of activation in associated brain regions in 16 women in their twenties. Glocker et al. hypothesized that an increase in the baby schema “cuteness rating” would cause an increase in blood oxygenation level-dependent (BOLD) fMRI brain activity in the mesocorticolimbic system, which is comprised of the dopaminergic midbrain, nucleus accumbens, amygdala, and ventromedial prefrontal cortex.

Figure 3: Examples of high, unmanipulated, and low baby schema faces used in the study by Glocker et al.

Using adjusted images of infant faces, such as in Figure 3, they found a linear increase in activation due to baby schema in the left anterior cingulate cortex, left precuneus, left fusiform gyrus, and right nucleus accumbens (Figure 4). The researchers then went on to discuss their findings in relation to the functional properties of these regions, specifically the nucleus accumbens, precuneus, and fusiform gyrus.

Figure 4: (A) Results of fMRI BOLD testing by Glocker et al. Areas of interest include left anterior cingulate cortex (ACC), left precuneus (PCu), left fusiform gyrus (FG), and right nucleus accumbens (NAcc). (B) Increases in BOLD percent signal change due to increased baby schema.

They described the nucleus accumbens as being linked to reward-based behavior, and that its activation could release approach behavior towards infants. In addition, the nucleus accumbens is a part of the striatum, which has been associated with processes such as mutual cooperation, charitable donation, and social bonding. The activation of this region due to seeing a baby’s face could influence women into donating money. Another brain region of interest was that of the precuneus, which is commonly associated with attention, suggesting that baby schema brings and holds attention to an infant’s face. Finally, the fusiform gyrus plays a large role in facial perception, and may encode baby schema features to send along to the nucleus accumbens to appoint motivational value.

Overall, the study does a good job in identifying the regions of brain that are sensitive to baby schema. However, it was limited to women in their twenties who have never given birth. This category of people is only a small percentage of those who encounter homelessness, so it doesn’t fully answer my question. Despite its limited conclusions, Glocker et al. discusses how other studies have shown that, while women most likely are more responsive to the baby schema than men, they both process it similarly.

Although this article was informative on the effects of the human baby schema, I was interested in the subject of puppies as well. So, I read an article titled “Sweet Puppies and Cute Babies: Perceptual Adaptation to Babyfacedness Transfers across Species” by Golle et al. The researchers used a perceptual adaptation paradigm to test whether the evaluation of cuteness is species-specific or exists across multiple species. Their first experiment involved subjects rating 78 babies’ faces on a scale of 1-6. The 5 least cute and cutest babies were used as “adaptor” stimuli. All remaining faces were individually paired (one cute and one less cute) and morphed together. The subjects were then tested in three respective parts: rating the morphed faces in cuteness, looking at the adaptor faces carefully, and then rating the morphed faces again. In general, the subjects rated the babies as cuter during the second round of rating, after the adaptation phase. From this, it can be reasoned that the brain grows accustomed to a range of cuteness. During a second experiment, the researchers tested if a similar adaptation can occur when shown faces of dogs.

Figure 5: A homeless man with two dogs in Paris

Using the same procedure, but swapping the human infant adaptor stimuli with cute and less cute puppy faces, Golle et al. found that the adaptation of puppy faces similarly influenced the perception of baby faces to have an increased cuteness value during the second round of rating. From this data, the researchers concluded that facial cuteness adaptation transfers across species and induces the same “cuteness decoding” process (a.k.a. the effects of the baby schema found in the first study). They gather that human beings have a general instinct to take care of newborns of the same or different species- a desire that stems from the cuteness of the baby.

Figure 6: My dog, Buddy. What cuteness rating would you give him?

From these two studies, it can be concluded that both babies and puppies’ cuteness causes an activation in certain areas of the brain associated with caretaking, attention, and charitable giving. This in turn can lead to an increased influx of donations towards homeless with young children or dogs compared to those without. So, next time you give money to a homeless family, what might seem to be a simple altruistic decision might actually be a series of complicated facial analysis!

References:

Glocker ML, Langleben DD, Ruparel K, Loughead JW, Valdez JN, Griffin MD, Sachser N, Gur RC (2009) Baby schema modulates the brain reward system in nulliparous women. Proceedings of the National Academy of Sciences of the United States of America. 106(22):9115-9119.

