Author Archives: Kayla Allen

Can You Feel the Music Tonight?

The Rite of Spring, a ballet and orchestral assemble created by Igor Stravinsky, elicited such a strong reaction from the people who witness it; riots and fights broke out all over the concert hall from experiencing a piece of art that we now revere in modern culture. I had the completely opposite experience at Fete de la Musique in which various musical performances of numerous genres were given a microphone and a setting for everyone to enjoy. From electronic to Caribbean music, there was no telling what would arise around the corner; I loved just walking and exploring the area with surprises at any time.

First performance of the Rite of Spring in 20th century

When thinking about music broadly cannot blame the concertgoers for having such a strong reaction to the music. Music, in the ways it has manifested in my life, has been the break point for some my biggest breakthroughs in learning more about myself. In addition to kickstarting some revelations about myself, music has also helped me calm down, stay focused, and relive emotions that I once forgotten about until I listen to a song again.

Music is an amazing trigger for latent memories that we often forget about. As soon as we hear just the beat of a song, we can pinpoint a feeling or a moment that a song defined for us. One study found that music caused participants to indicate a higher rating of joy and strength where memory induction leaded to a higher correlation between the emotion and the music they listened to (Maksimainen et al., 2018). This makes sense though; the amount of music we encounter on a daily basis is massive, whether self-induced or not, and plays a large role in our life. And as a big part of our lives, they will connect to our various scenarios and emotions as we experience them.

Here are a few of my own examples. “Energy” by Drake will forever remind me of when I first felt like my first-year group of college friends started feeling like family. The entire ABBA “Gold” album reminds me of my mom without fail and how she just comes alive with the right type of music. And now, “Love on the Brain” by Rihanna will forever remind me of Paris and a sense of camaraderie I felt with my study aboard group while we walked along the Seine during the Fete de la Musique.

A drumming band that was absolutely amazing during Fete de la Musique

It made me wonder how we associate such pleasant experiences in our lives with something as arbitrary as music; a song that reminds me of a great experience could trigger a huge negative response in another person. What brain system are present that leads to difference from person to person and modulate a negative, neutral, or positive association?

A 2019 study found that dopamine plays a role in the positive responses we feel when we listen to music (Ferreri et al., 2019). The researchers took 27 participants in which they listened to 5 self-selected and 10 experimenter-selected musical excerpts before taking a dopamine agonist, dopamine antagonist, or a placebo pill with each pill administration separated by a week. After each administration, the researchers measured the pleasure response by looking at amplitude changes in electrodermal activity (EDA) and qualitative pleasurable experience ratings taken after every song. Electrodermal activity (EDA) is created by the sweat glands and the associated epidermis (“Electrodermal Activity,” n.d.) often used in behavioral medicine as a measure of emotional responsiveness (Critchley & Nagai, 2013). Participants who regularly experience chills when listening to music had a higher number of reported chills after dopamine agonist administration compared to dopamine antagonist administration as well as a higher EDA change under the dopamine agonist that was significantly different compared to the dopamine antagonist administration when experiencing pleasurable music. The amplitude of EDA did not change while the participants were listening to any random type of music. There was only a change in dopamine modulation when the participants were listening to self-reported pleasurable music supporting the researchers’ hypothesis that dopamine has a specific effect how we respond to pleasurable music (Ferreri et al., 2019).

Figure showing a higher liking ratings and pleasure EDA after dopamine agonist (levodopa) administration compared to dopamine antagonist administration (risperidone).

There were many pluses with the Ferreri et al. study, but there were some aspects that would have helped me align with their conclusions more. I would want the research to explain the validity of electrodermal activity as opposed to using other physiological changes such as heart rate or blood pressure as well as brain imaging to make sure there is activation in the mesolimbic system and not anything else. However, the authors set up their experience design thoroughly by covering various types of dopamine effects on the brain to make sure they have comparable results to see if dopamine levels can modulate could have a role in the pleasurable experiences we have with music; they were thorough in setting up the experiment for the research question. Their thoughts on defining what exactly “pleasurable” means is also fascinating because pleasure is so subjective so the fact is a big plus in how thorough the researcher were in determining how we perceive what we personally hear as pleasurable music.

