Rodents on My Mind, Rodents on the Metro

What does this look like to you?

The RATP logo (Image from Creads.fr)

To me it looks like a female face tilted back to take a big whiff of something—presumably, the fresh, pleasant-smelling air of Paris’s underground metro system (of course I’m being entirely facetious; it is often quite the opposite).

Why is this relevant? Let me explain.

One day on the way to class, out of boredom I was perusing the exciting advertisements plastering the walls of the metro car. My eyes landed upon this intriguing logo, accompanied by the letters, “RATP,” and I found it to be one of the most unintentionally amusing things that I have ever seen.

Standard interpretation of the RATP symbolism (Image from Creads.fr)

You see, in class we have been discussing many experiments that use mice. Mice are really good at being the subjects of neuroscience experiments, it turns out. So the first thing that came to my mind was this sort of double entendre: this poster was advertising the Paris metro system while highlighting the scent of rat urine that may often accompany it.

Lab rat (Image from Shutterstock.com)

The symbol and acronym actually represent Régie Autonome des Transports Parisiens, the group that operates much of the public transportation in the region. And according to one website, the logo is supposed to be an artistic representation of  Paris.  I never would have guessed this, but perhaps my interpretation is unique, influenced by my recent experiences in class.

In fact, I’ve been thinking so much about rodents that I’ve been dreaming about them! So I wanted to know: Why was I dreaming about mice? Is it possible that these dreams impacted my interpretation of the RATP symbol?
My theory was that mice have been so prevalent in my thoughts during the day (due to all the neuroscience research that I have been reading about) that they infiltrated my dreams at night. Maybe this is what led me to interpret the logo in such a humorous way! Neuroscience can provide some answers as to what likely occurred here.

The neuroscience of sleep and dreaming isn’t fully understood. But, scientists know that the brain isn’t inactive when we’re asleep: contrary to the idea of “resting” during sleep, the brain actually doesn’t shut down at all (Debunking Sleep)! It fluctuates through different stages of activity  throughout the night, meaning the cells are active in different patterns (Brain Basics).

During one type of brain activity called slow-wave sleep (SWS), our brains “replay” certain memories from the day and put them into long-term storage (Hasselmo, 1999). This is termed “memory consolidation,” and it is as if these experiences were being packaged into neat little containers for protection and easy access in the future. During “slow-wave sleep,” cells are sending signals in slow bursts, and this likely had a role in making my memory of the mice stronger and easier to recall! This strong memory of mice seems to be why I interpreted the RATP symbol in such a way. But what does dreaming have to do with it?
Dreams are created by the brain’s activity while we sleep. Scientists also know that their content—the scenes and emotions that get incorporated into them–is pulled from our recent thoughts and experiences while we’re awake (Stickgold et al., 2001). This explains why I was dreaming about mice!

But, my question isn’t fully answered yet: Was dreaming about mice what caused the memory consolidation that led to my humorous interpretation?

Neuroscientists actually don’t yet understand the relationship between dreaming and memory consolidation. But, some current research can help to shed some light on the subject.

A recent study by Siclari et al. (2017) identified a certain part of the brain they called a “hot spot” for dreaming. Whenever a certain type of activity is detected in this area—the back half of the brain, lying directly behind your ears—you are likely dreaming!

In order to do this, researchers used a machine called an electroencephalogram (EEG) to measure people’s brain activity while they were sleeping. Using sensors placed all over each subject’s head, this machine detects changes in electrical activity, telling researchers the patterns in which brain cells are firing (Britton et al., 2016).

Electroencephalogram (Image from Michigan Advanced Neurology Center)

In this study, people wearing EEG sensors (shown in the picture above) were awakened at random points during a night’s sleep and asked to report if they had been dreaming. By looking at the EEG data, the researchers were able to determine that high frequency activity—meaning that brain cells were sending signals very quickly—was associated with dreaming when it occurred in the back half of the brain. This means that they were able to predict whether someone was having a dream or not (Siclari et al., 2017)!

So what does that mean for me? The conclusions of this study suggest that dreams are actually less likely to occur during SWS, which is associated with low-frequency activity. Since this activity signals when memory consolidation occurs, it is not clear if dreaming about mice helped my brain consolidate the memory.

Dreams of neuroscience experiments (Image from ScienceABC.com)

But, it’s still not clear if dreams have a role in consolidating memories. In the realm of neuroscience research, these findings are important, but they don’t exactly align with what has been suggested in the past. Some researchers have found that dreaming about an experience enhances one’s ability to recall it (Fiss et al., 1977; De Koninck et al., 1990; Wamsley 2014). Still, this is an essential step in understanding the mechanisms of memory consolidation in sleep: dreams likely have some functions that we haven’t fully uncovered yet!

In conclusion, it is still amusing to me how my daily experiences—solidified into my memory during sleep—shaped my interpretation of this advertisement in such an entertaining way! Certainly my experiences in class contributed a lot about rodents to my memory bank, and I’m grateful for it: If nothing else, it gives me an extra opportunity to chuckle to myself every day on an otherwise monotonous metro ride!

References:

Brain Basics: Understanding Sleep. (n.d.). Retrieved from https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Understanding-Sleep

Britton J.W., Frey L.C., Hopp J.L., et al. (2016). Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. American Epilepsy Society. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390346/

De Koninck, J., Christ, G., Hébert, G., Rinfret, N. (1990) Language learning efficiency, dreams and REM sleep. Psychiatr J Univ Ott. 15:91-92.

 

Debunking Sleep Myths: Does Your Brain Shut Down When You Sleep? (n.d.). Retrieved from https://www.sleepfoundation.org/articles/debunking-sleep-myths-does-your-brain-shut-down-when-you-sleep.

 

Fiss H, Kremer E, Litchman J. (1977).The mnemonic function of dreaming. Sleep Res. 6:122

Hasselmo, M. E. (1999) Trends Cogn. Sci. 3:351-359.pmid:10461198

Que signifie le logo RATP ? Creads décrypte ! Design Tribe. 06 May 2019. 17 June 2019 <https://www.creads.fr/blog/logos/ratp-logo-signification>.

Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J., Riedner, B., … Tononi, G. (2017). The neural correlates of dreaming. Nature neuroscience, 20(6), 872–878. doi:10.1038/nn.4545.

Wamsley, E.J. (2014) Dreaming and offline memory consolidation. Curr Neurol Neurosci Rep.14:433. doi:10.1007/s11910-013-0433-5.

 

Images:

https://www.creads.fr/app/uploads/sites/1/2017/06/xblog_header_logo-ratp.png.pagespeed.ic.i85aUDxX_m.png

https://www.creads.fr/app/uploads/sites/1/2017/06/xratp_paris-1080×360.jpg.pagespeed.ic.kCFNHediBC.jpg

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwiSkJfisfHiAhVEz4UKHaDuAhwQjRx6BAgBEAU&url=https%3A%2F%2Fwww.shutterstock.com%2Fsearch%2Flab%2Brat&psig=AOvVaw3hoyYBXrLGKLqHFqXyVCRE&ust=1560890866488329

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwjQzP_vsfHiAhXOxYUKHfERCY0QjRx6BAgBEAU&url=http%3A%2F%2Fdrmridha.com%2Fservices%2Feeg&psig=AOvVaw2kTv60u9LU2CwlYwZhFSf-&ust=1560890899835683

https://www.scienceabc.com/wp-content/uploads/2015/09/Happy-smiling-kid-sleeping-and-smiling-in-her-sleep.-Dream-the-little-princess-on-a-white-bed-close-up-speaking-in-dream.-Vitalinkas.jpg

Hyperlinked sites and videos:

https://www.ratp.fr/en/groupe-ratp

https://www.youtube.com/watch?v=I3j2VrhqTAA

https://www.youtube.com/watch?v=iWo90uxkNM0

https://www.creads.fr/blog/logos/ratp-logo-signification

Accents away from Accent

This weekend I went on a crazy, fun, whirlwind trip to London along with Shelby, Kendall, Jamie, Alyssa, and Merry. While we were only there for a day and half, we managed to see Buckingham Palace, Westminster Abbey, Big Ben, London Bridge, and most of the other major famous sites. As we raced all over the city in the underground, I kept accidentally saying “pardonne-moi” and “désolé” to everyone I bumped into. Only, for the first time in weeks, everyone around us was speaking English. But, even though we all speak English, the way that the locals around us pronounced words and phrases was still different than our own speech.