Golle J, Lisibach S, Mast FW, Lobmaier JS (2013) Sweet puppies and cute babies: perceptual adaptation to babyfacedness transfers across spepcies. PLoS ONE 8(3):e58248

Figures 1 and 6 were taken by me

Figures 2 and 5 were obtained from a search in Creative Commons:

Figure2: https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Paris_department_land_cover_location_map.svg/2000px-Paris_department_land_cover_location_map.svg.png

Figure5: https://upload.wikimedia.org/wikipedia/commons/a/a6/Homeless_puppies%2C_Paris%2C_October_2008.jpg

Figures 3 and 4 were taken from the study by Glocker et al.

There’s Nothing Like the Smell of Home

Photo of the metro

About two weeks ago, I arrived very jet-lagged in Paris and couldn’t wait to explore the city. I wanted to take it all in – the sights, the sounds, and the smells. We hit the ground running during our first evening in Paris and rode the metro to the Eiffel Tower. As we waited in the metro station, I realized that I recognized the exact smell of the station. The dusty, metallic smell of the metro brought back many fond and vivid memories during my childhood where I often rode the metro in Toronto. I began to wonder why the smell of the metro brought back such vivid, emotional memories that happened over 10 years ago.

Balls at the museum that emitted smells when you picked them up!

Fast forward to several days ago, I experienced something similar in the Musée du Parfum (perfume museum). It is an amazing museum that is filled with lots of perfume and strong scents that we were able to sniff! One of the scents that stood out to me smelled just like a campfire. Similar to my metro experience, the strong smell of the burning wood brought back many great memories of roasting marshmallows around a bonfire at camp every year.

Fragrant roses at the museum

 

 

In the courses that I’ve taken as an NBB major, I have learned about the separate pathways in the brain that are active during olfaction, memory retrieval, and certain emotional responses. Interestingly, I have not yet learned what happens when those pathways interact like when an emotional memory is retrieved from an odor. I wanted to delve deeper and learn more about what is happening when memories and emotions are retrieved from odors.

Olfactory Pathway Diagram

 

It is already known that olfaction, memory, and emotion are closely linked in the brain. An olfactory signal is transmitted from the primary olfactory cortex to the amygdala and the hippocampus before being sent to higher order olfactory cortices (Shipley and Reyes, 1991). The amygdala is generally associated with emotional responses, while memory processes are closely linked to the hippocampus (Fortin et al., 2004; Cardinal et al., 2002). So, the olfactory signal is relayed through two brain structures that are important for both emotion and memory. 

In 2014, Saive et al. published a study that sought to better understand the interaction between emotion, olfaction, and memory. They tested the hypothesis that emotions invoked by odors facilitate the memory of specific unique events. To do this, they created a model to study memory and mimic real-life situations as best as possible in humans. Participants explored three laboratory episodes, each consisting of three unfamiliar odors (what), positioned at three specific locations (where), within a specific visual environment (which context). Participants explored one episode per day for three days, which they called encoding days. On the 4th day, called retrieval day, they were tested with distractor odors and the odors that they had previously experienced. The distractor odors were used to make sure that participants were associating the correct smells with their memory. Participants were asked to push a button if they recognized the smell, and then had to choose the specific location that they experienced the odor and the correct visual context. They also rated the odors based on pleasantness to investigate the influence of emotion on memory performance.

This study had several important findings that helped researchers better understand what was going on when participants retrieved memories from specific odors. First, they found that the number of accurately remembered contexts and locations was significantly higher when the odors were more pleasant or more unpleasant than neutral. This suggests that the intensity of the emotion  and the distinctness of the smell (but not pleasantness vs. unpleasantness) enhanced memory retrieval. This is what they expected to see – we are more likely to associate a memory that has emotional context with an odor than a neutral smell that we might experience every day.

Measured response times showed that the more information the participants remembered about an episode (what, where, which context), the faster they answered. Interestingly, the time period between odor recognition and retrieving details about their experience was constant no matter how accurate their retrieval was. Since there was no response time difference observed, researchers suggested that after odor recognition participants immediately recalled the whole episode at once rather than in pieces. Put simply, participants didn’t go step-by-step in their memory to recall where there were or how they were feeling, they instead remembered the entire memory at once. This led the researchers to propose a model to explain the cognitive processes that are involved in this unique memory retrieval. This model states that recognizing an odor and retrieving details about the memory associated with the odor are combined into a simultaneous memory retrieval process that begins as soon as an odor is smelled.

One strength of this study is that it mimicked real-life scenarios in the laboratory as naturally as possible by allowing participants to freely explore contexts with unique odors and ranging emotional valences. This makes the model suggested by the researchers more relevant to life outside of the laboratory and helps us better understand how odor is closely tied to memory recognition. Now I understand why I was able to quickly retrieve memories from so long ago just from a smell. Maybe many years from now, the smell of fresh baked bread will bring back fond memories of the many boulangeries (bakeries) I visited during my time in Paris.