Nevertheless, the study strongly suggests that pleasurable emotions we associate with music could have a relationship with the rewarding effects of dopamine. This is why relistening to reminds us of good feelings and scenarios we previously had.  The possible of the opposite happening with the Rite of Spring is plausible, but the take home message from the riot starting symphony to the soothing ballad along the Seine is clear. Music has the ability to bubble emotions to the surface in such a way that all you can do is lean into it and let it take over.


Critchley, H., & Nagai, Y. (2013). Electrodermal Activity (EDA). Encyclopedia of Behavioral Medicine, 666–669.

Did The Rite of Spring really spark a riot? – BBC News. (n.d.). Retrieved June 27, 2019, from

Electrodermal Activity – an overview | ScienceDirect Topics. (n.d.). Retrieved June 27, 2019, from

Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., … Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences, 116(9), 3793–3798.

London Symphony Orchestra. (n.d.). Stravinsky The Rite of Spring // London Symphony Orchestra/Sir Simon Rattle. Retrieved from

Maksimainen, J., Wikgren, J., Eerola, T., & Saarikallio, S. (2018). The Effect of Memory in Inducing Pleasant Emotions with Musical and Pictorial Stimuli. Scientific Reports, 8(1), 17638.

Image #1: [Screenshot of first performance of the Rite of Spring]. Retrieved from

Image #2: Image taken by me

Image #3: [Screenshot of Figure #1 from study] Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., … Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences, 116(9), 3793–3798.

The Art (and Science) of People Watching

After my weekend exploring the Musee du Louvre, going to the Women’s World Cup, and riding my umpteenth trip on the metro, I noticed that my go to activity while I explore is people watching. People watching, in its purest form, is the idea of observing other people in a public setting. We all do it, whether we are aware of it or not, and it has a variety of results from my own experience as a seasoned player.

Location of where the Louvre right next to the Seine River

People watching takes on a different form where you are; you can get away with more than a glance at a sporting event  like the Women’s World Cup than you can in a cramped metro where everyone is trying, and sometimes not trying at all, to look at everything but the five different people close enough to count eyelashes. Even in those situations, you cannot help but take a millisecond scan of your surroundings just in case in you miss out on something compelling.

This is a part of everyday life and a hobby that I do almost daily. We’re doing the opposite of what we usually do when we people watch; instead of blocking out majority of the stimuli we encounter on a daily basis we take the time to take in every detail as it crosses our path. I started to wonder how people watching is so enjoyable despite the cacophony of stimuli we take in when we do this activity.

Main entrance to the Louvre: Prime location for art appreciation and people watching!

It turns out that people watching requires activation in three different brain networks to during people watching (Quadflieg & Koldewyn, 2017). For example, the person perception network (PPN) is a brain network of brain structures that examine a person’s individual appearance and the way they move which is important to decipher an overall person to person encounter (Quadflieg & Koldewyn, 2017). One specific brain area in the PPN that supports the PPN’s overall function is the posterior superior temporal sulcus (pSTS), but it was not explicitly seen that the pSTS was active while observing social interactions until one 2018 study (Walbrin, Downing, & Koldewyn, 2018).

To test the pSTS activation, the researchers asked fifty-five participants to view human like figures in two 8-second scenarios for multiple trials: one scenario had two figures socially interacting and the second scenario had the two figures doing independent activities (Walbrin, Downing, & Koldewyn, 2018). The researchers used fMRIs to compare pSTS activity when the participants viewed social interactions verse when the participants viewed individual actions. After testing, the researchers found that the right pSTS had a significantly higher activation as the participants viewed the figures interacting with each other compared to when the participants viewed figures doing individual activities (Walbrin, Downing, & Koldewyn, 2018).

