What to do when everything is moving

One of the first things I noticed when I arrived in Paris is the amount of traffic and the prevalence of people who use the Metro to get around. Even though I’ve lived in Atlanta my whole life, I think I had been on MARTA once when it was full to standing room only, and that was only because two big events ended around the same time. However, every morning on my commute to class in Paris it seems like we are fighting to be able to get a spot on the train. Another major difference that I’ve noticed between these train systems is that the Metro trains tend to have more turns in the tracks, which never fails to make a large group of the people standing momentarily lose their balance.  Here are the maps so that you can compare the two.

Image from the French Metro map website

Image from Marta guide website

Whenever the train goes around a bumpy turn, you always see people taking a step or people who weren’t previously holding onto anything reach out to the nearest pole. Considering the number of ways the train can throw you off balance, it’s almost surprising that people never fall over. This made me wonder, why is it that we are able to balance so easily even when the ground beneath us is moving?

According to Chiba et al. (2016), your body uses information like vision, the location of your body and limbs, touch, and the position of your head to maintain its balance. Together, these all allow the central nervous system to help control your posture and if one of the inputs becomes less reliable, then the body compensates for it by paying more attention to the other inputs. According to Takakusaki (2017), these inputs all enter the brain where they are processed in various regions. These signals can then follow either automatic or cognitive pathways in order to then exit the brain through the spinal cord so that the signal can be delivered to the body. The automatic pathway, which controls balance, is much more direct which allows you to respond faster.

Coelho et al (2016)’s study added an extra layer to understanding balance by giving people an extra task while testing their balance. They tested balance while an individual was holding a tray with a cylinder either standing on the flat side or lying on the round side balancing on it. This reminded me of when I’m on the metro trying to hold onto my bag, phone, wallet, etc. Because of the risk of pickpocketing, I try to keep everything in front of me and I keep my wallet and phone in my hand rather than putting my phone in my pocket or letting my wallet hang off my wrist. I see others on the Metro holding items in their hands all of the time as well. While the cylinder on a tray is definitely more complicated to keep balanced than a phone or bag, I felt like this extra aspect would help to see what is going on when people are staying steady on the Metro.

They placed a harness around the participants’ stomachs which applied a constant pressure pulling them backward. They then asked them to count down from a random number by threes while they were holding the tray. They then released the harness causing them to move forward. This would cause them to have to readjust so that they wouldn’t drop the cylinder. They also tested the participants using the same procedure except without making them count down.

Both counting down and the direction the cylinder was placed in affected how fast the tray moved, how fast their upper body moved, and how much their upper body moved. Additionally, counting down but not the direction of the cylinder affected how much their center of mass moved. These results show that when the cylinder was in a more unstable position, they were able to adjust so that it moves less. They also showed that having the cognitive task seemed to make them move more.

I found these results interesting because it means that having something unstable seems to make you balance more. This seemed a little counter-intuitive to me at first, but it makes sense that the amount of attention you are spending on balancing could impact how well you balance. This is evident in how the cognitive task appeared to make balance worse. I think it would be interesting to see if the people who are hold ing objects in their hands or the ones that are zoning out are the ones that stumble more on the Metro. I also think it would be interesting to see if repetition affects balance. For example, if the people who rode the metro everyday stumbled less on the turns than visitors from cities that don’t rely as heavily on a train system or if the harness being released would cause the participants to be better prepared for it.
Works Cited

 

Chiba, R., Takakusaki, K., Ota, J., Yozu, A., & Haga, N. (2016). Human upright posture control models based on multisensory inputs; in fast and slow dynamics. Neuroscience Research, 104, 96-104. doi:10.1016/j.neures.2015.12.002

 

Coelho, D. B., Bourlinova, C., & Teixeira, L. A. (2016). Higher order balance control: Distinct effects between cognitive task and manual steadiness constraint on automatic postural responses. Human Movement Science, 50, 62-72. doi:10.1016/j.humov.2016.10.008

https://martaguide.com/rail-station-map/

http://metromap.fr/en

Takakusaki K. (2017). Functional Neuroanatomy for Posture and Gait Control. Journal of movement disorders, 10(1), 1–17. doi:10.14802/jmd.16062

Where is the Spicy Food in Paris?