Cheers,

Sarah

Bibliography:

Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews26(3), 321-352.

Fortin, N. J., Wright, S. P., & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature431(7005), 188-191.

Saive, A. L., Royet, J. P., Ravel, N., Thévenet, M., Garcia, S., & Plailly, J. (2014). A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans. Frontiers in behavioral neuroscience8, 1-11.

Shipley, M., & Reyes, P. (1991). Anatomy of the human olfactory bulb and central olfactory pathways. In The human sense of smell (pp. 29-60). Springer Berlin Heidelberg.

Images:

http://www.cbc.ca/news2/interactives/brain/gfx/smell-pathway.jpg – Olfactory pathway diagram

https://pixabay.com/en/train-subway-tunnel-speed-1836126/ – Metro photo, Creative Commons

Photos at the museum – taken by myself

La belle ville de Paris: Perceptions of Beauty

So far, two weeks of getting lost in the metro, enduring drastic weather changes, and having frustrating French conversations at the market have passed during our stay in Paris. From the expectation of having exact change for every monetary transaction to the snarling gazes at our (somewhat) loud group of fifteen in the metro, adapting to the social norms of the French culture has proven to be quite the challenge (I’m just glad I haven’t been pickpocketed…yet).

Arc de Triomphe

However, living in one of the world’s most beautiful cities and being surrounded by some of the most famous landmarks in the world have made it easy to forget these daunting hardships faced by our curious group of American college students. Whether it’s marveling at the size of the Eiffel Tower, walking down the Champs-Élysées with the Arc de Triomphe always in view, or even just observing the characteristically quaint Parisian architecture of all the apartment buildings, Paris always has something to offer around every corner. Thus, as a student who’s on this trip to learn more about neuroscience (and to eat lots of delicious food), I began to question myself: What makes these Parisian scenes so appealing and beautiful? What’s the neuroscience behind what we determine as beautiful? I’m hungry, where can I find me some crêpes?

Eiffel Tower

I came across a study focusing on brain systems with regards to aesthetic and perceptual judgment. The scientists who conducted this study, Ishizu and Zeki (2013), have previously shown that the experience of beauty, regardless of its source (for instance, looking at a famous art masterpiece or listening to beautifully composed music), activates an area of the medial orbitofrontal cortex (mOFC) (Ishizu and Zeki, 2011). This area of our brain is involved in the cognitive process of decision-making. Thus, judgment comes into play when you’re making these decisions.

medial orbitofrontal cortex (mOFC)

If you were shown a picture and you were told to say whether you thought it was beautiful or not, not only are you making judgements based on the picture’s aesthetics, you’re also making judgements based on its quality. So what’s the difference between the two? Let’s say you were given two paintings and you were told to determine which one you thought was more beautiful. When shown these pictures, you see that one painting (let’s say painting A) was three times the size of painting B and also seemed to appear brighter. Right off the bat, you’ve made judgements about painting A’s qualities (size and brightness). However, when you observe painting B, you notice that even though it may not be as big or as bright as painting A, you find painting B’s content to be portrayed as more aesthetically pleasing than painting A. This study aimed to figure out whether aesthetic judgements also involved the activity of the mOFC and how these two types of judgement contribute towards judging the beauty of something, like crêpes!

To test this, human volunteers (non-artists or musicians to alleviate any bias) went through two sessions: aesthetic and brightness. In each of these session, the subjects were shown a series of two paintings and were told to judge which one was more beautiful (in the aesthetic session) or brighter (in the brightness session). The researchers used functional magnetic resonance imaging, or fMRI, scans that acquired readings of blood oxygen levels in the brain. This allows researchers to see what areas of the brain are being activated when the subjects are told to judge the paintings.

Figure 6 of Ishuzu and Zeki (2013) – shows what brain areas are affected by the type of judgment (brightness or aesthetic).

Results showed that aesthetic and brightness judgments use both shared and separate brain systems. While aesthetic judgement mainly activated subcortical regions and the OFC (areas previously mentioned that were associated with beauty), brightness judgement did not activate any areas with significance compared to the areas activated by aesthetic judgment. However, both aesthetic and brightness judgement activated shared systems, mainly involving the dorsolateral prefrontal cortex (dlPFC) (involved with decision making, memory, and cognition) and bilateral anterior insula (known to be involved with many functions, including cognitive and emotional processes).

