Tag Archives: Paris

Difficulties learning a new language? C’est la vie (That is life)

Dear friends,

It’s been a crazy couple of weeks filled with excitement and anxiety so I’m sorry for not keeping in touch. Not only is it my first time in France, but it is also my first time ever outside of the States! Expecting a huge culture shock upon my arrival, I was surprised when I realized that this would not be the case.

Au contraire, my immersion into the French culture and language has been relatively smooth. While I cannot say that French has become “très bien,” I did pick up some simple greetings. However, it does not help that most of the friends that I’ve made here also speak Dutch, so I probably learned more Dutch than French.

I made a couple Belgian friends who have been kindly teaching me French (actually Dutch).

I made a couple Belgian friends who have been kindly teaching me French Dutch.

Just the other day, we attended the Belgium vs. France soccer game. While it was such a great experience, I had no idea what was going on half of the time because I couldn’t understand the language! Fans screamed “Allez les Bleus!” or “Waar is da feestj?” while I confusedly looked around until joined in on the indistinct chanting.

Dressing up for the festivities!

On our way to the stadium via RER B!

I knew picking up a new language would be difficult, but I thought that it would be a bit easier than it truly is because of the complete immersion factor.

Map of Stade de France

Map of Stade de France

Despite my constant pestering and asking of “what are they saying” or “how do I say this in French, I find it difficult to remember words or even make the correct sounds. For example, “Stade de France,” or the French Stadium,” is pronounced “stad du frans,” but I find myself struggling to make the “du” sound; I have to actively think about the pronunciation of each word and constantly break down each syllable to even hope that I say anything correctly.

Opening ceremony for the friendly game between Belgium and France

Opening ceremony for the friendly game between Belgium and France

Not surprisingly, the scientific literature behind my need to consciously think about what to say and my failure to quickly become proficient in this second language continuously grows. A recent study even found that specific areas of the brain activate in direct correlation to the amount of fluency in a second language (Shimada et al., 2015)! This study comprised of thirty Japanese-speaking adults with varying levels of spoken English proficiency. The researchers evaluated each individual’s proficiency level using the Versant English test, a short examination on language production and comprehension. The test contained simple tasks such as reading a sentence out loud or listening to a short story. During this examination, the participants laid inside an fMRI machine to determine their brain activation through measurements of blood flow.

Shimada et al. discovered that with higher fluency in this second language, activation of the left dorsal inferior frontal gyrus (dIFG) decreased and activation of the left posterior superior temporal gyrus (pSTF) increased. They also concluded that the decreased dIFG activity reflected the decreased need to consciously think about how to create grammatically correct sentences, and the increased pSTF activity reflected the increased ability to quickly process and understand spoken words. (If you got lost reading the extremely long names of those brain structures, I labeled the dIFG red and the pSTF orange!)

Dorsal inferior frontal gyrus (red) and posterior superior temporal gyrus (orange)

Dorsal inferior frontal gyrus (red) and posterior superior temporal gyrus (orange)

With this information, I am now wondering if it might be possible to induce those activation patterns in my brain to quickly become proficient in French! Maybe I should suggest this idea to the researchers for their next experiment! However, I feel as though I might be too scared to be a participant in such a novel study. Therefore, I am content with my traditional, but painstakingly slow, approach to learning French… for now.

Au revoir!
Phi

(P.S. I still cannot pronounce “au revoir” correctly…)

 

References

Shimada K, Hirotani M, Yokokawa H, Yoshida H, Makita K, Yamazaki-Murase
M, Tanabe HC, Sadato N (2015) Fluency-dependent cortical activation associated with speech production and comprehension in second language learners. Neuroscience.

Bouba and Bagels

Paris! Land of crepes and croissants, escargot and éclairs, and absolutely exquisite baguettes. While sandwiches currently make up the vast majority of my diet, I’ve also delved into more exciting culinary exploits on occasion. A few days ago I tried escargot for the first time, and the week before, duck confit. I’ve also tasted mouth watering lemon tarts, mille feuille, and a host of other desserts whose names I do not know, courtesy of my terrible French (I may be a linguist, but I’ve never been particularly good at picking up languages).

A delicious lemon tart I ordered by enthusiastically pointing at it.

A delicious lemon tart I ordered by enthusiastically pointing at it.