 

Of course, from the moment we arrived in England, we were sounded by English accents. Several of us found ourselves fascinated by these accents and, when we were safely out of earshot, we even did our best to imitate them. Yesterday morning as I sat on the train back to Paris, I decided to try to find out what it is about our brain that allows to recognize, use, and understand different accented versions of the same language.

Westminster Abbey

Determining exactly what parts of the brain allow us to understand unfamiliar accents is a difficult task, but there is a growing body of research on this topic. Many of the studies on accent comprehension use functional magnetic resonance imaging (fMRI) to detect changes in brain activity and as subjects listen to sounds or sentences in different accents (Ghazi-Saidi et al., 2015).

A recent review of this research and found that other researchers have identified areas like the left inferior frontal gyrus, the insula, and the superior temporal sulci and gyri as having higher activity when listening to accented speakers produce sounds (Callan et al., 2014; Adank et al., 2015).Interestingly, many of these brain areas are the same regions that have been identified as important for understanding foreign languages (Perani and Abutalebi, 2005; Hesling et al., 2012).Some of these areas that are important for understanding unfamiliar accents – including the insula, motor cortex and premotor cortex – have also been implicated in the production of these accents (Adank et al., 2012a; Callan et al., 2014; Ghazi-Saidi et al., 2015). 

Investigating the production of accented speech is also an exciting field of study. Interestingly, one of the main ways we have learned about accent production is through case studies of patients with Foreign Accent Syndrome (FAS). FAS is a fascinating motor speech disorder where patients speak in a different accent than they originally used, typically following brain damage (Keulen et al., 2016). This condition was actually first identified here in Paris by Pierre Marie¹, a French neurologist (Keulen et al., 2016). After recovering from a brain hemorrhage, Marie’s patient had an Alsatian French accent instead of his original Parisian one (Marie, 1907). Since then, nearly 200 cases of this rare disease have been identified (Mariën et al., 2019).

Pierre Marie

However, it is hard to draw conclusions from individual case studies with just one patient. In a recent metanalysis (a procedure where data from other studies is combined and analyzed), Mariën et al. looked at 112 different published cases of FAS to draw larger conclusions about this rare disease. The authors were particularly interested in cases of FAS that occurred after a stroke, but they analyzed case studies from patients with all different kinds of brain damage.

To review these cases, Mariën et al. first compiled published case studies that reported the cause and symptoms of a patient’s FAS from Pierre Marie’s case in 1907 through October 2016. They then calculated and analyzed the demographic, anatomical, and symptomatic features of these FAS patients to look for larger trends across the different cases.

The authors found that there are statistically significantly more female patients (68% of cases) than male patients in these 112 FAS cases. Additionally, a significant and overwhelming majority (97%) of cases were in adults. In more than half the patients (53%) FAS was present following a stroke.

For those patients who developed FAS following a stroke, the authors also analyzed where in the brain their vascular damage was. The most commonly damaged brain areas (60% of vascular FAS patients) were the primary motor cortex, premotor cortex and basal ganglia which are all important for the physical ability to produce voluntary speech (Brown, Schneider, & Lidsky, 1997). The authors also found that 13% of these vascular FAS patients had damage in the insula, an area that has also been identified as important for accented speech production in studies of healthy subjects (Ghazi-Saidi et al., 2015).

The Insula

I think FAS is a fascinating disorder, but is important to remember that, like any case studies, these reports have a limited ability to tell us about how healthy people produce accented speech. The naturally occurring brain damage in these FAS patients is not necessarily localized, and other brain areas besides for the primary lesion location could have been affected by the damage. Furthermore, there are some cases of psychological (as opposed to neurological) FAS which complicates our understanding of the onset of this disease (Keulen et al., 2016).

While there is still a lot to learn about understanding how we construct and comprehend accented speech. Studies of FAS patients, particularly large metanalyses like this one, have just begun to identify some of the key brain areas that are reliably indicated in accent production. These findings provide a good starting point for future researchers to analyze these brain areas further and possibly study their role in healthy patients’ accents, which can help us all understand each other a little better.

 

Footnotes

1 – As a side note for my NBB 301 classmates: Pierre Marie is the “Marie” in Charcot-Marie-Tooth disease, a glial disease that affects Schwann cells. He was also a student of Jean-Martin Charcot and was one of the people depicted in the famous painting A Clinical Lesson at the Salpêtrière that we saw at the Musée de l’Histoire de la Médecine today.

 

Images

Westminster Abbey: taken by me

Pierre Marie: https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/PierreMarie.jpg/230px-PierreMarie.jpg

Insula: https://upload.wikimedia.org/wikipedia/commons/b/b4/Sobo_1909_633.png

 

References

Adank P, Davis M, Hagoort P (2012a). Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia50, 77–84. 

Adank P, Nuttall HE., Banks B, & Kennedy-Higgins D (2015). Neural bases of accented speech perception. Frontiers in human neuroscience9, 558. doi:10.3389/fnhum.2015.00558

Brown L, Schneider JS, & Lidsky TI (1997). Sensory and cognitive functions of the basal ganglia. Current Opinion in Neurobiology, 7, 157–163.

Callan D, Callan A, & Jones, JA (2014). Speech motor brain regions are differentially recruited during perception of native and foreign-accented phonemes for first and second language listeners. Frontiers in neuroscience8, 275. doi:10.3389/fnins.2014.00275 

Ghazi-Saidi L, Dash T, Ansaldo AI (2015). How native-like can you possibly get: fMRI evidence in a pair of linguistically close languages, special issue: language beyond words: the neuroscience of accent. Front. Neurosci. 9:587.

Hesling I, Dilharreguy B, Bordessoules M, Allard M. (2012). The neural processing of second language comprehension modulated by the degree of proficiency: a listening connected speech FMRI study. Open Neuroimag. J. 6, 1–11.

Keulen S, Verhoeven J, De Witte E, De Page L, Bastiaanse R, & Mariën P (2016). Foreign Accent Syndrome As a Psychogenic Disorder: A Review. Frontiers in human neuroscience, 10, 168.

Marie P (1907). Un cas d’anarthrie transitatoire par lésion de la zone lenticulaire. In P. Marie Travaux et Memoires, Bulletins et Mémoires de la Société Médicale des Hôpitaux; 1906: Vol. IParis: Masson pp. 153–157.

Mariën P, Keulen S, Verhoeven J (2019) Neurological Aspects of Foreign Accent Syndrome in Stroke Patients, Journal of Communication Disorders, 77: 94-113,

Perani D, Abutalebi J (2005). The neural basis of first and second language processing. Curr. Opin. Neurobiol. 15, 202–206.

L and R: Brain and Politics

Do you hear the people sing? Singing a song of angry men? It’s the music of the yellow vests who shut down subway stops on weekends.