A beautiful crêpe

This new insight has led me to think about how I judge Paris’s beauty. Do I think the Eiffel Tower is beautiful, or am I just awestruck by its massive size? Do I think the Parisian architecture is beautiful, or is my familiarity to what I normally see in America causing me to think otherwise? The study mentions that further separating the processes of judgement, decision, and experience is difficult because they all use the same brain areas. Being able to understand these separate processes would allow us to really understand how this part of our brain works and finally uncover the truth as to why I find crêpes so beautiful.

____________________________________________________________________

Sources:

Ishizu T, Zeki S (2011) Toward A Brain-Based Theory of Beauty. PLoS ONE 6(7):e21852.

Ishizu T, Zeki S (2013) The brain’s specialized systems for aesthetic and perceptual judgment. The European Journal of Neuroscience 37(9):1413–1420.

mOFC picture: https://commons.wikimedia.org/wiki/File:MRI_of_orbitofrontal_cortex.jpg

Arc de Triomphe, Eiffel Tower, and Crêpe pictures were personally taken.

La Rage dans les Rues

Whether it’s Friday evening during rush hour or Sunday morning or Tuesday at 2am, I always get to enjoy the lovely sounds of vehicles in Paris. Vehicles communicate in the most loud and obnoxious way, and I’m convinced that it’s even worse than fifteen American college students causing a raucous in the metro. See, these vehicles communicate sans blinkers or small toots. Instead, they scream at each other with blaring horns that could last up to five full seconds. And here I am on the edge of Paris city limits, my window overlooking a busy street and the perimeter highway.

View of the perimeter highway from my window

I know the traffic in Atlanta is bad, but at least cars don’t have conversations via honking there. I’m beginning to think that honking is a subset of the French language. It most likely has developed due to the insane intersections like the roundabout at the Arc de Triomphe.

Check out this video to see the roundabout in action: https://youtu.be/-2RCPpdmSVg

Traffic around the Arc de Triomphe

So what is behind this road rage of sorts? Impatience. The unwillingness to wait for someone or something and tending to be quickly irritated. While I don’t have any tendencies towards road rage, this is a concept I very much relate to. Pretty much everywhere I go, people walk incredibly slowly and often block the path I’m trying to walk on, and I don’t particularly enjoy it. I think we all get frustrated at some point during each day, but what causes some people to act out this frustration while others let it go? Do some people have more angry personalities than others? Studies have shown that even mentally healthy individuals can engage in consequential acts of aggression (Anderson & Bushman, 2002), and some people have higher tendencies toward acts of aggression than others (Bettencourt et al., 2006). There are two types of aggressive personalities: general and displaced. When people with high displaced aggression are provoked, they harm innocent others and report increased levels of romantic partner abuse and driving aggression, whereas people with high general aggression do not (Denson et al., 2006).

Much of research concerning driving risk has found that emotional stability, agreeableness, and conscientiousness are factors in aggressive driving, which leads to risky driving outcomes (Chraif et al., 2016), but few studies have related behavioral observations and subjective ratings to particular areas of the brain. An fMRI study by Denson et al. (2009) sought out to better understand the neural processes underlying risk for aggression. Participants were provoked during a simple task through interruptions, and during one, the experimenter condescendingly implied that the participant was not intelligent enough to follow basic directions.

Figure 1 from Denson et al. (2009)

Interestingly, results from the fMRI imply that there is a neural basis for differences in aggressive behavior. Just seconds after being insulted, there were differences between activated regions of the brain, the dorsal anterior cingulate cortex (dACC) and the medial prefrontal cortex (mPFC), that correlated with different aggressive personalities. Individual differences in general aggression and the subjective experience of anger were more strongly correlated with activity of a region associated with the intensity of anger (dACC), whereas individual differences in displaced aggression were more strongly correlated with activity in a region associated with self-reflection and emotional regulation (mPFC) (Figure 1). Essentially, these data suggest that activity in these brain regions contributes to the differences in personality and behavior in response to provocation.

While Denson et al.’s results were convincing, especially through the use of a real-world provocation, I would love to see researchers take this study one step further to observe behavioral variances between those with different aggressive personalities. Though a bit of a stretch, with more research, one might find activation of the mPFC higher in those with road rage. Current models indicate that road rage is an incredibly complex phenomenon, with many contributing psychological factors (Lajunen & Parker, 2001). Perhaps cultural differences play a role, as well, in determining which type of aggressive personality an individual develops. If so, I would guess that the French are prone to high displaced aggression!

 

References:

Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual review of psychology, 53(1), 27-51.

Bettencourt, B., Talley, A., Benjamin, A. J., & Valentine, J. (2006). Personality and aggressive behavior under provoking and neutral conditions: a meta-analytic review. Psychological bulletin, 132(5), 751.