I came to Paris two weeks ago with just enough knowledge of French to manage taking the train to my dorm room at Cite U–which, considering the number of people who speak English in France, boiled mostly down to “Bonjour”, “Pardon”, and “Parlez-vous anglais?” Since then, I’ve managed to pick up a handful of words, almost all of them about food (clearly, I have my priorities in order). Still, the majority of my ordering at cafes and restaurants involves pointing at what I want or butchering the words for and hoping it all ends well with my taste buds happy and my stomach full (it usually does).

However, my lack of French language skills occasionally makes for interesting culinary experiences. The first time I ordered a bagel from Morry’s Bagels, I picked out the word “saumon” and “oeuf” and assumed the bagel contained some combination of salmon and egg. To my pleasant surprise, the filling was salmon eggs, not salmon and egg. A few days ago I visited a patisserie nearby for a sandwich, but since they were all out of sandwiches with ingredients I understood, I used my classic point and pay method to get a sandwich that contained some sort of fish. I think. The connection between cuisine and language goes beyond potential difficulties with ordering food, however.

Morry's, a delicious shop that sells bagel close to the class.

Morry’s, a delicious shop that sells bagel close to the class.

A salmon egg bagel from Morry's.

A salmon egg bagel from Morry’s.

One of the key components of the definition of “language” that every linguistics student learns is arbitrariness. Languages, for the most part, are arbitrary; the sounds of a word do not denote the meaning (Monaghan et al., 2014). Nothing about the sounds in “poulet” makes a non-French speaker automatically think of chicken. However, while you may not be able to derive the meaning of a word from its sounds, you might be able to know some of its properties. In the famous “Kiki” and “Bouba” study by Dr. Ramachandran and Dr. Hubbard, participants looked at spiky or more rounded shapes and decided which nonsense word matched which shape. The angular shapes had a high correlation with “kiki”, while the more rounded shapes correlated with “bouba” in both English speakers and Tamil speakers (Ramachandran and Hubbard, 2001).

How does this relate to food?

 

My first taste of Duck Confit. I'm not sure if I would rate it more "bouba' or more "kiki", but I would definitely rate it "ridiculously delicious".

My first taste of Duck Confit. I’m not sure if I would rate it more “bouba’ or more “kiki”, but I would definitely rate it “ridiculously delicious”.

Well, in 2011, Gallace et al. published a study looking at word-food associations. Ten participants sat in a darkened testing room and tasted several different foods such as Brie, strawberry yogurt, lime jam, or salt and vinegar crisps (aka potato chips), all covering a wide range of flavors and textures. After tasting one sample of each food, the participants rated the food for 24 different nonword, food related, and non-food related opposing pairs. Nonword pairs included, for example, “kiki” at one extreme and “bouba” at the other, while an example of non-food related ratings could be “fast” vs. “slow”, or “salty” vs. sweet for food-related ratings. So, for example, after tasting some strawberry yogurt, the participant might have to decide if the yogurt tasted more “kiki” or more “bouba”, more salty or more sweet, more slow or fast, and so on. After finishing each of the 24 ratings the participant would taste the next food sample, and continue on until they sampled and rated all food items. Each participant tasted and rated each food a maximum of 10 times.

The experimenters found a significant association between certain foods with particular nonwords more than others. The participants rated plain chocolate as more “bouba”, in comparison to mint chocolate, and salt and vinegar-flavored crisps were rated as more “takete” than cheddar cheese or Brie. However, these correlations do not line up neatly so that all the “bouba” foods have a particular taste or texture. This complex association may be due to how many of the other senses, such as smell and vision, interact with taste. To explain these associations, Gallace et al. go on to speculate that the connections between the gustatory areas and the frontal and temporal lobes in the brain may explain this connection between taste and sound, similar to how Ramachandran and Hubbard hypothesized that the connections and coactivation of visual and auditory areas lead synesthetes to “see” sounds (Ramachandran and Hubbard, 2001). Interestingly enough, a study from 2013 found that while a remote population from Noerthern Namibia matched the same shapes and sounds to Westerners, they did not match the same tastes to sounds (Bremner et al., 2013). Thus, the connection between taste and sound is complex and most likely affected by culture.

As a double major in linguistics and neuroscience, I’ve learned about the “Bouba” and “Kiki” study many times, but it wasn’t until I arrived in Paris that I heard about the connection between sounds and taste. I’m excited to have found a connection between three of my passions–– food, neuroscience, and linguistics––and I can’t wait to discover what other connections to neuroscience I can make as I eat my way through Paris!

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think...