Graph showing a significant change in percentage signal activation of the pSTS once shown social interactions verse independent actions

It’s great that the researchers recorded pSTS activation from people seeing direct social interaction because it helps focus further directions into how social patterns change when people have conditions that affect the pSTS. The researchers even looked at other brain areas thought to assist in people watching but in a different capacity than just surface level observations of the interaction. The researchers added a control where they examined the temporoparietal junction (TPJ). The TPJ helps in assigning people’s intentions with one another from what we observe, but it does not work on a board scale in analyzing social interactions verse individual interactions like the researchers predicted the pSTS to do (Quadflieg & Koldewyn, 2017).

While this control helped the researchers determine if pSTS functions specifically while viewing social interactions, an experiment looking into nonhuman subjects’ that have areas similar to the pSTS inhibited or lesioned with provide more concrete evidence to the pSTS functioning examining social interactions or people watching.

Nevertheless, it is still interesting how we have multiple brain networks and brain structures involved to help us understand what we are looking at as we scan our surroundings and the people within it.

In my opinion, people watching is a great skill to have especially in places you’ve never been to before. By watching the people around interacting with each other and their surroundings, I’m able to pick up on what’s acceptable and what’s not. Especially in Paris, I’m trying to do everything I can to blend in and not expose myself as the Lost American, a title I still haven’t been able to shake off.

USA vs. Chile Women’s World Cup. The BEST place to people watch: screaming Chilean grandparents, babies decked out in USA memorabilia, cursing in three different languages, and an indescribable energy you have to love

Even so, everyone still has instances where social cues fall through the cracks. It is those times when you realize that you haven’t moved quickly enough when there is a bike riding on the sidewalk as you walked to the Musee du Louvre or you  you’re taking your sweet time trying to get a glimpse of Hope Solo while someone waits patiently to get their new profile picture during half-time, or the numerous other fish out of water experiences that I have encountered in France. Thankfully, I’ve stopped being embarrassed in these situations and tried to do better for the future by sticking my faithful ally in people watching.

Because we have various brain networks like the PPN with brain structures like the pSTS present to determine most beneficial actions to blend in any situation or find most entertaining of scenarios, it’s not hard see why we continue to people watching at the most inopportune times. We have the wiring to help us bounce back from the mistakes we make.

Without the spatial and social awareness that comes from people watching, I would not have the same peculiar but truly fascinating experiences I’ve had throughout Paris. So, I’m keeping my eyes peeled for the next exciting exploration or the next cue that comes my way.


Children’s Healthcare of Atlanta. (n.d.). fMRI. Retrieved from

Quadflieg, S., & Koldewyn, K. (2017). The neuroscience of people watching: how the human brain makes sense of other people’s encounters. Annals of the New York Academy of Sciences,1396(1), 166–182.

Walbrin, J., Downing, P., & Koldewyn, K. (2018). Neural responses to visually observed social interactions. Neuropsychologia,112, 31–39.

Image #1: [Screenshot of the Musee du Louvre]. Retrieved from,2.3354607,17z/data=!3m1!4b1!4m5!3m4!1s0x47e671d877937b0f:0xb975fcfa192f84d4!8m2!3d48.8606111!4d2.337644

Image #3: [Screenshot of the Figure 2]. Retrieved from

Image #2 and #4 were taken by me

Lust for Answers

This past weekend, our group went to Provence, a province in southeast France, and visited the city of Arles where Vincent van Gogh lived for two years painting some of his most famous works such as Yellow House, Starry Night Over the Rhone, and Bedroom in Arles.

A map of some of the locations in Arles where van Gogh painted some of his most famous works.

Before going there, we saw in class the movie, Lust for Life, a 1950’s biographical movie about Vincent van Gogh’s life highlighting his interactions with other painters, his family, and his surroundings (Lust for Life – Trailer, n.d.). The movie touches on Van Gogh’s lifelong mental strife showing that while we revere him as an artistic genius now, very few people understood him including himself.