Chraif, M., Aniţei, M., Burtăverde, V., & Mihăilă, T. (2016). The link between personality, aggressive driving, and risky driving outcomes–testing a theoretical model. Journal of Risk Research, 19(6), 780-797.

Denson, T. F., Pedersen, W. C., & Miller, N. (2006). The displaced aggression questionnaire. Journal of personality and social psychology, 90(6), 1032.

Denson, T. F., Pedersen, W. C., Ronquillo, J., & Nandy, A. S. (2009). The angry brain: Neural correlates of anger, angry rumination, and aggressive personality. Journal of Cognitive Neuroscience, 21(4), 734-744.

Lajunen, T., & Parker, D. (2001). Are aggressive people aggressive drivers? A study of the relationship between self-reported general aggressiveness, driver anger and aggressive driving. Accident Analysis & Prevention, 33(2), 243-255.

Traffic around the Arc de Triomphe: https://www.youtube.com/watch?v=-2RCPpdmSVg

Making Memories One Sniff at a Time

Earlier this week we visited Le Grand Musée du Parfum, or for those of you who don’t speak French, the grand perfume museum (kind of easy to guess). Before arriving, I didn’t know what to expect besides that we would smell a whole lot of perfume. I was right, the building was filled with a variety of fragrances waiting to be sniffed, but this was not the only thing the museum contained. We walked through a maze of rooms displaying all sorts of information about perfume, starting with a historical journey of the origins from ancient Egypt to the Roman Empire and all the way to present time. Following the history was a sensory immersion exhibit (my personal favorite being a neuroscientist) that explained how our sense of smell works and contained olfactory games and fragrant riddles. Lastly, the museum had an exhibit dedicated to the art of the perfumer, where they had a collection of raw materials, natural and synthetic, most commonly used by perfumers. By the end of the museum my odor receptors were exhausted.

smelling one of the perfumer’s raw materials

My favorite room of the museum was the jardin des senteurs, or garden of the scents. We were told to walk up to these large white flowers, close ours eyes, breathe in the odor, try to guess what scent we were smelling and see if it triggered any memories. I did exactly this and took a big whiff of the first odor. Immediately I could recognize the smell of a campfire and a memory was triggered. I pictured myself sitting around a fire with my dad and sister and we were roasting marshmallows, an activity I love to do! I opened my eyes and was surprised and fascinated at the same time by this result. I quickly moved on to the next flower, closed my eyes, and sniffed. I was instantly at my grandma’s house on Christmas morning and an aroma floated through the air. It was cinnamon! I was reminded of the freshly baked cinnamon cookies we made around the holidays.

Jardin des Senteurs (garden of the scents)

Engrossed by this activity, I wondered if different areas of the brain were used when forming and retrieving memories of events in the presence and absence of strong odors. I did some googling and found a recent study that investigated the brain areas involved in episodic memory retrieval, or memories of a specific event, depending on the presence of an odor during encoding, the initial learning of new information (Galliot et al., 2013). Participants in the study consisted of thirteen female students between the ages of 20 and 23 (interestingly no males were used because olfactory abilities and brain regions can differ between genders). The experimental task consisted of two stages. In the first stage (encoding), 32 colored pictures of objects or animals were presented on a computer screen and participants were asked to determine if each picture contained more or less than three colors. This ensured the participants examined each picture carefully, but remained unaware the test was related to memory. During this task participants wore a mask with a valve that contained filter paper soaked in either water or vanillin, an olfactory stimulus usually considered pleasant. Half of the participants wore a mask with vanillin odor for the first 16 pictures and the other half wore the water filtered mask. The participants switched masks for the second 16 pictures.

types of memory

Two weeks later, the second stage (recognition) of the experiment was conducted. During this stage, each of the pictures used in the first stage (target) were presented simultaneously with a new picture (distractor). After the presentation of the two pictures, participants were instructed to press either a left or right button according to the side of the computer screen the participant believed was the target picture. For the duration of this task, participants were in an fMRI machine so that the investigators could record their brain activity. They found brain areas known to be strongly associated with episodic memory retrieval, the posterior hippocampal formations and the anterior thalamic nucleus, were activated whether or not an odor was presented in the first stage. However, they did find that learning in the presence of an odor causes activation of additional brain areas during the retrieval task. One of these areas was the orbitofrontal cortex and it has been previously described as the main site of secondary olfactory processing. They also found other areas in the frontal lobe of the brain, the superior, middle, and inferior frontal gyri (the bumps on the brain), were activated more during presentation of images encoded in the presence of the vanillin odor. However, the specific role in olfaction of these three brain areas remains unclear. I was very fascinated by the results that memories made in the presence of odors activated different brain regions during retrieval.