One of the many, many sandwiches I have eaten in Paris. This one has some sort of fish filling. I think…

Bibliography

Bremner AJ, Caparos S, Davidoff J, de Fockert J, Linnell KJ, Spence C (2013) “Bouba” and “Kiki” in Namibia? A remote culture make similar shape-sound matches, but different shape-taste matches to Westerners. Cognition 126:165-172.

Gallace A, Boschin E, Spence C (2011) On the taste of “Bouba” and “Kiki”: An exploration of word–food associations in neurologically normal participants. Cognitive Neuroscience 2:34-46.

Monaghan P, Shillcock R, Christiansen M, Kirby S (2014) How arbitrary is language?. Philosophical Transactions of the Royal Society B: Biological Sciences 369:20130299-20130299.

Ramachandran V, Hubbard E (2001) Synesthesia and Language. Journal of Consciousness Studies 8:3-34.

An Ambulance in a Traffic Jam

I’ve often wondered if any good could possibly come from a city full of the constant hustle of urban life. Cars always seem to be coming and going, zipping by on the streets below my window. Then the ambulance speeds past, its siren wailing, as it seeks the nearby hospital. Suddenly I am thrust into memory from last week.

The Bastille

Cars honk to one another as if speaking their own language. Smaller and more agile mopeds cut between them acting like they own the road. Firemen have positioned themselves along the sidewalk and are passing out fliers to anyone who will listen. The wail of a siren stuck in traffic was the centerpiece of a small Parisian intersection near the Bastille. My friends and I paused for a moment, mesmerized by the sounds, lights, and the notion that an ambulance with siren wailing could possibly be halted on its life-saving journey. Our stomachs growl in contempt of our delay so we continue shuffling along the sidewalk seeking nourishment after the morning’s academics, the smell of the boulangeries wafting invitingly towards us.

A delicious looking piece of artwork

The cool breeze from the window brings me back to present. I now wonder how it is that I could remember that instant so clearly, yet there is nothing to say of its significance. As far as I could tell, there was no reason for this memory to be so strong.

The answer lies in the recent work of James Cousins and his colleagues (2014) regarding cued memory reactivation during slow-wave sleep. In his experiment, Cousins subjected his participants to a specific cognitive task and simultaneously played a series of tones. The researchers then put the participants to sleep while monitoring their brain activity. During slow-wave sleep, some of the participants were played the series of tones from the test, while others listened to brown noise (notably different than the “brown note”). Participants were woken up in the morning, allowed to gather their senses, and then retested on the cognitive task.

Sleepy-time cap

Cousins and his colleagues discovered that while the control participants who listened to brown noise all night slightly improved after having learned the task, the participants who were played the tone series improved significantly more. The researchers concluded that, during slow-wave sleep, auditory stimulation enhances the consolidation of related memories by the hippocampus.

Now lets get back to my ambulance example. After experiencing the piercing cry of the ambulance stuck in traffic on that small back road, my brain had begun creating a memory of this experience. That night as I drifted into slow-wave sleep, the sirens from the ambulances on the street below wailed past, causing my hippocampus to replay that particular memory. Over the course of the night, unbeknownst to me, this seemingly irrelevant memory became a recurrent experience.

The Bastille on a map of Paris

I can no longer remember what I did end up eating for lunch that day, nor what we discussed in class. But thanks to my hippocampus and the sleepless city, I will long remember that ambulance stuck in traffic on a sunny morning in downtown Paris.

-Kamin Bouguyon

References:

Cousins, J.N., El-Deredy, W., Parkes, L.M., Hennies, N. & Lewis, P.A. (2014) Cued Memory Reactivation during Slow-Wave Sleep Promotes Explicit Knowledge of a Motor Sequence. The Journal of Neuroscience, 34, 15870-15876.

An All-Natural High: Running through Paris

Bonjour tout le monde!

As my second week in Paris comes to a close, I can’t help but reflect on my time in Paris thus far. Have I accomplished what I’ve wanted to accomplish? Have I met my goals?

One major goal that I set out to fulfill during my time in Paris was to keep running. But before I delve into that, let me give you a little background on my relationship with running.

I never used to enjoy running. In fact, I strongly disliked running. My parents have always been big runners and have run marathons, done triathlons, Tough Mudder-type events, and many others. I could never understand why they would put themselves through the grueling process of burning up your lungs and muscles until you just couldn’t do it anymore. Why subject your body to that much pain? All throughout middle school and high school, the only running I did was on the soccer field or on the volleyball court. But that all changed this past semester.