On every street in Paris, there are three things you are certain to find: a boulangerie (or two or three), some sort of bistro/brasserie/café, and a Franprix (my personal favorite, a small-scale grocery store). Clearly, cuisine is central to Parisian life. And often, the options boil down to baguettes, wine, and cheese.

a typical boulangerie (“Savouries Counter – La Renaissance Patisserie” by avlxyz is licensed under CC BY-SA 2.0)

As a lover of spicy foods, I was at a bit of a loss. After about a week into my stay in Paris, I was ready to reintroduce some of the essential components of my normal diet—mainly, I’m referring to chili paste and other spices. Perusing the Franprix directly below my apartment, I was shocked to see that there was only one option for hot sauce. Not only this, but every café and restaurant I had been to showed no promise of the tongue-scorching, eye-watering foods I love. So I had some questions: why do I enjoy spicy foods so much? How are they registered in my brain? Is there a certain part of my brain—specifically for processing spicy taste sensations–that is more active for me than for a French person?

my chili paste from Franprix (Personal Image)

Before attempting to tackle any of these questions, let’s first explore how our brains perceive sensory information from the world around us.
The five basic senses–sight, sound, smell, taste, and touch–all have particular areas of the brain (in the bumpy outer layer called the cortex) devoted to receiving signals from our eyes, ears, nose, mouth, and skin, respectively. The area of the brain that registers taste is called the gustatory cortex.

Basic taste perception  (Image from Frontiers for Young Minds)

Nestled in taste buds scattered about the surface of the tongue, special receptor cells interpret chemical stimuli as sweet, salty, bitter, sour, and umami. From there, signals are sent to sensory neurons and into the brain through cranial nerves (Breslin and Spector, 2008). Spicy foods are detected a bit differently than other tastes, since these signals involve pain receptors (Immke and Gavva, 2006). But, recent neuroscience research has been determined that these signals still activate the gustatory cortex, so they count as a legitimate tastes (Rudenga et al., 2010)! Therefore, it seems that French cuisine is indeed missing an entire taste sensation, and it happens to be the one that is my favorite.

Taste bud (Image from LumenLearning.com)

Now that we’ve legitimized these piquant flavor sensations, let’s dive deeper into the neuroscience behind them.

While scientists still don’t understand exactly how taste perception works, it is clear that capsaicin (the chemical responsible for the spicy qualities of many of my favorite foods) actually results in unique brain responses. Unlike the other tastes, spicy sensations are often accompanied by the release of endorphins (explaining how they can be perceived as pleasurable) and activation of the autonomic nervous system. This unconscious system of bodily regulation is responsible for the perspiration, higher body temperature, and a faster heart rate associated with “hot” foods (McCorry, 2007).

In a 2015 study entitled “The Brain Mechanisms Underlying the Perception of the Pungent Taste of Capsaicin and the Subsequent Autonomic Responses,” Kawakami et al. (2015) investigated how these bodily responses happen after someone eats spicy food. The authors knew that the gustatory cortex (consisting of the middle and posterior short gyri, or M/PSG, of the insular cortex) must somehow be in communication with the brain area controlling autonomic system responses (the anterior gyrus of the insular cortex, or ASG). But, it wasn’t clear how this communication was happening.

In order to test this, the researchers administered three different taste solutions (spicy, salty, and neutral) to twenty human study participants. As the subjects tasted the solutions, the researchers took a look at their brain activity.
The method they used to analyze brain activity is called functional magnetic resonance imaging (fMRI). This produces high-resolution images of the brain while it is in action. Blood oxygenation level-dependent (BOLD) signals show where oxygenated blood is being used, indicating which regions are using up the most resources (Logothetis, 2003).