orbitofrontal cortex

The study also found that there was no significant difference between the number of correct responses of the target images between the pictures encoded with the presence of an odor and the pictures encoded without an odor. This finding made me wonder if the researchers had presented the odor during the retrieval stage of the experiment, would it increase the number of correct responses of the target images encoded with the vanillin odor? When I smelled the campfire and cinnamon odors, my memories were triggered instantly, so I would hypothesize if the participants smelled the vanillin during the recognition task, it would enhance their memory and would increase the number of correct target responses for the pictures encoded with the odor.

Now as I walk through the streets of Paris smelling the freshly baked breads and desserts, I will be reminded that the memories I form will cause different areas of my brain to be activated among retrieval.

Sources:

Galliot E, Comte A, Magnin E, Tatu L, Moulin T, Milot J (2013) Effects of an ambient odor on brain activations during episodic retrieval of objects. Brain Imaging and Behavior 7:213219.

Pictures 1 and 2 were taken by Dr. Kristen Frenzel

Picture 3: http://www.mindauthor.com/psychology/semantic-episodic-memory/

Picture 4:  https://commons.wikimedia.org/wiki/File:MRI_of_orbitofrontal_cortex.jpg

The Paris Brain without High-fructose corn syrup

Most people close to me know that nutrition plays a large role in my life, and I am very passionate about it. In the future, I would love to be able to have a job in which I can use my academic knowledge of neuroscience with my passion for nutrition to help improve others’ lives.

In America I feel like I constantly have to examine ingredient labels searching for chemicals that are unnecessary and harmful to my health. Often times food marketing is extremely misleading and without close examination, it is easy to fall trap to the commercialized mass production of lab created and modified food.

Arriving to Paris, I knew food is a large part of French culture, so I was interested to experience how the French viewed food and nutrition by living amongst their culture for the 5 weeks of this program.

Thus far, about 2 weeks into the program, I already see many clear distinctions between the two cultures. As I am sitting in a Parisian café writing this blog post, I cannot help but question whether it was just my imagination or if the food tasted fresher and cleaner.   At home, most people would view my diet as very restricted since I shy away from most breads, dairy items, any processed foods, and added sugars. I do this because I feel the way these items have been made is not beneficial to my overall health.   Since being in Paris, however, I feel fine eating some bread and cheese with my meals, common additions and cultural components of a French meal, as they taste fresher, cleaner and less processed than what one would find in a typical restaurant in America.

One of my many meals at this café in Paris

These observations along with my passion for nutrition and neuroscience, led me to want to delve further into specific components of food banned in France, as well as the rest of Europe, but commonly found in American food.

This led me to…High-Fructose Corn Syrup.

High-fructose corn syrup

The research article I found was conducted at Emory, which I did not realize until after I read it and thought it would be good to include!

Many previous studies have concluded that high-fructose corn syrup contributes to obesity through metabolic dysregulation, which is an umbrella term to describe the many processes in the body that are disrupted and ways obesity can impact our health. Previous studies have also examined the ways in which it can affect stress, which then can contribute to anxiety and depression. This study, conducted by Harrel et al (2015), aimed at looking at the implications high-fructose corn syrup had on our mental health, specifically in adolescents with developing brains. The researchers were looking at whether this sweetener had long-term implications on our response to stress, and to test this, they took rats and gave some of them a diet for 10 weeks with high fructose corn syrup and others a standard diet. All the rats were put under situations that induced stress for 12 days. The researchers then tested all the mice with situations to see behaviors associated with anxiety or depression. Essentially the researchers

Hypothalamus is the area in the brain in blue

found that with a high fructose diet, not only could they increase stress hormones like previous studies showed, but they could also induce anxiety and depressive behaviors, as well as induce changes in gene expression in the brain, specifically the area called the hypothalamus.

It is important to note that when replicated in adult rats, researchers found that the sweetener did not have an effect. Thus, fructose is affecting the adolescent developing brain on an intricate level and can lead to future poor mental health outcomes.

A strength that I liked of this article is that it tested adult rats, so that we could specifically see the danger is fructose consumption on a developing individuals brain. I would have liked to see a diet that contained high fructose corn syrup, along with other well-known super foods to see whether an exceptionally healthy diet could negate the harmful effects of high-fructose corn syrup. Not a limitation, but rather a question this article brought up for me, is replicating the exact study, but substituting high-fructose corn syrup for one of the many other supposedly harmful substances found in foods banned in Europe but not America like Stevia, food dyes, GMO’s and certain pesticides.

