Zhang et al.: A machine learning model to estimate ambient PM2.5 concentrations in industrialized highveld region of South Africa

Danlu Zhang, Linlin Du, Wenhao Wang, Qingyang Zhu, Jianzhao Bi, Noah Scovronick, Mogesh Naidoo, Rebecca M. Garland, Yang Liu. (2021). A machine learning model to estimate ambient PM2.5 concentrations in industrialized highveld region of South Africa. Remote Sensing of Environment, 266, 112713.

Elsevier: Link

Exposure to fine particulate matter (PM2.5) has been linked to a substantial disease burden globally, yet little has been done to estimate the population health risks of PM2.5 in South Africa due to the lack of high-resolution PM2.5 exposure estimates. We developed a random forest model to estimate daily PM2.5 concentrations at 1 km2 resolution in and around industrialized Gauteng Province, South Africa, by combining satellite aerosol optical depth (AOD), meteorology, land use, and socioeconomic data. We then compared PM2.5 concentrations in the study domain before and after the implementation of the new national air quality standards. Model-estimated PM2.5 levels successfully captured the temporal pattern recorded by ground observations. Spatially, the highest annual PM2.5 concentration appeared in central and northern Gauteng, including northern Johannesburg and the city of Tshwane. Since the 2016 changes in national PM2.5 standards, PM2.5 concentrations have decreased in most of our study region, although levels in Johannesburg and its surrounding areas have remained relatively constant.

 

 

 

Your email address will not be published.