The ASG and M/PSG (Image from Frontiers in Human Neuroscience journal, Kawakami et al., 2015)

After performing this test, the researchers compared the brain images from the subjects. Their main findings were that there was coordination between the activity of the M/PSG and the ASG when people eat spicy foods. This could mean that these two brain areas are syncing up in order to produce symptoms like sweating and a quickened heartbeat after spicy food is consumed. Moreover, these results support the findings of another study done with mice, which concluded that cells in the ASG and M/PSG synchronize their activity patterns when capsaicin is tasted (Saito et al., 2012).
Kawakami et al. (2015) also found that the ASG was even more active than the M/PSG in response to capsaicin. Not only that, but both brain regions were significantly more active in response to capsaicin compared to the other solutions!

In sum, this study and previous work has helped to explain how the brain registers the taste of “hot” foods in the gustatory cortex and coordinates it with autonomic nervous system activation. However, the researchers only tested three taste sensations, and clearly, there is still much to be discovered about how the neuroscience behind gustation. Future work will likely take a closer look at the connection between the ASG and the M/PSG, possibly providing more insight into why some people (like me) find these mildly painful sensations more enjoyable than others.

   Baguettes are a staple in the                   Parisian diet (“Bag It” by Very Quiet is licensed under CC BY-SA 2.0)

In the meantime, perhaps knowing that eating spicy foods more fully engages the brain will inspire the French to literally “spice up” their diets and rethink that bland baguette, or at least offer more options in their grocery stores. That would make this hot sauce-lover very happy, and it would add a whole new dimension to French cuisine!

 

References:

Breslin, P.A., Spector, A.C. (2008). Mammalian taste perception. Current Biology. 18:R148-155. doi: 10.1016/j.cub.2007.12.017.

Immke, D.C., Gavva, N.R. (2006). The TRPV1 receptor and nociception. Seminars in Cell and Developmental Biology. 17:852-591. doi: 10.1016/j.semcdb.2006.09.004.

Kawakami, S., Sato, H., Sasaki, A.T., Tanabe, H.C., Yoshida, Y., Saito, M., Toyoda, H., Sadato, N., Kang, Y. (2015). The brain mechanisms underlying the perception of pungent taste of capsaicin and the subsequent autonomic response. Frontiers in Human Neuroscience. 9:720. doi: 10.3389/fnhum.2015.00720.

Logothetis, N.K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. Journal of Neuroscience. 23:3963-3971. doi: 10.1523/JNEUROSCI.23-10-03963.2003.

McCorry, L.K. (2007). Physiology of the Autonomic Nervous System. American Journal of Pharmaceutical Education. 71:78.

Rudenga K., Green B., Nachtigal D., Small D.M. (2010). Evidence for an integrated oral sensory module in the human anterior ventral insula. Chemical Senses. 35:693–703. doi: 10.1093/chemse/bjq068.

Saito, M., Toyoda, H., Kawakami, S., Sato, H., Bae, Y.C., Kang, Y. (2012) Capsaicin induces theta-band synchronization between gustatory and autonomic insular cortices. Journal of Neuroscience. 32:13470-13487. doi: 10.1523/JNEUROSCI.5906-11.2012.

Images (in order of appearance):

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwik5pOayNDiAhUFfBoKHRppA28QjRx6BAgBEAU&url=https%3A%2F%2Fwww.pagesjaunes.fr%2Fpros%2F05362487&psig=AOvVaw2ocJ8aEu44zmFV0LxJzoWx&ust=1559762799131578

https://kids.frontiersin.org/article/10.3389/frym.2017.00033

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwjZqu6RzdDiAhVZBGMBHaXYCI4QjRx6BAgBEAU&url=https%3A%2F%2Fcourses.lumenlearning.com%2Fwaymaker-psychology%2Fchapter%2Freading-taste-and-smell%2F&psig=AOvVaw1-_gpFcoSBHOxphR9YgJhr&ust=1559764284849243

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717328/

 

Hyperlinked Videos/Sites:

https://youtu.be/TuVcnR5zAWo

https://www.youtube.com/watch?v=wGXoYippog8

https://neuroscientificallychallenged.com/blog/2013/05/what-is-insula

Have you pharma-seen the Parisians?