Feelings associated with Depression and poor mental health

Being a student in college, I am surrounded by many individuals close to me who confide about their personal experiences with anxiety and depression. The amount is astounding, and it should not be the norm. As someone interested in both nutrition and the brain, this leads me to question whether diet plays a role in this. Depression and anxiety are widespread problems. Having something commonly present in the food we consume that has been shown by this study to induce depression and anxiety cannot be beneficial to our mental health. Do Parisians have an advantage with not having to worry that a harmful chemical exists in their food?

For now and the rest of my time in Paris, I will enjoy eating without worry, especially all the baguettes made from fresh, local ingredients, cheese not modified in a lab, and dessert without high-fructose corn syrup. However, once back in the United States, I hope that the regulations soon catch up with the science, so that I do not have to worry that something harmful to my mental health is present in the food I put into my body.

 

Bibliography:

Harrell, C. S., Burgado, J., Kelly, S. D., Johnson, Z. P., & Neigh, G. N. (2015). High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology, 62, 252–264. http://doi.org/10.1016/j.psyneuen.2015.08.025

Inside Neuroscience: Studies Explore How Diet Affects Brain Structure, Function. (2015) Society for Neuroscience. https://www.sfn.org/News-and-Calendar/News-and-Calendar/News/Spotlight/2015/Inside-Neuroscience-Studies-Explore-How-Diet-Affects-Brain-Structure-Function

Images not my own from Creative Commons

 

The Secret to the Circus: Proprioception

Salut mes amis!

Poor guy just wanted to sleep

It is the first Saturday in Paris, and after a long week, sleep was well deserved. I woke up around noon and headed straight for lunch with a friend. We got ourselves an amazing baguette and my very first set of chocolate macarons. They were absolutely to die for! Later that day, though, was the real treat. We got tickets to go see La Romanès Cirque Tzigane. While we were waiting outside, we saw the cutest kittens and one very unamused little puppy who I assume just wanted to take a full day nap.

Romanès Circque Tzigane

The show, on the other hand, kept me on my toes the whole time. It was a phenomenal sight and many of the performers were multi-talented and a part of so many different acts. There were the obvious ones which included some juggling and acrobats, but some of the acts that put me in awe were rope and aerial dancing. Their coordination and ability to move so smoothly is fascinating and definitely something I have always wanted to learn. And not to mention, the tight-rope walker, who not only did stunts on the ropes but managed to walk across in HIGH HEELS. I find myself tripping over my own feet on solid ground, let along on a 1 inch rope.

Casually strutting across in high heels.

It is quite amazing how these performers have perfected each of their moves with such ease, even when flying through the air. We know of our five senses: touch, smell, taste, sight, and hearing. We also have a sense called proprioception which is our ability to have a sense of our own body parts in relation to one another and in space. It is essentially how our body sees itself and the world. So how exactly does this work?

Muscle spindle circuitry

Muscle spindles and Golgi tendon organs provide the information on joint angle, muscle length, and muscle tension. Our brains integrate this information with our vestibular system, which helps us in balance and spatial orientation, and actually helps to prevent us from injury. Take for example, the patellar reflex test they do at every doctor’s

Patellar Knee Reflex

visit. The tap on the knee causes a stretch in the extrafusal muscle fibers of the quadriceps. The muscle spindle afferent fibers sense the stretch in the intrafusal fibers (located within the extrafusal fibers that mimic the extrafusal fibers) and relay that information to the spinal cord. An alpha motor neuron, located in the spinal cord will then conduct an electrical impulse back to the quadriceps to contract the muscle, which is what leads to the kicking motion of your leg. This whole system exists throughout our body in order to prevent injury of our muscles by excessive stretching or contraction.

We clearly do not consciously think about this on a daily basis, but a lot of our motions are dependent on our proprioceptors functioning properly and efficiently. For dancers and acrobats, training their proprioceptive sense refines “speed, accuracy, and quality of movement as well as expressiveness” (“Proprioception”, 2008). So maybe their abilities to do such incredible tasks were enabled through their background in dance.