I can’t tell you for sure what it was that changed my mind about running. To be honest, I think it might’ve been that I wanted to get in shape and I knew running would get me there. So I started running. Every other day, every few days… whenever I found time in my busy Emory schedule to run, I ran. And it got easier each time. I didn’t feel as fatigued when I ran, and the thought of running didn’t incur feelings of immense hatred anymore. I actually started to enjoy it… even look forward to it! You’re now reading the blog post of a girl who is signed up to run a half marathon in the fall, and I couldn’t be more excited about training for it.

While I haven’t had much time to run in Paris between classes, excursions, and exploring, I’ve tried to fit it into my schedule as much as I can, even if it’s  just a short, 2 mile run. The first time I went for a run in Paris, I immediately felt better and had an immediate rush of familiar excitement. As I set off to run in one of my favorite places in Paris, the Touileries garden, pounding along to the beat of “‘Till I Collapse” by Eminem, I finally identified the feeling. It was an all-natural, all-encompassing high.

IMG_0145

Beginning my run in the Touileries (photographed by Joy Lee)

As I entered the park and continued along the path, feeling great, I wondered what caused this high, and how it affected my running performance.

So I came back to my room later that day and did a little bit of research. I found a study from 2008 that described the phenomenon I was experiencing, called “the runner’s high”. This study by Boecker et al. (2008) looked at ten athletes at two time intervals: one after 2 hours of endurance running and one during a rest period. The researchers looked at whether particular opioid receptors (molecules of tissue that bind substances called endorphins that give us a boost when we run) get depleted when we run long distances, and they indeed found that certain areas of the brain do in fact have reduced opioid receptor availability in subjects during endurance running as compared to when subjects were resting!

Screen Shot 2015-06-07 at 7.26.04 PM

Reduction in opioid receptor availability in certain areas of the brain after long distance running compared to when resting

So basically, when we run long distances, we do in fact feel an all-natural “high”, in addition to having pain-relieving symptoms — even though it often feels like we’re about to die when we’ve run for too long (Boecker et al., 2008).

This analgesic effect got me thinking though: what about when we’re extremely fatigued? We don’t seem to feel this pain-killing effect anymore: in fact, the pain is almost unbearable when we feel like we’ve reached our limit. The concept of limits reminded me of a Radiolab podcast that I had listened to while taking Human Physiology with Dr. Cafferty, fall semester 2014. In the beginning of the podcast, Jad Abumrad and Robert Krulwich (the hosts of Radiolab) introduce Julie Moss, who discusses her first Ironman experience. If you watch her running toward the finish line on YouTube, you can see how the fatigue after swimming 2.4 miles, biking 112 miles, and finally a marathon (26.2 miles) truly catches up to her.

Krulwich and Abumrad then go on to introduce what is known as the central governor theory, along with the help of physiologist Dr. David Jones. This theory describes how fatigue may in fact not be a result of muscles running out of energy: in fact, it may be more mental than we think. When we’re running low on energy, this central governor signals triggers of pain to try to get us to rest. Scientists are finding that this governor circuit is conservative, keeping a reservoir of energy readily available in case of an emergency. While some scientists argue that fatigue is one of the greatest imperfections of the body, Noakes (2012) references an Italian physiologist A. Mosso who says that fatigue may in fact be one of of our most marvelous perfections. As Krulwich jokes in the Radiolab podcast, perhaps fatigue is our body’s “almost out of gas” message, telling us we’re running out of energy when we still have a 1/4 of a tank left.

As I continue to train and eventually complete the half marathon in the fall, I know I’ll be thinking about my central governor and hoping for that endorphin boost; especially as I (hopefully) run toward that finish line, trying to avoid pulling a Julie Moss, running to the melody of Chariots of Fire.

IMG_0162

Selfie of me while running in Montsouris park!

Until next time,

Meg

References:

Abumrad J, Krulwich R. Limits of the Body. RadioLab. http://www.radiolab.org/story/91710-limits-of-the-body/

Boecker H, Sprenger T, Spilker, M, Henriksen G, Koppenhoefer M, Wagner, KJ, Valet M, Berthele A, Tolle T (2008). The Runner’s High: Opioidergic Mechanisms in the Human Brain. Cerebral Cortex 18: 2523-2531.

Noakes T (2012). Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front Physiol. 3:82.

“Hello” or “Bonjour” ?