As dedicated as I have been to eating Saturday brunch, the yellow vests (gilets jaunes to the French) have been just as dedicated to convening on Saturday afternoons to protest. The yellow vests are a French populist group mostly made up of members of the working and middle classes who express frustration about slipping standards of living. For the past few months since October 2018, the yellow vests have been showing up every weekend in major Paris locations to protest for lower fuel taxes, redistribution of wealth, an increase in minimum wage, and even the resignation of French President Macron (Diallo, 2018). I remember reading throughout the semester New York Times articles about these protests back when I was in America, and it all seemed very removed from where I was at the time. But now, there is no way to forget when every weekend I receive an email from our study abroad program center about the yellow vests’ path of protest for the weekend and have to track what popular tourist areas will be out of commission for the day. Indeed, Les Mis was not all that misleading. It seems that since the beheading of Queen “Let Them Eat Cake,” the French people have not been able to shake the love of a good revolution or protest from their society. But it is definitely not only the French that enjoy political demonstrations; from 1960s UC Berkeley students to my pink knitted hat compatriots, America has a its own unique history with political movements. I wanted to know – what is it about politics that seems so intrinsic and enticing that people are motivated to come out, rain or shine, to walk around and yell collectively??

major sites of closure yellow vest protests have caused

Part of the reason that being a part of a political movement can be so enthralling is the association with a political party that people flaunt. This gives members of the group a sense of belonging, which is a basic human need involving complex emotions of love, pride, and emotional excitement (Jasper, 2011). In America and many other nations, there is a divide between the liberal left and the conservative right. The ideological labels of “left” and “right” have been around since the time Christian symbolism associated right with “liking for or acceptance of social and religious hierarchies” and the left with “equalization of conditions through the challenge of God and prince.” This fundamental difference in political ideology has remained relatively intact throughout the centuries since then (Jost, 2014). While for many year scientists have assumed political orientation to be solely the result of upbringing and environmental factors, there have recently been studies identifying biological influences on individual’s political attitudes. This field of study falls under neuropolitics, or the study of how neuroscience and political science intersect (Schreiber, 2017).

In a 2011 study that tried to elucidate whether brain structure differences could be linked to political associations, the brain region of the anterior cingulate cortex (ACC) was studied. The ACC has connections to both the “emotional” limbic system” and “cognitive” prefrontal cortex of the brain and is involved with conflict monitoring – the task of detecting conflicts in information processing and then signaling when increased cognitive control must be recruited (Yeung, 2013). The 90 young adult test subjects were first asked to self-report their political attitude on a five-point scale ranging from “very liberal” to “very conservative.” Although a simple scale, this self-reported result has been shown to accurately predict voting behavior. Magnetic resonance imaging (MRI) scans that show detailed images of the brain were then taken of each subject to assess differences in volume of ACC. Results of their scans after controlling for age and gender variables showed that increased gray matter volume in the ACC was significantly associated with liberalism. This hinted that individuals with larger ACC may tolerate uncertainty and conflicts better and allow them to hold more liberal views. The same study also looked at the amygdala, which is involved in processing emotional responses such as fear and aggression, to look for links between gray matter volume of amygdala and political ideology. By evaluating amygdala volume and political attitudes, researchers saw there was an increased amygdala volume associated with conservatism, suggesting that conservatives respond to threatening situations with more aggression and have a heightened sensitivity to fear (Kanai et al., 2011).

a. Results showing ACC volume in comparison with political ideology
b. Results showing amygdala volume in comparison with political ideology

Of course, the question of “which came first, the chicken or the egg?” also applies here: are people more inclined to lean a certain political direction based on biologically predetermined brain differences or do people’s political ideology lead to slight but significant changes in brain structure? I would have been interested to hear if the researchers had any thoughts on this or had long-term data comparing subjects to look for correlations that may have helped answer this question. The researchers also mention a stipulation to their results that abstract reasoning and thinking often requires widespread brain regions and cannot be traced back to one specific brain region. Additionally, a recent review of neuropolitics warns people of the “pathologisation of politics” which essentially chalks up political problems into biological deviations (Altermark & Nyberg, 2018). I think this is especially pertinent as weaponizing neuroscience in order to reduce those you do not agree with is not the purpose of studying the brain. Overall, no matter left or right, remember the brain functions best with both working together!

 

Bibliography

Altermark, N., Nyberg, L. (2018) Neuro-Problems: Knowing Politics Through the Brain. Culture Unbound, 10, 31-48.

Diallo, R. (2018, December 19). Why are the ‘yellow vests’ protesting in France? Al Jazeera, Retrieved from https://www.aljazeera.com/indepth/opinion/yellow-vests-protesting- france-181206083636240.html

Jasper, J.M. (2011) Emotions and Social Movements: Twenty Years of Theory and Research. Annual Review of Sociology, 37, 285-303.

Jost, J.T., Nam, H.H., Amodio, D.M. & Van Bavel, J.J. (2014) Political Neuroscience: The Beginning of a Beautiful Friendship. Political Psychology, 35, 3-42.

Kanai, R., Feilden, T., Firth, C. & Rees, G. (2011) Political orientations are correlated with brain structure in young adults. Curr Biol, 21, 677-680.

Schreiber, D. (2017) Neuropolitics: Twenty years later. Politics and the Life Sciences, 36, 114- 131, 118.

Yeung, N. (2013). Conflict monitoring and cognitive control. In: Oxford Handbook of Cognitive Neuroscience (Ochsner, K. and Kosslyn, S., eds), Oxford University Press (in press).

Image 1: https://www.usnews.com/news/world/articles/2019-02-09/more-violence-in-paris- as-yellow-vests-keep-marching

Image 2: https://www.bbc.co.uk/news/world-europe-46499996 Image 3: Kanai et al., 2011

Language overload!!

The moment I landed in Paris, I was excited to finally use the language that I had been learning for so many years, in a non-classroom setting. During the past few weeks, I have been using all the slang words I’ve learnt.

When I was a kid, my dad was responsible for talking to me in Hindi and my mom in English. If that wasn’t enough, every weekend for around five years, I attended classes at Alliance Française. I don’t even want to calculate how many hours that must add up to… As a kid, at times I dreaded going to these classes (sorry Mom, if you’re reading). But when I started pursuing French as my second major at Emory, I realized how useful it is to know so many languages. After spending these past few weeks in Paris, I was curious to better understand the impact of multilingualism on the brain.

Figure 1: Alliance Française in New Delhi, India – where I spent many, many hours…

Figure 2: Featuring me using my French skills to say “Non merçi” to all the vendors at Sacré Coeur in Paris

Since language is such a critical capability, it is not shocking that an increasing amount of research is being done on the neural substrates of language. The consensus is that there is no “one area” of the brain that is solely responsible for language. It may be helpful to gain a brief overview of the main parts of the brain involved in language. Two of the important brain areas involved in language are Broca’s area and Wernicke’s area. Broca’s area plays a critical role in speech production and Wernicke’s area in speech comprehension (Fujii et al., 2016).  However, these two areas not only “communicate” with each other through the arcuate fasciculus, but they also communicate with other areas in the left and right hemispheres of the brain (Fujii et al., 2016).

Figure 3: Important brain areas for language

But why is knowing multiple languages considered impressive? Apart from enabling communication with people across the world, does being multilingual actually have any positive neurological impact? One study suggested that there may in fact be a neural basis for the ability of “Lifelong bilingualism to maintain youthful cognitive control abilities in aging” (Gold et al., 2013). In this study, 110 participants were asked to engage in task-switching. Task-switching was used since it provides insight into how capable participants are of adjusting to changing stimuli (Gold et al., 2013). But what exactly was the task that the researchers used? Participants were shown objects very quickly in the center of a screen. If the object was blue, they had to respond with one button and if it was red, then with a different button (Gold et al., 2013).  Without any warning, the participants were then asked to react using the same buttons but while concentrating on the shape of the objects (Gold et al., 2013). The results suggested that older adult bilinguals had a decreased reaction time (RT), which means a faster response, than monolinguals when task-switching (Gold et al., 2013).