In a recent study, Washburn et al (2014) explored into whether dancers were more able to entrain, or mimic, the movements of an instructor than non-dancers would. In the experiment, they evaluated seventy undergraduate students with three routines, the first being the easiest and the third being the hardest. Using a cross-recurrence quantification analysis (CRQA), they quantified a coefficient magnitude that essentially produced a score on the level of coordination of each individual to the instructor. This value showed to be consistently greater in the dancers versus the non-dancers group for each dance sequence. They also used two other methods, including a cross-correlation analysis and cross-wavelet spectral analysis. The cross-correlation analysis was used to measure a shorter time scale and showed that the synchrony in dancers were significantly better than that of the non-dancers. The cross-wavelet spectral analysis provided information on subsections within a dance sequence: full dance phrase, ½ dance phrase, ¼ dance phrase, and 1/8 dance phrase. Each phrase was a set of movements of 8 counts. By doing so, they analyzed the stability of interpersonal coordination. The use of multiple analyses helped to break apart the data into various time intervals in order to prevent any bias that may have occurred from a particular sequence or movement. The significance was observed across the short and long-time scale and the relationship of a particular group was able to be more readily accepted (Washburn, 2014).

Entrainment of dance moves

From the data, it appears that dancers are better able to entrain with the instructor during both short and long-time scales, whereas the non-dancers were only able to coordinate on a count-to-count basis. This effectively supports that, dancers are able to improve their proprioceptive sense in order to more fluidly and synchronously mimic the instructors moves than non-dancers were (Washburn, 2014). Relating back to these acrobats in the circus, the performers are essentially engaged in a kind of social entrainment with themselves, the audience, and other performers in order to coordinate their movements and synchronize their entire piece into the show put forth to you (Phillips-Silver, 2010).

Dancers in the study had at least 5 years of dance experience in ballet, modern, or hip hop. They were also either “dance majors at the College Conservatory of Music at the University of Cincinnati, members of the University of Cincinnati Dance Team, or members of the University of Cincinnati Cheer Team” (Washburn, 2014).

Interestingly, this study only had dancers experienced in ballet, modern and hip hop which really narrows down the generalizability of this study and although they had both male and female dancers and non-dancers, they did not perform any analyses comparing the effects of gender. As a dancer myself, there are different roles and movements that are targeted to be performed by either a male or female dancer, but not both. Personally, I would expect there to be some influence in the training of one’s proprioceptive sense by the specific differences of male and female dance movements of any style. Another thing to look at in future studies is motor modules, which are Neuromechanical pathways that are unique for different types of movement. Studies in the past have looked at these pathways for dancers and non-dancers and it would be really interesting to see of there exists a correlation between the consistency of a pathway with their proprioceptive sense in an experiment like this.

EMG recorder

Muscle potential spikes on an EMG recorder (Spike Recorder app)

Just this past semester, I took an interdisciplinary course where they combined Human Physiology with dance, and it was really interesting to see how both dancers and non-dancers perceived and executed a movement. We were able to listen to the activity of our calf muscles using surface electrodes and it was very evident that dancers had specific and sharp points of activity when performing a dance movement whereas non-dancers had more soft and constant muscle activity. We were also able to understand our own proprioceptive sense and feel the stability of our bodies while balancing in ways that we normally would not. For example, it is much harder to balance on our heels or toes than it is when we are standing straight, and that is due to a lack of sufficient proprioceptive information (“Proprioception”, 2008). However, this can be improved with practice, just as the performers, and who knows, maybe with enough practice, we can walk across a tight rope too!

 

À bientot!

Swetha Rajagopalan

 

Bibliography

Washburn, A., DeMarco, M., de Vries, S., Ariyabuddhiphongs, K., Schmidt, R. C., Richardson, M. J., & Riley, M. A. (2014). Dancers entrain more effectively than non-dancers to another actor’s movements. Frontiers in Human Neuroscience8, 800. http://doi.org/10.3389/fnhum.2014.00800

Phillips-Silver J., Aktipis C. A., Bryant G. A. (2010). The ecology of entrainment: foundations of coordinated rhythmic movement. Music Percept. 28 3–14 10.1525/mp.2010.28.1.3

Proprioceptors. (n.d.). Retrieved June 05, 2017, from https://courses.washington.edu/conj/bess/spindle/proprioceptors.html

Proprioception. (2008, October 4). Retrieved June 6, 2017, from http://c.ymcdn.com/sites/www.iadms.org/resource/resmgr/imported/info/proprioception.pdf

Images Retrieved from these sites:

https://commons.wikimedia.org/wiki/File:Muscle_spindle_model.jpg

https://commons.wikimedia.org/wiki/File:Patellar-knee-reflex.png

http://www.spangdahlem.af.mil/News/Article-Display/Article/295295/zumba-provides-alternative-work-out/

https://commons.wikimedia.org/wiki/File:Muscle_Whistler_with_EMG_surface_electrodes_(1971).jpg

https://simple.wikipedia.org/wiki/Pointe_shoes