Hello world,

This past week has been extremely interesting, yet exciting, to say the least. After a TERRIBLE delay at JFK airport, I finally made it to Paris (about 6 hours behind schedule…). Once settled into my room, I met up with my friend, Sasha, to grab a quick dinner. We decided to go to a small restaurant close to where we live, as our long day of traveling left us extremely tired. When we sat down at the restaurant, the waiter walked over and said, “Bonjour, comment puis-je vous aider?” This caught me extremely off guard, as this was the first time I engaged in a conversation with a true francophone.

IMG_1115

Sasha (left) and me (right) at dinner

11234833_10206791179517847_2623424007455916451_o

Sasha and me at the Eiffel Tower

 

Let me rewind a little bit. I have studied French since 6th grade, and although it may not be my primary concentration in college, it plays a huge role in my academic career. However, this was my first time in a French speaking country, so I have not had much experience with French conversation, aside from with my fellow French-speaking peers and professors. So, when the waiter confronted me and asked a question in French, I was rightfully so caught off guard.

 

 

(Anyway, returning to the restaurant…) Sasha, being from Montreal and growing up speaking French with her family, swiftly answered the waiter. After a few seconds of gathering myself and adjusting my vocabulary, I too answered him (in French, of course). This event made wonder what physiological differences, if any, occurred in my brain when switching between English and French vocabulary. Were different areas of my brain active for French words versus English words and vice versa? This question sparked my interest, so, upon returning to my room I searched for an answer.

Before I try and explain the studies I found, let me give you a quick and easy lesson concerning neuroscience and language. Broca’s area, a region of the frontal part of the brain, is linked to the production of speech, while Wernicke’s area, a region of the temporal part of the brain (slightly above where your ears are), is linked to the comprehension aspects of speech. In order to engage in a coherent conversation with another individual, one must use both of these areas, as the language one hears must be understood
(via Wetumblr_memuxuR4xw1qf721rrnicke’s area) and the language one speaks must be intelligible (via Broca’s area). So, when looking for an answer to my original question about language, I immediately thought that this must be the sole system affected, but boy was I wrong.

 

After some quick searching, I stumbled upon an article by Correia et al., 2014, concerning brain activation in bilingual individuals. The researchers in this study subjected bilingual participants, fluent in English and Dutch, to a series of experimentations in which the participants were placed inside an fMRI and told to listen to a series of words. The words consisted of the names of specific animal species, and the language spoken varied between English and Dutch. The fMRI constructed images of the participant’s brains, highlighting the regions most active during this process. By examining and comparing the fMRI images created by solely Dutch words, solely English words, and a combination of the two, Correia et al. isolated several regions of the brain active for both languages. The main region of activity they observed was the anterior temporal lobe (ATL). This cortical region is associated with semantic memory, that is, memory of physical objects, people, information, and (most important to this study) words (Bonner and Price, 2013). This finding is significant as it provides evidence that semantic knowledge is processed in a language-independent form in the brains of bilingual listeners (Correia et al., 2014). Essentially, this means that as the participants listened the either English or Dutch words, their ATLs become equivalently active for each. So, when I was in the restaurant with Sasha, although I may have been caught off guard by the waiter speaking French, similar regions of my brain became active compared to if the waiter spoke English to me.

Screen Shot 2015-06-07 at 12.05.16 PM

A figure from Correia et al. (2014) depicting the language-independent regions of the brain, one of which being the anterior temporal lobe (ATL)

Another interesting study I found was conducted by Mohades et al. in 2012. In this study, the researchers assessed the brain circuitry associated with language in children aged 8-11 years old. They compared this circuitry in children raised monolingual to those raised bilingual. Through this, the researchers discovered significantly different white matter density in specific brain regions involved with spoken language and comprehension of language. Certain areas of bilingual’s brains contained different densities of white matter in comparison to the brain’s of monolinguals (Mohades et al., 2012). This means that the circuitry of the brain involved with language differs depending on one’s language capabilities. So, in relation to my brain and Sasha’s brain, we have different densities of white matter in specific regions of our brains, since Sasha was raised bilingual (woah).

3DSlicer-KubickiJPR2007-fig6

The type of fMRI imaging used by Mohades et al. (2011) to measure white matter integrity (density).

 

I found both of these articles very interesting because they offer different findings regarding brain activation in bilinguals. In my NBB classes I learn about many regions of the brain discussed in these studies, yet I never knew the role they played in bilingual individuals. With this newfound knowledge, I am interested in doing further research to discover more differences in brain activation associated with language.