But how can we know what is going on in the brain while these participants are performing this task? And what do the results really mean? To answer these questions, participants were asked to perform this same task while fMRI (functional magnetic resonance imaging) was performed. fMRI measures brain activity when a person is at rest, to analyze brain activity. The amount of activation of brain areas can be quantified using BOLD signal. A high BOLD signal can be seen when neuronal activity increases in a part of the brain, seen when there is an increase in the cerebral blood flow to that part of the brain (Gold et al., 2013). Similar to the younger adults, bilingual older adults performed better the monolinguals with evidence of less activation (lower BOLD response) in the left dorsolateral prefrontal cortex, the left ventrolateral prefrontal cortex and anterior cingulate cortex (Gold et al., 2013).  These frontal brain regions play critical roles in decision making and “effortful processing” (Gold et al., 2013).  Therefore, less activation of these brain areas may suggest that the reason lifelong bilingualism may be advantageous is because cognitive control processing changes from effortful to “more automatic” (Gold et al., 2013). The authors claim that this provides evidence for increased “neural efficiency” and a “cognitive control advantage” in bilinguals (Gold et al., 2013). This “cognitive control advantage” may enable bilinguals to be better equipped to respond to changing environments and even diminish the possibility of age-related cognitive decline (Gold et al., 2013).

If bilingualism may protect from age-related declines in cognitive control processes why don’t we all just pick up some Rosetta Stone books now? I began to think back to a few years ago when my grandmother was trying to teach me to speak and write in Punjabi. I really tried very hard to learn the alphabet but with slim to no success, to my grandmother’s despair. So, could this mean that it actually becomes more difficult to learn a language as we got older? Researchers at MIT used a quiz to measure the grammatical ability of 670,000 people of various nationalities and ages (K. Hatshorne et al., 2018). The results of the study suggested that children were best at grammar learning and that learning a language before the age of 10 is the best way to attain native level proficiency (K. Hatshorne et al., 2018). I would highly recommend taking this quiz they used!

Figure 4: Quiz used by MIT researchers to assess grammatical ability

However, it seems that this is still a developing field of research. Some are leaning towards focusing on research that suggests that age can be a hindering factor in learning language, while others think that it may be worthwhile to investigate if foreign language training can be used as cognitive therapy for age-related cognitive decline, even if started later during adulthood (Pfenninger et al., 2018).

While we may still be investigating the neurological impacts of multilingualism, I can assure you that knowing more than one language will not only impress your future boss but will also help you (and everyone traveling with you J ), if you decide to study/spend time abroad!

References
Fujii, M., Maesawa, S., Ishiai, S., Iwami, K., Futamura, M., Saito, K. (2016). Neural Basis of Language: An Overview of An Evolving Model. Neurologia medico-chirurgica, 56(7), 379–386. doi:10.2176/nmc.ra.2016-0014

Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., Smith, C. D. (2013). Lifelong
bilingualism maintains neural efficiency for cognitive control in aging. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(2), 387–396. doi:10.1523/JNEUROSCI.3837-12.2013

K. Hartshorne, J., & B. Tenenbaum, J., Pinker, S. (2018). A critical period for
second language acquisition: Evidence from 2/3 million English speakers. Cognition. 177. 10.1016/j.cognition.2018.04.007

Pfenninger, S. E., Polz, S. (2018). Foreign language learning in the third age: A pilot feasibility study on cognitive, socio-affective and linguistic drivers and benefits in relation to previous bilingualism of the learner. Journal of the European Second Language Association, 2(1), 1–13. DOI: http://doi.org/10.22599/jesla.36

Perani D, Farsad M, Ballarini T, Lubian F, Malpetti M, Fracchetti A, Magnani G, March A, Abutalebi J .(2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proc Natl Acad Sci USA. 114:1690–1695.

Figure 1: Image of Alliance Francaise, New Delhi, India. Retrieved from https://lbb.in/delhi/alliance-francais-de-delhi/

Figure 2: Taken by me at Sacré Coeur in Paris

Figure 3: Parts of the brain that control speech. Retrieved from https://www.researchgate.net/figure/Language-specific-areas-in-the-brain_fig1_317356553

Figure 4: Quiz used by MIT researchers to assess grammatical ability. Screenshot retrieved from http://archive.gameswithwords.org/WhichEnglish/

Paris or Provence?

I somehow manage to squeeze onto the packed metro. I’m jammed in between the door and the countless people annoyedly gazing in my direction. I am overwhelmed. Right when I think this is the extent of this morning’s stimulation, the sound of accordion song busts into my ears. These chaotic metro rides were exciting during the first week or so in Paris; they were part of getting immersed in the culture! However, the honeymoon phase ended, and the metro became more stressful than exhilarating. That’s when this past weekend came to the rescue, providing a much needed break from the hectic, bustling Paris. The class took a trip to Provence, a region in southern France known for its colorful countryside, Roman architecture, and extensive art history. The difference in lifestyle was immediately noticeable. Everyone went about their day in a much more relaxed manner; there was no concept of time. This was quite the contrast from Paris, the city where everything is done in a rush. Whether you are navigating the crowded streets or shoving your way onto the metro, it seems you never get a break from the constantly accelerating Parisian lifestyle.

Cinematic shots in Avignon

Mullerthal region of Luxembourg, known for its impressive rock structures

The trip to Provence left me feeling refreshed. It was as if all the stress accumulated from the prior two weeks had been erased, and I was returning to Paris with a clear head. This made me realize how powerful the suburbs and nature can be towards influencing one’s mood. Most notably, when we visited the Pont du Gard aqueduct during the trip, the pristine, never ending river made me feel completely at peace. I couldn’t get enough, though, so I went for a hiking trip in Luxembourg this weekend and the nature had the same restorative effect. This made me question the effects of living in the city versus living in the suburbs. If just two days away from the city can be like hitting a reset button, are there permanent effects or consequences from living in one environment or the other? There have been various findings that suggest that urban living may pose a threat to our health.

At Pont Du Gard

Studies suggest that we undergo neurological and behavioral changes due to living in evolutionarily unfamiliar settings (cities) (Lambert et al., 2015). Research on this topic dates all the way back to 1868, when Charles Darwin found that the brains of domesticated rabbits were smaller than those of wild rabbits (Darwin, 1868). About one hundred years later, in 1972, there was a study that compared mice brains in natural and artificial environments. The natural environment had things such as logs and tree branches, whereas the artificial environment consisted of plastic toys. Mice were allowed to live in either of these environments for four to ten weeks, and were then autopsied. The results showed that the naturally-enriched group showed higher levels of DHEA, a hormone linked with positive health influences such as more emotional resilience (Starka et al., 2014; Rosenzweig et al., 1972). There is even evidence in humans of the positive neural effects of nature and the negative effects of urban environments. For example, humans showed an increase in prefrontal cortex activity when viewing an actual plant compared to viewing an image of that same plant (Igarashi et al., 2014). Furthermore, a recent study from the UK suggests that children raised in urban environments are at an increased risk for psychotic symptoms, such as anxiety, depression, and schizophrenia (Newbury et al., 2016). These findings are theorized to be due to lower social cohesion paired with more crime victimization seen in urban neighborhoods (Newbury et al., 2016).

The various forms of pollution experienced in urban environments also have a negative influence on our overall health. Light pollution is no exception. Light exposure at night interferes with the body’s natural circadian rhythm (McClung, 2007), in turn interfering with hormone secretion and other physiological processes (Stevens et al., 2013). This can pose serious health problems. For example, a 2008 study found a strong correlation between light at night and breast cancer incidence in about 150 different communities (Kloog et al., 2008). Animal studies have shown similar results, too. A study on hamsters in which they were exposed to constant light, both at night and day, caused them to show less locomotor activity, less preference for a sucrose solution, and dampened daily cortisol rhythms compared to control mice living in an environment with a natural lighting pattern (Bedrosian et al., 2013). These symptoms are considered to be representative of depression (Bedrosian et al., 2013). Light pollution is thus another factor of urban living that may lead to diminished mental and overall health.

