Vu et al.: Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California

Vu, B.N., Bi, J., Wang, W., Huff, A., Kondragunta, S., Liu, Y. (2022). Application of geostationary satellite and high-resolution meteorology data in estimating hourly PM2.5 levels during the Camp Fire episode in California. Remote Sensing of Environment, 271, 112890. Science Direct: Link Particulate matter from wildland fire smoke can traverse hundreds of kilometers from where they originated...

Geng et al.: Random forest models for PM2.5 speciation using MISR data

Random forest models were developed to predict ground-level daily PM2.5 speciation concentrations in California from MISR fractional AODs and other supporting data such as ground measurements, chemical transport model simulations, land use variables and meteorological fields. Sensitivity tests were also conducted to explore the influence of variable selection on model performance. Results shows...

She et al.: Hourly PM2.5 levels during heavy winter episodes in the Yangtze River Delta

In this publication, we quantitatively investigated the feasibility of using the aerosol optical depth (AOD) data retrieved by the Geostationary Ocean Color Imager (GOCI) to estimate hourly PM2.5 concentrations during winter haze episodes in the Yangtze River Delta (YRD). We developed a three-stage spatial statistical model, using GOCI AOD and fine mode fraction, as well as corresponding...

Zhou et al.: Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the United States

Skin cancer is the most common type of cancer in the United States, the majority of which is caused by overexposure to ultraviolet (UV) irradiance, which is one component of sunlight. Our group worked with University of Iowa and the National Environmental Public Health Tracking Program at CDC to develop and disseminate county-level daily UV irradiance (2005 - 2015) and total solar irradiance...

Bi et al. Impacts of snow and cloud covers on satellite-derived PM2⁠.5 levels

We developed an AOD gap-filling model with the consideration of snow and cloud covers and a PM2.5 prediction model based on the gap-filled AOD to estimate full-coverage and high-resolution PM2⁠.5 in New York State. It indicated the significance of snow fraction in the AOD gap-filling process and demonstrated the ability of the AOD-based prediction model to reflect detailed PM2.5 emission...

Meng et al. Space-time trends of PM2.5 constituents in the Conterminous United States estimated by a machine learning approach, 2005-2015

We developed national  machine-learning models  to provide interpretable results, to predict concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) across the conterminous United States from 2005 to 2015 at the daily level.  PubMed Link EI Link

Geng et al. The sensitivity of satellite-based PM2.5 estimates to its inputs: implications to model development in data-poor regions

We conducted comprehensive sensitivity model simulations to investigate the key factors that could affect the performance of satellite-based PM2.5 exposure in data-poor regions including temporal sampling frequency, number of ground monitors,  accuracy of the chemical transport model simulation, and different combinations of the additional predictors. PubMed Link EI Link