~ Ethan Siegel

References

Bonner M, Price A (2013) Where is the anterior temporal lobe and what does it do? The Journal of Neuroscience. 33(10): 4213-4215

Correia J, Formisano E, Valente G, Hausfeld L, Jansma B, Bonte M (2014) Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe. The Journal of Neuroscience. 34(1):332–338

Mohades S, Struys E, Van Schuerbeek P, Mondt K, Van de Craen P, Luypaert R (2011) DTI reveals structural differences in white matter tracts between bilingual and monolingual children. SciVerse ScienceDirect. 1435: 72-80

Poisoning Pigeons in the Park

We’ve now been in Paris for close to three weeks. It’s a wonderful city, and I’ve enjoyed so many terrific experiences since we arrived: long, sunny walks along the Seine from the Louvre Museum to the Eiffel Tower, terrific concerts by countless street musicians, and many delicious French crepes and baguettes! However, there’s one part of Paris that is slowly pecking away at my enjoyment of the city – Pigeons. 

Paris isn’t quite as famous for its pigeons as other large cities like New York and London, but their presence is certainly noticeable – especially if you attempt, as I did, to eat a fresh baguette under the statue of Charlemagne at Notre Dame, an area where the pigeon density rivals that of the tourists. As soon my first breadcrumb dropped, I was surrounded and bombarded by more birds than I could count. This happened again at Tuileries Garden, and yet another time on the Cite Universitaire campus.

Even when I’m not eating baguettes the pigeons seek me out. While relaxing in a small urban park near the Bastille I was lucky enough to receive a pigeon “deposit” on my pant’s leg, followed by another on my chest and a third that landed on my shoulder, narrowly missing my right ear. I can see one such gift being an accident, but three in a row makes me think that these pigeons might have a vendetta against me for the bird research I do back at Emory.

It turns out that I’m not the only one who’s annoyed with Paris’s bird problem. For many years the city has pigeon-proofed historical buildings by placing spikes on all the ledges where the birds might land. Additionally, in 2008 Paris officials set out to curb the pigeon population by building nesting-lofts throughout the city and then sterilizing the eggs while the birds were out feeding (bloomberg). Given my recent experiences, these attempts don’t appear to be working and so I looked into another possible method of population control – feeding the birds poison-laced food.

I was curious about how effective poisoning would be. Do the birds learn to avoid dangerous food? And if so, how quickly does this avoidance behavior develop, especially if that food had a distinct taste or smell associated with it?

How quickly do pigeons learn to avoid poison?

A map of the places I've had run-in with pigeons


In 1999 a study published in the Archives of Environmental Contamination and Toxicology looked exactly at how quickly pigeons learn to avoid poisonous-food and the effect of hunger on the amount of toxic food they ingested (Pascual et al., 1999).

The study used four groups of eight pigeons. Two of these groups were given as much food as they wanted (ad libitum) for the 6 days leading up to testing while the other two groups were deprived of food. The researchers did two experiments. First they offered seeds laced with the sulfurous-smelling toxin fonofos to one of the ad libitum groups and one of the deprived groups for 6 straight hours. The birds were videotaped throughout the test, and eating behavior was measured by the amount of food eaten as well as the rate at which it was consumed. The second experiment, using the remaining two bird groups, was very similar but the food was offered first for 2 hours followed by a half-hour break, and then for an additional four hours. While not much different then the first experiment, this test showed whether the birds were able to remember that the food was dangerous when exposed to it a second time.

On average, it only took the birds 6 minutes to learn to avoid the food and all of the pigeons from experiment two still avoided the food after a half-hour break. Five of the birds from the food-deprived group did die and the authors attributed this to the fact that these birds ate huge amounts of food in the first six minutes. This is interesting because it suggests that the ability to develop avoidance behaviors is dependent on time, not on the amount of food eaten. Additionally, the video recordings showed reactions (head shaking, food-spitting, vomiting) during the first six minutes, which confirmed that the food was unpleasant to the birds. Given the size of the Parisian pigeons that have harassed me so far, I doubt any of them are food deprived, so unfortunately poisons (or at least poisons that have odor or taste like fonofos) would not be effective.

While this article clearly documented the development of avoidance behaviors and specifically showed that internal state (such as hungry/not hungry) did not affect the rate at which these behaviors we were created, it did not discuss how these behaviors are mediated in the brain.