Usually when I’m walking through the streets of Paris, I have my phone clutched in my hand with my eyes glued to Google Maps on my screen. Fortunately, now that over a week has passed and I actually know the route from the metro stop to our apartment, I am able to familiarize myself with the different stores and boutiques that we stroll past every day. One symbol that has caught my eye repeatedly is a green glowing cross. It signals a “pharmacie” here in Paris. During our ten-minute commute, we walk past not one, not two, but four pharmacies.

The four pharmacies we pass by every day

French pharmacies are a bit different than the usual CVS that we go to in America. Similar to the states, pharmacies are the place Parisians go to when they need to get some over-the-counter drugs, medicine, or antibiotics. But one can also visit a pharmacie when they need high quality cosmetics, hygiene, and beauty products. The shelves are lined with expensive-sounding brands in beautiful glass bottles, yet the prices for most products are around the same cost as my lunch. As a self-proclaimed “skincare junkie”, I was in absolute awe at not only the affordability of the products, but also at the wide variety and novelty of it all. By our fourth day in Paris, my skin had already started breaking out, and I set out to buy some new items to add to my skincare routine.

Left: the inside of a parapharmacie; Right: my personal purchases, 10/10 recommend

Based on the high prevalence of pharmacie locations, it is no surprise that the French value their skincare. The French standard of beauty seems like it is not the same as Americans, illustrated by a simple search on Youtube on “French versus American makeup”. It is evident by the thumbnails that the French embrace an aesthetic that is much more natural, understated, and effortlessly chic. In order to achieve that, they focus on a flawless base achieved by skincare. Just after a few days of observation, my fellow female classmates and I have all shared the same sentiment: “How do the French have such nice skin? How are French girls so pretty?” As I have made it my personal goal to get even an inch closer to the unattainable “French-girl beauty”, I started to think about how the brain perceives beauty and attractiveness in human faces.

Youtube search results of “French versus American beauty”

Human faces are one of the most interesting visual stimuli that we perceive on a daily basis. Each unique face can convey information about a person, including their age, sex, and emotional state. The ability of our brain to take this information and process it within milliseconds plays a critical role in our day-to-day social interactions. There is evidence that supports the face-specificity hypothesis, which states that humans have specialized cognitive and neural mechanisms that are dedicated to the perception of faces (Kanwisher & Yovel, 2006). Previous studies have shown that the brain uses at least three cognitive domains in deciding the value of attractiveness: the occipital and temporal lobe to process face views, the inferior occipital gyri which perceives facial features, and the fusiform face area (FFA) which receives that information and plays a key role in facial recognition (Yarosh, 2019).

A meta-analysis study conducted by Bzdok et al. gathered multiple studies that investigated the neural correlates of evaluating facial attractiveness. When analyzing the fMRI experiments on attractiveness judgments, it was seen that facial beauty might be evaluated in the orbitofrontal cortex, which in a nutshell is responsible for cognitive decision-making, according to reward value. Additionally, it was found that the amygdala detects the socio-emotional value, or the “beauty”, of the sensory stimuli that we come across visually and aurally. The combination of these results suggests that there is a general role of the reward circuitry in social judgments. (Bzdok et al., 2011). Essentially, this study was able to show that the assessment of beauty in our brains deals with reward stimulation, and that attractiveness is a social marker of long-evolutionary success, a.k.a. having more kids. Having a lot of children holds high socio-emotional value.

Unsurprisingly, the judgement of attractiveness across men and women is quite similar. A study that covered 919 studies and over 15,000 observers reported that people agree, both within cultures and across cultures, who is attractive and who is not (Langlois, et al. 2000). Six-month-old infants even gaze longer at faces judged by adults as “attractive” and spent less time looking at faces that were judged as not attractive (Ramsey, et al. 2004). This data suggests that judgments of physical attractiveness are somehow hard-wired in human genetics, and the actual neural circuitry that takes place within the orbitofrontal cortex and amygdala back up those claims. Hopefully, with a bit of luck and some extra French skincare, six-month-old infants will take a longer look at me. In the meantime, here are some locations where YOU can pick up from quality skincare products! Just look at how many locations there are!