Image result for light pollution map

A map of the world’s light pollution

All the studies discussed above make urban living sound quite horrific, but it should be mentioned that it is difficult to draw broad conclusions from them that can be applied to our lives as humans. For example, in field studies done on humans, the samples taken usually represent small populations and it is almost impossible to control for confounding variables. In the studies done in the lab, on both humans and animals, it is impossible to recreate the environments and experiences that everyday life provides us with. This being said, these findings do still suggest that urban living could pose health concerns to us, and possibly future studies will be more conclusive.

Although city life has its perks, such as better access to health care and more job exposure, both past and recent research suggest that an occasional break from the scurry of everyday life certainly wouldn’t hurt.

Sources:

Bedrosian TA, Galan A, Vaughn CA, WeilZ M, Nelson RJ. Nocturnal light alters diurnal patterns of cortisol and clock proteins in female hamsters. J Neuroendocrinol. 25:590–0606. (2013).

Darwin C.  The variation of Animals and Plants under Domestication. 1s. London: John Murray; (1868).

Igarashi M, Song C, Ikei H, Miyazaki Y. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants. J Neuroimaging. (2014).

Joanne Newbury, Louise Arseneault, 1 Avshalom Caspi, Terrie E. Moffitt, Candice L. Odgers, and Helen L. Fisher. Why Are Children in Urban Neighborhoods at Increased Risk for Psychotic Symptoms? Findings From a UK Longitudinal Cohort Study. Schizophr Bull. 42(6): 1372–1383. (2016).

Kelly G. Lambert, Randy J. Nelson, Tanja Jovanovic, and  Magdalena Cerdá. Brains in the City: Neurobiological effects of urbanization. Neurosci Biobehav Rev. 58, 107-122. (2015).

Kloog I, Haim A, Stevens RG, Barachana M, Portnov BA. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int. 25:65–81. (2008).

McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. 11:222–232. (2007).

Rosenzweig MH, Bennett EI, Diamond MC. Brain changes in response to experience. Scientific American February. 22–30. (1972).

Starka L, Duskova M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Molecul Biol. (2014).

Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med. 45:343–346. (2013).

Image: https://brilliantmaps.com/light-pollution/

USA! USA! USA!

The World Cup.  These three words are arguably the most popular in the world – well, maybe it’s “I love you”, but “The World Cup” is probably a close second.  Every four years, the most elite national soccer teams assemble to partake in a tournament viewed by billions worldwide.  It’s an event of immense magnitude, immeasurable spectacle, and the highest stakes in sports.  This year, the FIFA Women’s World Cup is being hosted by France, with multiple games in Paris!  Seeing as I live in the United States, where we haven’t yet fully embraced the beautiful game, it is a rare occurrence to attend high level soccer matches; so, a few days ago, when our class had the unbelievable experience of attending a group-stage match in the 2019 Women’s World Cup between the United States of America and Chile, I was over-the-moon excited.

Faces painted, ready for the game!!

The game did not disappoint, the United States dominated Chile, especially in the first half where they scored three goals, including a super-strike from veteran Carli Lloyd.  However, despite the beat down imposed upon the Chileans, the atmosphere remained lively.  Thunderous chants of “Chi-Chi-Chi Le-Le-Le, ¡Viva Chile!” clashed with shouts of “USA! USA! USA!” for the entire 90 minutes, and with every goal scored by the United States women, the thrill of ensuing victory became more intensely expressed on the players’ faces.

Amazing view to watch the United States take on Chile in the 2019 FIFA Women’s World Cup

While the triumphant screams, hugs between teammates, and big smiles made their emotions evident on the surface, a more complicated biological phenomenon was occurring inside the bodies of the athletes.  In a recent study published in 2015, Drs. Kathleen Casto and David Edwards examined how levels of certain hormones fluctuated during different stages of competition in female soccer players (Casto and Edward, 2015).  Competition, at its heart, is a contest for social status driven by a desire to be superior to an opponent (Casto and Edwards, 2015).  This desire seems to be heavily linked with the neuroendocrine system – a physiological system in which the central nervous system regulates hormone production (Martin, 2001) –  and with three hormones in particular: testosterone, cortisol, and estradiol (Casto and Edward, 2015).  Both testosterone (Carré and Olmstead, 2015) and estradiol (Stanton and Schultheiss, 2007) are related with dominance motivation and aggressive behavior, while cortisol is related with stress (Dickerson and Kemeny, 2004).

This study, conducted by Emory University researchers, analyzed salivary levels of testosterone, cortisol, and estradiol from the Emory University varsity women’s soccer team in five conditions: a baseline condition (three days before a match), before warming up for a match, shortly before the beginning of the match, immediately after the match, and 30 minutes after the match (Casto and Edwards, 2015).  In addition to comparing hormone levels during different parts of the match, levels during both a home game and an away game were analyzed to investigate whether playing in front of an opposing crowd influenced hormone levels (Casto and Edwards, 2015).

A figure depicting the change in hormone levels during different stages of a soccer match (Casto and Edwards, 2016)

When analyzing testosterone levels, the researchers found no significant difference between the athlete’s baseline levels and their levels before warming up (Casto and Edwards, 2015).  However, testosterone levels after completing a warm-up rose 22% from levels before the warm-up (p<0.001) during a home game and 32% (p<0.001) during an away game (Casto and Edwards, 2015).  Immediately following the conclusion of the game, testosterone levels were 19% (p=0.046) higher than during warm-ups at a home game and 18% (p=0.003) higher during an away game (Casto and Edwards, 2015).  30 minutes after the game’s conclusion, testosterone levels dropped 16% for a home game (p<0.001) and 26% for an away game(p<0.001) (Casto and Edwards, 2015).

Like testosterone levels, cortisol levels also displayed variation during different stages of competition.  However, whereas testosterone levels continuously rose from before a warm-up to immediately after competition, cortisol levels were significantly elevated prior to warming up but did not significantly change after a warm-up (Casto and Edwards, 2015).  Cortisol levels peaked immediately after the end of the match, where they were elevated 142% (p=0.001) after a warm-up during a home game and 131% after an away game (p=0.002) (Casto and Edwards, 2015).  30 minutes after a match’s end there were no significant changes in cortisol levels (Casto and Edwards, 2015).  I, for one, find this cortisol data especially surprising because, when I used to play sports, I remember feeling the most stressed immediately before a game, not during it, and, as cortisol is a stress hormone, I would have expected cortisol levels to be at their peak immediately preceding a game.  Estradiol also fluctuated throughout stages of competition, as its levels significantly increased both before and during a warmup (Casto and Edwards, 2015).  However, immediately after competition, estradiol levels significantly decreased and did not show any significant changes 30 minutes after the game (Casto and Edwards, 2015).

Interestingly, when this study statistically compared hormone levels during a home game to those during an away game, there were no statistical differences (Casto and Edwards, 2015).  Maybe home-field advantage is not that big of a deal after all.  Perhaps most surprising to me about this study though, was that the data did not show any significant differences in hormone levels when either winning or losing (Casto and Edwards, 2015).  Another measurement I think the study could have taken for a potentially more in-depth analysis is hormone levels at half-time.  At half-time, players can rest for a few minutes to catch their breath, but, while resting, are getting coached by the manager to make adjustments in preparation for the second half.  Even though the players’ bodies are resting, their brains are still working hard in anticipation of the rest of the game, so it would be pertinent to study hormone levels at half-time.