How is avoidance mediated in the brain?

A pigeon posing in front of the Eiffel Tower. A perfect summary of my experiences so far in France.

 

 

Most research in avoidance behavior concentrates on the role of a small almond-shaped region in the bottom-middle of the brain called the amygdala, which is thought to mediate avoidance behavior development (Davis, 1992). How exactly it does this is still being debated but the majority of articles suggest that the amygdala helps consolidate a memory associated with an unpleasant experience like eating food that makes you feel sick (Smith et al., 2001). More specifically, some research has shown that it plays a role in the initial acquisition of the memory (Wiliskey et al., 2005). Even though these studies were not done in pigeons, we can use can use them to predict what might have occurred in the pigeon experiment. When the pigeons first ate the fonofos food and experienced the unpleasant side effects, it’s possible that their amygdalae were activated and that a connection between the food and the effects was formed. However, this connection in the brain probably was not strong enough to cause avoidance after just one exposure to the food, so it took multiple exposures over the course of six minutes. Even though the food-deprived pigeons ate more, it’s possible that they didn’t avoid the food any faster than the ad libitum group because their hunger took priority and inhibited the avoidance behaviors from forming (Gilette et al., 1999).

Unless the Parisian pigeons have faulty amygdalae, which I highly doubt, I will unfortunately have to come up with another way to control their population. Perhaps, a poison that doesn’t have any smell or immediate unpleasant effects associated with it? Or maybe the best option is just to take all of my baguette eating indoors. Regardless, it does not appear that I will be poisoning Parisian pigeons anytime in the near future. Now that you’ve finished the post I recommend that you click on the following link and enjoy a 3 minute tune by 1960s comedian Tom Leher, it applies nicely.

http://www.youtube.com/watch?v=yhuMLpdnOjY

 

– Camden MacDowell

UPDATE: I GOT EVEN WITH THE PIGEONS!

mmm... tasty pigeon lunch! Literally the taste of revenge!

 

Works cited:

Davis M. (1992) The role of the amygdala in fear and anxiety. Annual Review Neursci 15:353-375

Gillete R., Hatcher N., Huang R., Moroz L. (1999). Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. PNAS 97: 3585-3590

Pascual J., Fryday S., Hart A. (1999) Effects of Food Restriction on Food Avoidance and Risk of Acute Poisoning of Captive Feral Pigeons from Fonofos-Treated Seeds. Arch. Environ. Contam. Toxicol. 37: 115-124

Smith DM., Freeman JH., Gabriel M., Monteverde J., Schwartz E. (2001) Lesions in the central nucleus of the amygdala: discriminative avoidance learning, discriminative approach learning, and cingulothalamic training-induced neuronal activity. Neurobiol Learn Mem 76: 403-25

Wilensky A., LeDoux J., Schafe G. (2005) Amygdala Modulates Memory Consolidation of Fear-Motivated Inhibitory Avoidance Learning But Not Classical Fear Conditioning. The Journal of Neurosci 20: 7059-7066

 

Want to Remember Paris? Take a Nap!

Since arriving in Paris I have immersed myself in a lesser-known aspect of French culture – Naps. 

While not as famous as the country’s delicious food and fine wine, the French nap, particularly when enjoyed on the banks of the Seine River or on a bus ride through Loire Valley, is a key part of the French lifestyle. In fact, napping is so important to the French that recently their minister of health, Xavier Betrand proposed that they schedule Spanish-esque siestas into the normal workday to increase napping-opportunities. He even suggested that these siestas count as paid work hours!

So, with much determination, I have subjected myself to a grueling routine of daily naps, often conveniently located at some of Paris’s most beautiful landmarks. But unfortunately this napping regime takes time, and since I’m not receiving health minister Betrand’s proposed nap-time monetary reimbursement, I needed to do some research to see if my dedication to the French culture was worth the time away from my neuroscience studies.

It turns out that napping could very well be helping my academics! There have actually been many research studies that show significant increases in ability of individuals to remember facts when they take a brief nap after learning new information. 

So what is a nap?

View of the Seine from behind Notre Dame. Location of a wonderful nap in the sun.

In order to understand the research behind nap-improved memory, it’s important first that we briefly define different sleep stages, and the different types of naps associated with each.