References

Bzdok, D, Langner R, Caspers S, Kurth F, Habel U, Zilles K, Laird A, Eickhoff SB (2011) ALE meta-analysis on facial judgments of trust-worthiness and attractiveness. Brain Struct. Funct 215: 209–2231

Kanwisher N, Yovel G (2006) The fusiform face area: A cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B 361:2109–2128

Langlois J, Rubenstein A, Larson A, Hallam M, Smoot M (2000) Maxim or Myths of Beauty? A meta-analytic and theoretical review. Psychol. Bull 126: 390–423

Ramsey J, Langlois J, Hoss R, Rubenstein A, Griffin A (2004) Origins of a stereotype: Categorization of facial attractiveness by 6-month-old infants. Dev. Sci 7: 201–211.

Yarosh, DB (2019) Perception and Deception: Human Beauty and the Brain. Behavioral sciences 9: 34

https://www.youtube.com/results?search_query=french+vs+american+makeup

The first thing I learned in Paris…

Before I left, I probably heard my parents say, “be careful of the pickpockets in France!” more than a hundred times. But I’ll admit, I didn’t really take it to heart. After all, it’s not like this is my first time in a foreign city, and I felt confident in my ability to manage myself—until one of my roommates told me how she had gotten pickpocketed coming right off the metro from the airport. On the first day!

With crowds like this though, are you surprised?

I was shocked, but I still naively believed I would be okay. If anyone tried to reach into my pockets I would definitely feel it, I thought.

Then came Day 2. As my friends and I were walking to a group picnic at the Eiffel Tower—in fact, just as we were about to pass our own apartment on Avenue de Suffren—a man on the phone suddenly dropped a bunch of coins onto the ground right in front of me. This drew my attention as I sidestepped to the right and kept walking, even commenting that I should have stopped to help him pick up the coins. Suddenly, one of my friends turned and whispered that she thought she saw another guy pass to my right and take his hand out of my pocket. I immediately patted my pockets and realized my phone was gone! Instantly I felt my heart rate pick up as I turned and ran after the guy to confront him, and later on his partner too.

The downsides of living right next to the Eiffel Tower: the tourists lure more pickpockets!

Pickpockets are known for taking advantage of inattentional blindness, a phenomenon that you may have even seen in the famous “gorilla” study (video linked here) that showed the extent of how much our perception can be manipulated by directing our attention towards certain things (Simons and Chabris, 1999). You have probably also experienced this in your daily life: for example, as a pedestrian, you are more likely to notice the other pedestrians walking around you or the smell of the coffee shop you’re passing by; as a driver though, you probably wouldn’t notice any of that, but rather notice things like traffic lights, speed limits, and other cars. Even though the pedestrian and the driver have the same things in their environment, the brain filters and processes them differently. A recent publication found that human subjects were more likely to notice unexpected objects in close areas with some risk detected and fail to notice similar objects in areas where there was no threat detected (Wood and Simons, 2019). For me, the first man who dropped his change on the ground immediately diverted my attention–both visually and aurally–to the situation on my left, which I had identified as more of an immediate risk to me than the man on my right, which I had not even noticed passing by me (even though he was wearing a bright blue shirt).

They also suggest that it is not only the context of what is around you, but also how you can interact with those objects that influence how you focus your attention (Wood and Simons, 2019). Even though both subjects in the environment were younger men, I was forced to interact with the man who dropped his coins to step out of the way, right into the proximity of the pickpocket who I was not forced to engage with and so did not pay any attention to, allowing him to slip his hand into my pocket.

However, now that I reflect on my actions in response to the theft, I also see where I may have acted a little irrationally. After I told my parents that night, they did give me an angry lecture, but more about my decision to chase after someone who could possibly be dangerous (in my defense, what else could I have done? Flag down a police officer with my non-existent French skills?)

