Tag Archives: fete de la musique

Can You Feel the Music Tonight?

The Rite of Spring, a ballet and orchestral assemble created by Igor Stravinsky, elicited such a strong reaction from the people who witness it; riots and fights broke out all over the concert hall from experiencing a piece of art that we now revere in modern culture. I had the completely opposite experience at Fete de la Musique in which various musical performances of numerous genres were given a microphone and a setting for everyone to enjoy. From electronic to Caribbean music, there was no telling what would arise around the corner; I loved just walking and exploring the area with surprises at any time.

First performance of the Rite of Spring in 20th century

When thinking about music broadly cannot blame the concertgoers for having such a strong reaction to the music. Music, in the ways it has manifested in my life, has been the break point for some my biggest breakthroughs in learning more about myself. In addition to kickstarting some revelations about myself, music has also helped me calm down, stay focused, and relive emotions that I once forgotten about until I listen to a song again.

Music is an amazing trigger for latent memories that we often forget about. As soon as we hear just the beat of a song, we can pinpoint a feeling or a moment that a song defined for us. One study found that music caused participants to indicate a higher rating of joy and strength where memory induction leaded to a higher correlation between the emotion and the music they listened to (Maksimainen et al., 2018). This makes sense though; the amount of music we encounter on a daily basis is massive, whether self-induced or not, and plays a large role in our life. And as a big part of our lives, they will connect to our various scenarios and emotions as we experience them.

Here are a few of my own examples. “Energy” by Drake will forever remind me of when I first felt like my first-year group of college friends started feeling like family. The entire ABBA “Gold” album reminds me of my mom without fail and how she just comes alive with the right type of music. And now, “Love on the Brain” by Rihanna will forever remind me of Paris and a sense of camaraderie I felt with my study aboard group while we walked along the Seine during the Fete de la Musique.

A drumming band that was absolutely amazing during Fete de la Musique

It made me wonder how we associate such pleasant experiences in our lives with something as arbitrary as music; a song that reminds me of a great experience could trigger a huge negative response in another person. What brain system are present that leads to difference from person to person and modulate a negative, neutral, or positive association?

A 2019 study found that dopamine plays a role in the positive responses we feel when we listen to music (Ferreri et al., 2019). The researchers took 27 participants in which they listened to 5 self-selected and 10 experimenter-selected musical excerpts before taking a dopamine agonist, dopamine antagonist, or a placebo pill with each pill administration separated by a week. After each administration, the researchers measured the pleasure response by looking at amplitude changes in electrodermal activity (EDA) and qualitative pleasurable experience ratings taken after every song. Electrodermal activity (EDA) is created by the sweat glands and the associated epidermis (“Electrodermal Activity,” n.d.) often used in behavioral medicine as a measure of emotional responsiveness (Critchley & Nagai, 2013). Participants who regularly experience chills when listening to music had a higher number of reported chills after dopamine agonist administration compared to dopamine antagonist administration as well as a higher EDA change under the dopamine agonist that was significantly different compared to the dopamine antagonist administration when experiencing pleasurable music. The amplitude of EDA did not change while the participants were listening to any random type of music. There was only a change in dopamine modulation when the participants were listening to self-reported pleasurable music supporting the researchers’ hypothesis that dopamine has a specific effect how we respond to pleasurable music (Ferreri et al., 2019).

Figure showing a higher liking ratings and pleasure EDA after dopamine agonist (levodopa) administration compared to dopamine antagonist administration (risperidone).

There were many pluses with the Ferreri et al. study, but there were some aspects that would have helped me align with their conclusions more. I would want the research to explain the validity of electrodermal activity as opposed to using other physiological changes such as heart rate or blood pressure as well as brain imaging to make sure there is activation in the mesolimbic system and not anything else. However, the authors set up their experience design thoroughly by covering various types of dopamine effects on the brain to make sure they have comparable results to see if dopamine levels can modulate could have a role in the pleasurable experiences we have with music; they were thorough in setting up the experiment for the research question. Their thoughts on defining what exactly “pleasurable” means is also fascinating because pleasure is so subjective so the fact is a big plus in how thorough the researcher were in determining how we perceive what we personally hear as pleasurable music.

Nevertheless, the study strongly suggests that pleasurable emotions we associate with music could have a relationship with the rewarding effects of dopamine. This is why relistening to reminds us of good feelings and scenarios we previously had.  The possible of the opposite happening with the Rite of Spring is plausible, but the take home message from the riot starting symphony to the soothing ballad along the Seine is clear. Music has the ability to bubble emotions to the surface in such a way that all you can do is lean into it and let it take over.

References

Critchley, H., & Nagai, Y. (2013). Electrodermal Activity (EDA). Encyclopedia of Behavioral Medicine, 666–669. https://doi.org/10.1007/978-1-4419-1005-9_13

Did The Rite of Spring really spark a riot? – BBC News. (n.d.). Retrieved June 27, 2019, from https://www.bbc.com/news/magazine-22691267

Electrodermal Activity – an overview | ScienceDirect Topics. (n.d.). Retrieved June 27, 2019, from https://www.sciencedirect.com/topics/medicine-and-dentistry/electrodermal-activity

Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., … Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences, 116(9), 3793–3798. https://doi.org/10.1073/pnas.1811878116

London Symphony Orchestra. (n.d.). Stravinsky The Rite of Spring // London Symphony Orchestra/Sir Simon Rattle. Retrieved from https://www.youtube.com/watch?v=EkwqPJZe8ms