Ultimately, the research by Casto and Edwards brings to light some fascinating and surprising conclusions about the neuroendocrine system’s activity during physical competition.  Now that I’ve learned a bit more about hormone fluctuation in athletes, I wonder how hormone levels in fans, such as myself, would change while watching a match.

 

 

______________________________________________________

References

Carré, J., & Olmstead, N. (2015). Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience, 286, 171-186. doi:10.1016/j.neuroscience.2014.11.029

Casto, K. V., & Edwards, D. A. (2015). Before, During, and After: How Phases of Competition Differentially Affect Testosterone, Cortisol, and Estradiol Levels in Women Athletes. Adaptive Human Behavior and Physiology, 2(1), 11-25. doi:10.1007/s40750-015-0028-2

Martin, J. V. (2001). Neuroendocrinology. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (pp. 10585-10588). Retrieved from https://doi.org/10.1016/B0-08-043076-7/03420-3

Stanton, S. J., & Schultheiss, O. C. (2007). Basal and dynamic relationships between implicit power motivation and estradiol in women. Hormones and Behavior, 52(5), 571-580. doi:10.1016/j.yhbeh.2007.07.002

 

OMG, More Stairs?!?

When I came to Paris, I thought I was prepared for everything: the bakeries, the museums, the landmarks, the culture — but nothing could have prepared me for the walking I was about to do. Unlike the suburban areas around Emory or my hometown of Topeka, Kansas, where a car is considered necessary for most outings, the streets of Paris are easily traversable by foot, and public transportation is much more accessible. And in a city so beautiful, I had a hard time refusing the ease of foot travel. Still, with the recent muggy weather, walking hasn’t felt quite as pleasant. People always say “no pain, no gain,” and I began to wonder what all my walking was doing for me brain-wise.

My steps before and after I came to Paris. As one can see, my steps significantly increased after I came to Paris, May 22th.

Turns out, there’s a lot to be gained from regular aerobic exercise. Consistent research has pointed to the role of physical activity in cognitive function and has grown in volume over the past decade (Soga et al., 2015). General movement has been suggested to contribute to brain plasticity, which in turn facilitates interaction between cognitive and motor functioning (Doyon and Benali, 2005). Furthermore, research has also linked physical activity to academic performance (Castelli et al., 2007). While these results doesn’t necessarily mean that taking up routine walking or running will guarantee better grades or memory, the two do seem to be invariably related.

Amidst this burgeoning research, Colcombe and colleagues decided to research the cortical mechanisms beneath cardiovascular fitness-related changes in cognitive function (Colcombe et al., 2004). Functional magnetic resonance imaging (fMRI) was used to study how changes in fitness might affect the brain. Researchers particularly focused on the anterior circular cingulate (ACC), an area of the limbic system linked to brain structures responsible for sensory, motor, emotional, and cognitive information (Bush et al., 2000).

The study took place in 2 segments, with Study 1 involving high-fit (HF) older adults, and Study 2 involving adults randomly assigned to either a cardiovascular fitness training (CFT) group or a stretching and toning group (control) (Colcombe et al., 2004). All participants in both groups underwent a flanker task in which they filtered and identified incongruent cues (Colcombe et al., 2004). The flanker test allowed researchers to study participants’ ability to filter and respond to relevant information (Colcombe et al., 2004). Researchers then compared cortical mechanisms triggered by incongruent clues to those triggered by congruent ones, to see whether HF adults would demonstrate higher activation in attention- and control-related regions (Colcombe et al., 2004).

fMRI scans of the ACC illustrate activation of different cortical areas in the task-related activity (Colcombe et al., 2004).

Sure enough, fMRI scans supported the study’s hypothesis that older adults with high levels of measured cardiovascular fitness would demonstrate significantly more activation in cortical regions linked with attention selection and control (Colcombe et al., 2004). These cortical regions include the medial frontal gyrus (MFG), superior frontal gyrus (SFG), and superior parietal lobe (SPL) (Colcombe et al., 2004). Significantly less activation was observed in the ACC, which is linked with behavioral conflict and adaptation of attentional control (Colcombe et al., 2004).

One weakness of the study by Colcombe and colleagues is the cross-sectional approach taken in Study 1. Being observational, cross-sectional studies are vulnerable to non-response bias, which can lead to a participant pool unrepresentative of the population (Sedgwick, 2014). Furthermore, data can only be collected during one set period of time, leaving researchers unable to create long-term representations of cause and effect (Sedgwick, 2014). However, it is important to note that longitudinal studies might also be difficult to complete with older participants, due to possible interference from disease or other age-related complications (Sedgwick, 2014). Ultimately, the research by Colcombe and colleagues was important at the time of its publication because it expanded upon existing research regarding the underlying cortical mechanisms of cardiovascular fitness.

More recent research by Brockett and colleagues suggests that physical exercise may contribute to extensive plasticity and increased cognitive functioning (Brockett et al., 2015). Rats who ran for moderate durations of 12 days were able to better discriminate than control rats in a task testing medial prefrontal cortex (mPFC) function, though little difference was seen between both groups in a task testing perirhinal cortex (PRC) function (Brockett et al., 2015). In a second experiment, runner rats took less trials and errors than control sedentary rats to reach criteria for simple discrimination, reversal, extradimensional shift (Brockett et al., 2015). Researchers also tested whether running influences astrocytes, non-neural brain cells that communicate with neurons and suggest links to synaptic plasticity, learning, and memory (Brockett et al., 2015). Co-labelling of astrocytes with visual markers revealed increase in astrocytes cell body area in the hippocampus, mPFC, and OFC (Brockett et al., 2015). These results aligned with data from the behavioral tests, suggesting that physical exercise can enhance cognitive performance in tasks that activate the hippocampus, mPFC, and OFC (Brockett et al., 2015). The lack of significant change to the PRC suggests that routine running lacks observable relation to the PRC. Ultimately, results suggest greater cognitive performance in tasks reliant on the prefrontal cortex, as well as enhanced synaptic, dendritic, and astrocytic measures in several regions. This evidence supports the hypothesis that physical exercise contributes positively to plasticity and cognitive functioning. Together, both papers by Colcombe, Brockett, and their colleagues have contributed to the growing understanding that exercise generally promotes greater cognitive functioning.

Brockett and colleagues’ research has made me wonder how much I would have to run to achieve the human equivalent of a rat’s 12-day regimen. As a student, it’s incredibly easy to get sucked into the grind and become deskbound. But the grind is exactly why brain power is important for the students, and optimizing my brain power in exchange for a few minutes and some physical effort has started to sound like a much better idea than the old me would have thought.

References

Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. Public Library of Science ONE 10(5): e0124859. https://doi.org/10.1371/journal.pone.0124859.

Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences. 4(6):215-222. https://doi.org/10.1016/S1364 6613(00)01483-2.

Castelli DM, Hillman CH, Buck SM, Erwin HE (2007) Physical fitness and academic achievement in third- and fifth-grade students. Journal of Sport and Exercise Psychology 29(2):239-252. https://doi.org/10.1123/jsep.29.2.239.

Colcombe SJ, Kramer AF, Erickson KI, Scalf  P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America            101(9):3316-3321. https://doi.org/10.1073/pnas.0400266101.

Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology 15(2):161-167. https://doi.org/10.1016/j.conb.2005.03.004.

Sedgwick P (2014) Cross sectional studies: Advantages and disadvantages. BMJ 348. https://doi.org/10.1136/bmj.g2276.

Soga K, Shishido T, Nagatomi R (2015) Executive function during and after acute moderate aerobic exercise in adolescents. Psychology of Sport and Exercise 16:7-17. https://doi.org/10.1016/j.psychsport.2014.08.010.