It seemed the depression that Van Gogh experienced subsided according to his letters to his family and friends, but in the movie, they show the manic way he painted constantly covered in paint and obsessed with catching the light to paint landscapes and field laborers. When the fall and winter came around, he could not go outside expressing how he felt trapped. His condition worsened where outside painting did not work anymore leading up to him to cut off his ear with a variety of possible reasons that no one could confirm. He eventually was admitted to a hospital where his hallucinations continued with blocks of time missing from his memory and his alcohol abuse addressed. He still continued to paint famous pieces such as The Courtyard of the Hospital at Arles 1889 that are preserved to this day.

A picture at the hospital courtyard where van Gogh was attempted to after cutting off his ear.

We looked at his doctor’s notes categorizing his condition as epilepsy because of his ongoing non-lucid episodes, so we started looking into different mental conditions that related back to the ones we know today as major depression disorder, bipolar disorder, schizophrenia, and more. This eventually led us to see what type of treatments would be available for the people with dementia praecox: a term coined by Emil Kraepelin to describe lesions in the cerebral cortex that mild dementia (Adityanjee et al., 1999). I couldn’t find much in terms of treatment, but it got me thinking about what we have today to help alleviate the effects of mental illnesses such as bipolar disorder, schizophrenia, and depression. As well as my interest being piqued through exploring Van Gogh’s life, there is a high probability I will see these novel practices implemented in the future.

The School of Nursing at Emory does a good job of teaching us the evidence-based practices that we follow for patient safety and comfort, but the patients have the autonomy in most cases to deny treatment, do something different than recommended to treat their ailments , or ask about new upcoming treatments. Because of this, it is important to know recent research about various types of treatment practices to be better support the patients.

van Gogh’s self portrait fading away during the Atelier des Lumieres of all of his works.

One that was really interesting to find out was the possible implementation of brain-derived neurotrophic factor (BDNF) to help treat neurodegenerative diseases as well as mental health disorders. It is a growth factor that is used in neurogenesis or the formation of new neurons which is not common for adults; in most of the brain, there are no new neurons created from the ones at birth, but there are some brain areas that still have new neurons created which is where growth factors like BDNF are used those new neurons (Bathina and Das, 2015). This is also used for synaptic plasticity in which there is a consistently strong or diminished communication between the neurons depending on how strength and importance of the signal is between the two neurons (“What Is Synaptic Plasticity?”). There is also evidence that a depleted amount of the class of factors BNDF belongs to can possibly be an indicator for neurological disorders such as Parkinson’s disorder and Alzheimer’s (Bathina and Das, 2015). While BNDF has the ability for synaptic plasticity, a study done with mice found that inhibition of one of the receptors BNDF can bind to shows a decrease in long term depressive behaviors without affecting its synaptic plasticity function in other brain areas (Woo et al., 2005). Researchers also theorize that people with reduced BDNF levels might have a decreased synaptic plasticity in the hippocampus which prevents the body from going back to homeostasis taking them out of their stress related depressive states (Phillips, 2017). The second type of receptors that BDNF does the opposite effect by producing synaptic plasticity; this receptors’ activation and an BDNF increase is seen in the presence of certain antidepressive pharmacologic therapies (Phillips, 2017).This is now being used as an indicator for future drug therapies as a measure of effectiveness.

A watercolor painting I did in class depicting the sensory neurons in the eye.

Going away from the pharmacological side, I started to think about Van Gogh and how his art was a source of peace and strife for him. At some point, painting couldn’t help in him in the way it did before. This is not to discredit the effects that art and other alternative therapies have on supporting those with symptoms similar to his; a study had 58 patients diagnosed with schizophrenia do art therapy twice a week for twelve weeks (Montag et al., 2014). They found that those who had committed to the program had less negative symptoms which include a loss of interest and a lower affect as well as less positive symptoms of schizophrenia such as auditory hallucinations compared to the control group who did not receive the art therapy (Montag et al., 2014)  (“Symptoms,” 2017). This support the idea that Van Gogh’s art was a therapeutic event for him up until everything became too much. It’s fascinating to how we reverie Van Gogh’s coping mechanism after his death with his few family and friends supporting his ability to paint. It makes you think about those that we have forgotten about who are tucked away in our society creating the next artistic masterpiece of our time.