Maksimainen, J., Wikgren, J., Eerola, T., & Saarikallio, S. (2018). The Effect of Memory in Inducing Pleasant Emotions with Musical and Pictorial Stimuli. Scientific Reports, 8(1), 17638. https://doi.org/10.1038/s41598-018-35899-y

Image #1: [Screenshot of first performance of the Rite of Spring]. Retrieved from https://www.bbc.com/news/magazine-22691267

Image #2: Image taken by me

Image #3: [Screenshot of Figure #1 from study] Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., … Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences, 116(9), 3793–3798. https://doi.org/10.1073/pnas.1811878116

Feel the Music

Hello everyone, one last time! I can’t believe my time studying here in Paris is coming to a close already. It feels like I just arrived and now I only have one day of class left. This whole trip has been such an amazing experience, and I had the opportunity to see so many parts of this beautiful city! One of my recent experiences was Fête de la Musique, which was one of my favorite days here in Paris. Fête de la Musique is a city wide festival where anyone and everyone can play music on the streets of Paris. Walking around for 6 hours, I had the chance to hear many people share their music with the city. It was even more exciting when I found a band or individual playing a song that I recognized! One band played Stand by Me by Ben E. King and later I got to hear Wonderwall by Green Day.

Two men playing Stand by Me by Ben E. King on the streets of Paris

Another recent experience involving music was our class excursion to an exhibit at the Philharmonie de Paris. The exhibit called Exposition Electro was about electronic dance music, including history of the music and interactive pieces relating to the music. It was such an interesting exhibit. I really found my place in a back room that allowed you to make different beats with percussion instruments (I used to play percussion, so I spent a good chunk of my time in this room)

The Percussion room in the exhibition. You could make the instruments play on different beats to create your own music.

One of the most fascinating parts of the exhibit however was an image with a quote on a wall, rather than a musical piece. The quote read “Can a song without words say anything?” After seeing this quote, I started to really think about the way in which music impacts us. I contemplated the way I feel when I listen to music I love, or how I felt in the percussion room. Then, during Fête de la Musique I thought about how everyone in the city was spending a night enjoying and being immersed in music. To answer the question posed by the wall, I believe that the underlying emotion I, and many others, feel towards music allows us to connect to a song even without any words or explicit meaning. But, why is it that we can extract meaning and emotion out of music?

Our auditory cortex is the brain region where all sound information is processed (Purves et al., 2001). The information we hear from our ear is transmitted to the auditory cortex in the temporal lobe of the brain, which is found near your temples. The auditory cortex takes the noise we hear and converts it into sounds that we can understand (Purves et al., 2001).

Location of the auditory cortex

Now, just because we can comprehend the sounds and words being said to us, that doesn’t automatically mean we feel emotion towards it. This emotion comes from a connection to different parts of the brain. One study by Koelsch and colleagues (2005) used functional magnetic resonance imaging (fMRI), a measurement of brain activity based on blood flow to those areas, in order to determine the activity of both the auditory cortex and possibly other brain regions. fMRI was taken during the presentation of both pleasant and unpleasant music. The study found that unpleasant music activated brain regions known to be important for negative emotional processing along with the auditory cortex. The study also found that pleasant music activated a structure called the insula (Koelsch et al., 2005), which has been seen to be important for overall emotional processing (Phan et al., 2002).

Another study done by Koelsch and colleagues (2018) expanded on the knowledge of the 2005 study. The newer study also used fMRI to see activation of brain regions during music that should evoke joy or fear. The authors found that there was actually emotional processing within the auditory cortex, as well as connectivity with other emotion related areas. For example, there was a high connectivity with the limbic system (Koelsch et al., 2018). The limbic system includes structures such as the hypothalamus (important for controlling hormones in the body), the thalamus (processes different information from our senses), the amygdala (important for emotional memory, especially fear), and the hippocampus (important for personal memories). The limbic system is known for being important to emotional responses, and having the body respond accordingly by hormone release, changing breathing levels and heart rate, in order for a person to feel the emotion (Rajmohan and Mohandas, 2007).

Brain structures and location of the Limbic System

The conclusion in both of these studies is that there is high connectivity between the auditory cortex and emotional areas. There is always a level of uncertainty when using fMRI. Since fMRI measures blood flow to a brain area, the image doesn’t necessarily show us the activity of the neurons in that brain region. Therefore, future studies could look more directly at the role of specific structures involved in emotion in music. For example, if a structure important for emotion is damaged, does that change our ability to emotionally respond to music? However, overall these data point towards a strong connection between sound processing and emotional processing, which helps explain our emotional connection to music.

Music has always been a really important part of my life, and I am so glad I had the opportunity to interact with some musical parts of Paris. To me, it is so fascinating that random notes and sounds can make us feel so many different emotions. With and without words, music has the ability to affect our lives profoundly.

 

 

 

 

References:

Koelsch, S., Fritz, T., Cramon, D. Y., Müller, K., & Friederici, A. D. (2005). Investigating emotion with music: An fMRI study. Human Brain Mapping,27(3), 239-250.

Koelsch, S., Skouras, S., & Lohmann, G. (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. Plos One,13(1).

Phan, K., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI. NeuroImage,16(2), 331-348.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Auditory Cortex.

Rajmohan, V., & Mohandas, E. (2007). The limbic system. Indian Journal of Psychiatry,49(2), 132.

 

Image 1-3: Taken by me

Image 4:

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. The Auditory Cortex.

Image 5:

Limbic System. (2017, June 07). Retrieved from https://www.assignmentpoint.com/science/biology/limbic-system.html