Image 1 taken by myself.

Image 2 from Colcombe et al., 2004.

Memories sparked by music

As I was exploring the Electro exhibition at the Philharmonie de Paris, I was in awe of the transformation of electronic dance music over time. I did not know what to expect when I walked through those doors. Although I have recently been exposed to what goes into making a beat, I was truly amazed at the amount of detail and planning that needs to happen in order to create a harmonious sound. However, I don’t listen to electronic music all that often, and I was shocked at how much I was enjoying the exhibit. I realized that some of my favorite memories have been attached to songs and when I hear them, that rush of emotions comes back. I feel like I am reliving some of the best nights. Music has the power to move me emotionally and helps me remember experiences I wouldn’t always remember otherwise. I am always amazed with how much one song can mean to me, not because of the words but because of what memories are associated with it.

Part of the Electro exhibition

As I was walking through the Electro exhibition, I was reminded of some of my favorite nights listening to my friend make music, and it took me back to a time of such happiness. There have been studies conducted that conclude that music is strongly interconnected with memories (Belfi et al, 2015). In one study, participants heard 30 different songs and saw 30 different faces of famous people. The researchers were looking to measure the strength of memories evoked listening to the songs compared to looking at the faces. They found that the participants had stronger memory association for details and specific autobiographical information when listening to the songs (Belfi et al, 2015).  However, the researchers used a self-evaluation survey to rate the strength of autobiographical memory evoked by each stimulus. This recording strategy may have resulted in a bias or inaccurate association. This study helps us understand that it is possible for music to activate memories with greater specificity. The music in the exhibition had a similar effect on me as well. I was able to remember feeling happy and at peace  while sitting in my friend’s apartment listening to electronic music.

The same feeling of happiness and serenity may be triggered years from now by hearing the same kind of music. This phenomenon could be applied to help patients struggling with Alzheimer’s because music has also been shown to enhance memory in these patients (Cuddy and Duffin, 2005). Researchers wanted to test to see if listening to music helped patients learn and recognize new information (Simmons-Stern, 2010). By pairing unknown lyrics with sung or spoken recordings, the researchers measured which modality was easier to remember for these patients (Simmons-Stern, 2010). They found that after showing the song and the spoken word, the patients with Alzheimer’s disease recognized more words in the sung recordings rather than the spoken word as shown in the figure below (Simmons-Stern, 2010). Healthy patients did not have a preference between modality. To strengthen their conclusion, the researchers made sure to leave out any songs the subjects recognized prior to the study. This study helped demonstrate that there is a possibility of heightening arousal and memory for patients with Alzheimer’s disease through the use of music. Heightened memory may describe why listening to the specific music in the exhibit triggered happiness and peace for me.

The Recognition of Song vs. Spoken Lyric for AD and Control Patients

Stimulation in Electro Exhibit where you could make your own beat

Throughout the Electro exhibition, I was impressed with the way the sound made me feel. Even though I was just listening to the beat, I felt so at home in that space. I was truly impressed with how quickly I was able to transport myself to a different moment. As I walked to the part of the exhibit that let me manipulate instruments to make my own beat, I felt so happy, and I realize now that it’s because the music evoked a memory of my best friend teaching me to do the same thing on his computer. The comfort and happiness of that moment flooded me because the music I was listening triggered an emotional memory.

References:

Belfi AM, Karlan B, Tranel D (2015) Music evokes vivid autobiographical memories. Memory24:979–989.

Cuddy LL, Duffin J (2005) Music, memory, and Alzheimer’s disease: is music recognition spared in dementia, and how can it be assessed? Medical Hypotheses64:229–235.

Simmons-Stern NR, Budson AE, Ally BA (2010) Music as a memory enhancer in patients with Alzheimer’s disease. Neuropsychologia48:3164–3167.

Photo of Study:

Simmons-Stern NR, Budson AE, Ally BA (2010) Music as a memory enhancer in patients with Alzheimer’s disease. Neuropsychologia48:3164–3167.

 

 

 

(Motion) Sick Ride, Dude

 

Bonjour tout le monde! (Hello everyone!) I am writing this blog post on the train to Amsterdam. I absolutely love how easy it is to travel throughout Europe. There are so many cities in other parts of France and different countries that are just a short train ride away. For the most part, it is also pretty affordable! So far I have been to Brussels, south France, and now I am heading to Amsterdam.

A view from the train on the way to Amsterdam

Hi again everyone. Now I am writing from Amsterdam. I started to write on the train as you see above, but got motion sick within the first few minutes. So, I stopped and this is my second attempt at writing (not on public transportation). I attribute the very quick on-set of motion sickness to looking out the window at the beautiful scenery, while still trying to type on my computer. In hindsight, that was probably not a great idea. Although it gave me an idea of what to write about for this post! As much as I love the ability to travel by train, I have noticed that I have to be really careful to avoid motion sickness.

Buildings on a canal in Amsterdam

Motion sickness includes symptoms such as dizziness, nausea, tiredness, sweating and headaches (“Motion Sickness”, 2014) But what is the cause of motion sickness? There is a region thought to be connected to motion sickness called the vestibular system (Oman, 1990). The vestibular system is found within your inner ear, and is involved in unconscious perception of head motion. It also is important for orienting yourself in space and navigating your environment (Angelaki and Cullen, 2008).

The Vestibular System within the ear, it is located right above the structures involved in hearing.

The dominating theory for the cause of motion sickness, sensory conflict theory, states that information from the vestibular system and information from our eyes conflict with each other (Warwick-Evans et al., 1998). For example, on the train my vestibular system assumed I was not moving because I was sitting still, but my eyes saw that the landscape was moving. Warick-Evans and colleagues tested this theory by using two levels of conflicting information and then measuring the level of motion sickness. They found that when there is more conflict between the apparent motion of our head and the apparent motion our eyes are seeing, then there is a greater degree of motion sickness (Warwick-Evans et al., 1998). So, when my vestibular sense tells me I am still, but my vision says I am moving, my brain can’t reconcile the information.

Your eye and vestibular system give conflicting information to your brain, leading to motion sickness.

More recent studies have expanded on sensory conflict theory, adding to our understanding of how motion sickness is caused. One study by Tal and colleagues (2014) tested whether motion sickness could be due to the unfamiliar patterns of motion we are experiencing. In other words, our brain knows which visual information for motion matches with vestibular information from past experiences. The brain then compares new motion experiences to that information. If the new information doesn’t match the old experience, it leads to motion sickness (Tal et al., 2014). This supports sensory conflict, since our brain understands that the visual and vestibular information do not match. But it also adds an extra component: our previous experiences allows us to recognize the conflict. This is supported by the fact that the hippocampus, a region in the brain important for memory (including spatial memory), was found to be important in processing sensory conflict information. (Zhang et al., 2016). This supports that our memory of different spatial orientations or visual information impacts the response to sensory conflict, leading to motion sickness.

One issue with these studies is that motion sickness is currently only measured by a questionnaire. People are giving subjective responses on how bad their motion sickness is. With subjective responses, it is difficult to guarantee that people will consistently respond on the same scale as each other. One person may rank their motion sickness as much worse than another, even though they are having very similar symptoms. Something that could be done in future research could be physiological tests (possibly looking at balance and sweat levels) to see if the body is actually responding with symptoms of motion sickness.

The Motion Sickness Susceptibility Questionnaire, used in both Tal et Al. and Warnick-Evans et. Al studies.

Unfortunately, my motion sickness happens on the train, the metro and even sometimes in the car. Although, I don’t seem to notice it as much when I am in a plane or on a spinning ride in a park. There is a lot more I would be interested in knowing about motion sickness. Are some modes of transportation or movement more likely to induce motion sickness? Why do I get more sick when I am directly in the sun and not so much when there is sufficient AC? Also, there is little research on why some people are more susceptible to motion sickness than others.