Adityanjee, Aderibigbe, Y. A., Theodoridis, D., & Vieweg, W. V. R. (1999). Dementia praecox to schizophrenia: The first 100 years. Psychiatry and Clinical Neurosciences, 53(4), 437–448.

Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science: AMS, 11(6), 1164–1178.

Lust for Life – Trailer. (n.d.). Lust for Life – Trailer. Retrieved from

Montag, C., Haase, L., Seidel, D., Bayerl, M., Gallinat, J., Herrmann, U., & Dannecker, K. (2014). A Pilot RCT of Psychodynamic Group Art Therapy for Patients in Acute Psychotic Episodes: Feasibility, Impact on Symptoms and Mentalising Capacity. PLoS ONE, 9(11).

Phillips, C. (2017). Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plasticity, 2017.

Symptoms. (2017, October 23). Retrieved June 10, 2019, from website:

What is synaptic plasticity? (2016, November 22). Retrieved June 9, 2019, from

Woo, N. H., Teng, H. K., Siao, C.-J., Chiaruttini, C., Pang, P. T., Milner, T. A., … Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8(8), 1069–1077.

Picture #1: [Screenshot of the walking tour of Van Gogh’s art in Arles]. Retrieved from

Picture #2 and #3: Taken by me

Picture #4: Painted and picture taken by me

Louis XIV’s Crib Was Cool, But Those Flowers Though

Now coming up on two weeks into my stay in Paris, I’m amazed at how much art seeing (and walking!) opportunities there are across the city. I went to the Palace of Versailles  this past weekend and learned a little bit more about myself in the process. The overall aesthetics of some of the rooms, like the Hall of Mirrors, were breathtaking. Throughout my time in France, the distinct architecture of everything still astonishes me. The fact that people could see a vision that combined order and beauty is a testament of the human ability. However, even though the palace exemplified all of these things with the added adventure of getting around, I still found myself more at peace and grounded in the presence of flowers. In a larger than life palace with years of French history intertwined in it, it was nothing compared to the gardens, random buildings’ intricate flower arrangements across town, and especially the unique paintings of gorgeous flower bouquet and sceneries that truly made me stop and smell the roses.

A random but greatly appreciated restaurant I came across while walking the Shakespeare and Company bookstore in the 5th Arrondissement of Paris.

I couldn’t imagine why the Palace didn’t resonance with me as much as moving through a museum did; it was kind of a museum in some respects. My sister was shocked to learn I didn’t have plans to go to the Palace before this past weekend. It had been one of her favorite places in France, and she expected me to have the same experience. Surprisingly, I didn’t get that overwhelming feeling of wonder and disbelief at the magnitude  that she and some of the people at the palace had. So, I started to research why do people have different aspects artistic expression that resonances with them more than others and came across the world of neuroaesthetics.

A map of the extensive grounds in the Palace of Versailles.

Neuroaesthetics is this field in neuroscience where researchers are trying to figure out what neural connections activate and interact while someone is having an aesthetic experience that causes joy or disgust (Belfi et al., 2019). The greater question of this field is exactly the question I was trying to answer: what makes something more appealing to one person opposed to another? The field has a large reach with questions like why humans  chose the mates that we do, why we decide on one consumer product over the other, and perception’s effect on how we communicate (Chatterjee and Vartanian, 2014).