Non-Rapid Eye Movement Sleep (NREM): NREM sleep is comprised of 4 stages. Stage N1 is the drowsy period right at the onset of sleep. N1 is often associated with body twitches and the ability to still be somewhat aware of your surroundings. The second stage, N2, is when your muscles relax and you lose all awareness of your surroundings. This stage occupies about 40% of total sleep time. The final two stages of NREM, N3 and N4, are the deepest sleep stages and are often termed slow-wave-sleep because of their distinct shape when recorded on a electrocephologram (a machine used to measure electrical activity in the brain).

Rapid Eye Movement Sleep (REM): As the name suggest this sleep is often accompanied by rapid eye movements. Additionally, when you wake yourself up by kicking or swinging your arm it most likely occurred during REM sleep.

Long Naps: Naps that last longer than 40 minutes. Includes all stages of NREM and REM sleep. Because long naps include deep sleep phases, they are often associated with sleep inertia upon waking (the groggy-feeling where it’s difficult to get fully awake).

Short Naps: Naps between 10-40 minutes. Commonly called “power naps,” these naps normally just include stages N1 and N2, however they can include N3 if approaching 40 minutes in length. 

Ultra Short Naps: These are naps as short as 5 minutes and normally are just stage N1.

The science behind the French-nap 

Students napping on a bus ride to Loire Valley

Since sleeping between class or on a bench amongst the hubbub of tourists and street vendors doesn’t lend itself well to long naps, the majority of my sleep has been limited to 6-40 minute intervals. Interestingly, there was a study recently published in the Jounral of Sleep Research that looked at this exact length of nap and it’s effect on the ability of 18 college-age individuals to remember a list of words (Lahl et al., 2008).

The study was pretty simple, each student was given a list of thirty adjectives and told to memorize as many of them as possible. At the end of two minutes the lists were taken away and the students were broken up into 3 sleep-groups. One group was allowed to sleep for 5 minutes, another for an average of 35 minutes, and a third was not allowed to sleep at all. After 60 minutes, each student was asked to repeat the adjectives they could recall from the list. The number they remembered was recorded and averaged with the other’s in their sleep-group. This experiment was done twice more with the same students, once a week after the first test, and then again another week later. To make sure the experiment was accurate they used different word lists each time and also rotated which group slept for 6 min, 35 min, or not at all. By the end of the experiment each student had been in each sleep-group once.

The results of this experiment are great news for the French-nap! It turns out that those who took a short nap were able to remember on average 1.2 more words than those who didn’t sleep at all and students who took long naps where able to remember an average of 2.2 more words than their non-sleeping peers. While 1-2 words might not seam like a huge difference, it is considered statistically significant because of the small number of total words in each list (30 words). Also, many other sleep-memory experiments have shown similar results thus helping to confirm the data from this study (Tucker et al., 2006).

Some additional experiments have been done to show exactly how this memory-improvement occurs. When you sleep, your brain doesn’t “shut-down” like many people believe; instead parts of the brain ramp up their activity. One of these areas, the hippocampus, has been shown to be a key part of the memory-forming networks in the brain (Gorfine et al., 2007). Increasing the activity of the hippocampus during sleep is a way for our brains to rehearse the events we recently experienced, thus strengthening the connections between neurons that solidify those memories in our brain. Short bursts of sleep, such as my French-naps, are thought to specifically help in the formation of factual memories. Additional research has shown that another part of the brain, the orbitofrontalcortex, might help the hippocampus in the formation and storage of these memories (Lesburgures et al., 2011). However, this research is very recent and the connection between sleeping and its effect on the orbitofrontalcortex needs to be studied in future experiments. Until then, I’m happy to know that I now have a scientifically proven excuse to nap across Paris – I’m activating my hippocampus and helping store all of the material learned in class that day. Next stop, a nap beneath the Eiffel tower!

– Camden MacDowell

On of my many ultra short naps in the ACCENT center where we have our classes. My hippocampus is hard at work.

Works Cited

Gorfine T, Yeshurun Y, Zisapel N (2007) Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation. Journal Pineal Research 43: 336-342.

Lahl O, Pietrowsky P, Wispel C, Willigens B (2008) An ultra short episode of sleep is sufficient to promote declarative memory performance. Journal of Sleep Research 17: 3-10.

Lesburgures E, Alaux-Cantin O, Bontempi B, Gobbo A, Hambucken A, Trifilieff P (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331, 924-928.

Tucker M., Chaklader A, Fishbein W, Hirota Y, Lau H, Warnseley E (2006) A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiology of Learning and Memory 86: 241-247