I would love to see more research done on all of these topics. But for now, I will work on not overloading my senses in order to avoid feeling sick. But you can bet I will keep traveling either way. Motion sickness can’t stop me!

 

 

 

 

References:

Angelaki, D. E., & Cullen, K. E. (2008). Vestibular System: The Many Facets of a Multimodal Sense. Annual Review of Neuroscience,31(1), 125-150.

Motion sickness. (2014, November 30). Retrieved from https://www.betterhealth.vic.gov.au/health/healthyliving/motion-sickness

Oman, C. M. (1990). Motion sickness: A synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology,68(2), 294-303.

Tal, D., Wiener, G., & Shupak, A. (2014). Mal de debarquement, motion sickness and the effect of an artificial horizon. Journal of Vestibular Research,23, 17-23.

Warwick-Evans, L., Symons, N., Fitch, T., & Burrows, L. (1998). Evaluating sensory conflict and postural instability. theories of motion sickness. Brain Research Bulletin,47(5), 465-469.

Zhang, L., Wang, J., Qi, R., Pan, L., Li, M., & Cai, Y. (2016). Motion Sickness: Current Knowledge and Recent Advance. CNS Neuroscience & Therapeutics,22(1), 15-24.

Image 1 and 2: My own images

Image 3:

How our Vestibular System works and why this is important for learning. (2019, April 04). Retrieved from https://www.griffinot.com/vestibular-system/

Image 4:

Horsky, J. (2017, December 14). Understanding VR sickness. Retrieved from https://blog.infinite.cz/understanding-vr-sickness-2404e3aae6ee

Image 5:

Golding, J., Gresty, M., & Bronstein, A. (2013). Vertigo and Dizziness from Environmental Motion: Visual Vertigo, Motion Sickness, and Drivers Disorientation. Seminars in Neurology,33(03), 219-230.

The Art (and Science) of People Watching

After my weekend exploring the Musee du Louvre, going to the Women’s World Cup, and riding my umpteenth trip on the metro, I noticed that my go to activity while I explore is people watching. People watching, in its purest form, is the idea of observing other people in a public setting. We all do it, whether we are aware of it or not, and it has a variety of results from my own experience as a seasoned player.

Location of where the Louvre right next to the Seine River

People watching takes on a different form where you are; you can get away with more than a glance at a sporting event  like the Women’s World Cup than you can in a cramped metro where everyone is trying, and sometimes not trying at all, to look at everything but the five different people close enough to count eyelashes. Even in those situations, you cannot help but take a millisecond scan of your surroundings just in case in you miss out on something compelling.

This is a part of everyday life and a hobby that I do almost daily. We’re doing the opposite of what we usually do when we people watch; instead of blocking out majority of the stimuli we encounter on a daily basis we take the time to take in every detail as it crosses our path. I started to wonder how people watching is so enjoyable despite the cacophony of stimuli we take in when we do this activity.

Main entrance to the Louvre: Prime location for art appreciation and people watching!

It turns out that people watching requires activation in three different brain networks to during people watching (Quadflieg & Koldewyn, 2017). For example, the person perception network (PPN) is a brain network of brain structures that examine a person’s individual appearance and the way they move which is important to decipher an overall person to person encounter (Quadflieg & Koldewyn, 2017). One specific brain area in the PPN that supports the PPN’s overall function is the posterior superior temporal sulcus (pSTS), but it was not explicitly seen that the pSTS was active while observing social interactions until one 2018 study (Walbrin, Downing, & Koldewyn, 2018).

To test the pSTS activation, the researchers asked fifty-five participants to view human like figures in two 8-second scenarios for multiple trials: one scenario had two figures socially interacting and the second scenario had the two figures doing independent activities (Walbrin, Downing, & Koldewyn, 2018). The researchers used fMRIs to compare pSTS activity when the participants viewed social interactions verse when the participants viewed individual actions. After testing, the researchers found that the right pSTS had a significantly higher activation as the participants viewed the figures interacting with each other compared to when the participants viewed figures doing individual activities (Walbrin, Downing, & Koldewyn, 2018).

Graph showing a significant change in percentage signal activation of the pSTS once shown social interactions verse independent actions

It’s great that the researchers recorded pSTS activation from people seeing direct social interaction because it helps focus further directions into how social patterns change when people have conditions that affect the pSTS. The researchers even looked at other brain areas thought to assist in people watching but in a different capacity than just surface level observations of the interaction. The researchers added a control where they examined the temporoparietal junction (TPJ). The TPJ helps in assigning people’s intentions with one another from what we observe, but it does not work on a board scale in analyzing social interactions verse individual interactions like the researchers predicted the pSTS to do (Quadflieg & Koldewyn, 2017).

While this control helped the researchers determine if pSTS functions specifically while viewing social interactions, an experiment looking into nonhuman subjects’ that have areas similar to the pSTS inhibited or lesioned with provide more concrete evidence to the pSTS functioning examining social interactions or people watching.

Nevertheless, it is still interesting how we have multiple brain networks and brain structures involved to help us understand what we are looking at as we scan our surroundings and the people within it.

In my opinion, people watching is a great skill to have especially in places you’ve never been to before. By watching the people around interacting with each other and their surroundings, I’m able to pick up on what’s acceptable and what’s not. Especially in Paris, I’m trying to do everything I can to blend in and not expose myself as the Lost American, a title I still haven’t been able to shake off.

USA vs. Chile Women’s World Cup. The BEST place to people watch: screaming Chilean grandparents, babies decked out in USA memorabilia, cursing in three different languages, and an indescribable energy you have to love

Even so, everyone still has instances where social cues fall through the cracks. It is those times when you realize that you haven’t moved quickly enough when there is a bike riding on the sidewalk as you walked to the Musee du Louvre or you  you’re taking your sweet time trying to get a glimpse of Hope Solo while someone waits patiently to get their new profile picture during half-time, or the numerous other fish out of water experiences that I have encountered in France. Thankfully, I’ve stopped being embarrassed in these situations and tried to do better for the future by sticking my faithful ally in people watching.

Because we have various brain networks like the PPN with brain structures like the pSTS present to determine most beneficial actions to blend in any situation or find most entertaining of scenarios, it’s not hard see why we continue to people watching at the most inopportune times. We have the wiring to help us bounce back from the mistakes we make.

Without the spatial and social awareness that comes from people watching, I would not have the same peculiar but truly fascinating experiences I’ve had throughout Paris. So, I’m keeping my eyes peeled for the next exciting exploration or the next cue that comes my way.

References

Children’s Healthcare of Atlanta. (n.d.). fMRI. Retrieved from https://www.youtube.com/watch?v=3fNf8KX1AlQ

Quadflieg, S., & Koldewyn, K. (2017). The neuroscience of people watching: how the human brain makes sense of other people’s encounters. Annals of the New York Academy of Sciences,1396(1), 166–182. https://doi.org/10.1111/nyas.13331

Walbrin, J., Downing, P., & Koldewyn, K. (2018). Neural responses to visually observed social interactions. Neuropsychologia,112, 31–39. https://doi.org/10.1016/j.neuropsychologia.2018.02.023

Image #1: [Screenshot of the Musee du Louvre]. Retrieved from https://www.google.com/maps/place/Louvre+Museum/@48.8606111,2.3354607,17z/data=!3m1!4b1!4m5!3m4!1s0x47e671d877937b0f:0xb975fcfa192f84d4!8m2!3d48.8606111!4d2.337644

Image #3: [Screenshot of the Figure 2]. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899757/

Image #2 and #4 were taken by me