Neuroaesthetics continues to shine light on subjects such as what neural networks are involved when we view visual art. One study did this looking at how perception paintings as aesthetically pleasing or not affected what brain networks and structures were activate or deactivated (Belfi et al., 2019). Previous research found that the default mode network (DMN) was active when the person viewed artwork they thought was more moving, so the study recorded the DMN with fMRI processing as participants examined 90 paintings at various time lengths (Vessel et al., 2012) (Belfi et al., 2019). They found more DMN activation while the participants viewed a painting they thought was aesthetically pleasing compared to non-aesthetically pleasing works (Belfi et al., 2019). More DMN activation could lead brain system to associate a pleasing reward to the stimulus leading to a strong emotional response (Belfi et al., 2019).

So, while the Palace was objectively amazing to witness in real life, my perception of the art was not as high as the ones in the Musee D’Orsay leading me to some conclusions that my DMN could have been less active.

The Hall of Mirrors at the Palace of Versailles. My favorite part of the entire experience with the sunlight glittering on the chandeliers.

The museum experience is also a big determinate when viewing art as well. One study had a group of people examine art in a museum in Vienna and in a computer program to see if the way in which people received art would change their perception of it and their memory of the art (Brieber, Nadal, and Leder, 2015). Those that experienced the art through the museum had better recall of the art they saw and found the art to be more “arousing and pleasing” (Briber, Nadal, and Leder, 2015). So, there is the possibility that, in addition to a pretty weak DMN response, actually being in a museum where I expected to see this great art colored my perception of the paintings there compared to the palace’s paintings. The palace’s paintings I saw was great, but the palace did not support the type of art enjoying experience that a museum did. The participants in the study could stop and absorb a work as much as they wanted to much like my experience in the Musee D’Orsay: wandering around not knowing which work would capture me (Briber, Nadal, and Leder, 2015). This might have made the difference in my perception of the Palace as a whole.

It is pretty cool that even though we have the same brain systems activated with the aesthetically pleasuring figures, our internal states as well as the manner in which we consume art affects what we consider to be life changing pieces of art. I didn’t expect to stumble upon a whole section of neuroscience that I never encountered before to understand why Louis XVI’s chambers did not stimulate my DMN as much as Monet’s 1878 Chrysanthemums painting could.

Monet’s Chrysanthemums painting done in 1878. One of my many favorites by my favorite artist.

If you want to learn more about the neuroaesthetics, Anjan Chatterjee is a cognitive neuroscientist that specializes in neuroaesthetics with research on how “certain configurations of line, color, and form” affect what humans consider to be beautiful (“Anjan Chatterjee: How your brain decides what is beautiful | TED Talk,” n.d.) . He talks all about his study in this 2016 Ted Talk.

From what I’ve learned in my research, your surroundings have just as much to do how you perceive the beauty as your brain networks do. Appreciation of art is never linear, so even if something doesn’t elicit a strong DMN engagement, it’s can still be a great experience, nonetheless.

Next stop, fingers crossed, the Catacombs!


Anjan Chatterjee: How your brain decides what is beautiful | TED Talk. (n.d.). Retrieved June 4, 2019, from

Belfi, A. M., Vessel, E. A., Brielmann, A., Isik, A. I., Chatterjee, A., Leder, H., … Starr, G. G. (2019). Dynamics of aesthetic experience are reflected in the default-mode network. NeuroImage, 188, 584–597.

Brieber, D., Nadal, M., & Leder, H. (2015). In the white cube: Museum context enhances the valuation and memory of art. Acta Psychologica, 154, 36–42.

Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in Cognitive Sciences, 18(7), 370–375.

Vessel, E. A., Starr, G. G., & Rubin, N. (2012). The brain on art: intense aesthetic experience activates the default mode network. Frontiers in Human Neuroscience, 6.

Image #2: [Screenshot of the grounds at the Palace of Versailles]. Retrieved from,2.1106368,15z/data=!4m5!3m4!1s0x0:0x538fcc15f59ce8f!8m2!3d48.8048649!4d2.1203554

Image #1, #3, and #4 were taken by me