Jin et al.: Fire Smoke Elevated the Carbonaceous PM2.5 Concentration and Mortality Burden in the Contiguous U.S. and Southern Canada

Read Full Text: https://pubs.acs.org/doi/full/10.1021/acs.est.5c01641 Despite emerging evidence on the health impacts of fine particulate matter (PM2.5) from wildland fire smoke, the specific effects of PM2.5 composition on health outcomes remain uncertain. We developed a three-level, chemical transport model-based framework to estimate daily full-coverage concentrations of smoke-derived...

Vu et al.: Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California

Vu, B.N., Bi, J., Wang, W., Huff, A., Kondragunta, S., Liu, Y. (2022). Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California. Remote Sensing of Environment, 271, 112890. Science Direct: Link Particulate matter from wildland fire smoke can traverse hundreds of kilometers from where they originated...

Stowell et al.: Asthma exacerbation due to climate change-induced wildfire smoke in the Western US

Climate change and human activities have drastically altered the natural wildfire balance in the Western US and increased population health risks due to exposure to pollutants from fire smoke. Using dynamically downscaled climate model projections, we estimated additional asthma emergency room visits and hospitalizations due to exposure to smoke fine particulate matter (PM2.5) in the Western US...