I’d argue that my actions may have to do with the idea that under acute stress, people seem to make more instinctive, less logical decisions. In dangerous situations, animals may show signs of sympathetic nervous system activation (the “fight or flight” response) including increased heart rate, sweating, and respiration (Graham, 1953)—all of which I experienced. There also seems to be two decision-making pathways that evolved in the brain: one, a fast, automatic processing that relies mostly on instinct and involuntary habits, while the other is slower and requires more effortful, goal-directed cognition (Yu, 2016).

A basic schematic of the idea Yu is adapting her model from.

In her “stress induced deliberation-to-intuition” model, Yu proposes that under high pressure situations, people tend to fall back on emotional or innate responses to make decisions—going with your “gut”—rather than higher-order analytic reasoning (2016). In that split second that I realized my phone was gone, my mind blanked and my instincts told me to chase after the person and get it back. Had I hesitated, I may have thought about potential dangers and other alternatives I could have done, in order to determine the best way forward. But in the end, I was able to get my phone back, so lesson learned!

 

References:

Graham B.F. (1953). Neuroendocrine components in the physiological response to stress. Ann. N. Y. Acad. Sci. 56(2):184–199.

Simons D. J., Chabris C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074. doi:10.1068/p2952

Wood, K., & Simons, D. J. (2019). The spatial allocation of attention in an interactive environment. Cognitive research: principles and implications4(1), 13. doi:10.1186/s41235-019-0164-5

Yu R. (2016). Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI) model. Neurobiology of stress3, 83–95. doi:10.1016/j.ynstr.2015.12.006

Image 1 taken by Jean-Pierre Dalbéra

Image 2 taken as a screenshot from Google maps

Image 3 taken from Peter Fisk

Puis-je prendre votre commande?

Puis-je prendre votre commande? – Can I take your order?

In the nearly two weeks that I have been in Paris, I have eaten many local cuisines. Baguettes. Croissants. Cheese. Baguettes. Macarons. Pasta. Pizza. And yes, more Baguettes. Conveniently for me, I live right above Le Fils de Boulanger which means most mornings I get a croissant and apple juice on my way to class. For lunch, I usually stop in the first boulangerie that catches my attention and order a baguette sandwich. Dinner is usually a toss-up, meaning it could be anything from another sandwich from a nearby café, pizza from the nearest Italian restaurant, or a quick grab dinner from Franprix. While I do love the food that Paris has to offer, every now and then I have a craving for food from home, whether it’s a burger and fries, a tex-mex burrito, or a steak dinner on occasion. It wasn’t necessarily because I was sick of the pasta, cheese, or bread (especially since it would take a lot for me to get sick of bread), it felt more like I just wanted something that was familiar to me. Don’t get me wrong, France is a beautiful and amazing country with great food, it just sometimes feels exhausting being submerged in a culture that is not your own. From the language barrier to the different social norms to the different food experience, I realized that the reason that I was craving food from home wasn’t that I desperately wanted a McDonald’s cheeseburger, it was just that I wanted a moment of familiarity in an environment that is highly unfamiliar.

My go-to breakfast place, Le Fils de Boulanger, in the 15th Arrondissement

The few times that I have eaten American food since being abroad, I noticed that I became more relaxed than I was previously. This may be due to the fact while I am in a new environment abroad, I have a slight amount of natural stress that comes with being abroad, not to mention also taking classes for my major at the same time. This stress can cause changes within a person’s prefrontal cortex, specifically, stress can cause dendritic expansion into one’s orbitofrontal cortex (OFC), which is involved in saliency of a reward or punishment (B. McEwen, 2012). Since a person’s saliency of reward is affected when the individual is stressed out, it is possible to see how a rewarding experience, such as eating familiar foods, may cause an increased pleasurable effect on emotion. Stress can also cause activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. When a person feels stressed, neurons in the hypothalamus release corticotropin-releasing factor (CRF), which leads to the stimulation of the adrenal glands to produce adrenaline and the stress hormone cortisol (M. Stephens and G. Wand, 2012). Additionally, another recent study determined that comfort food can dampen the activity of the HPA axis (A. Tomiyama et al., 2011). The HPA axis usually increases activity in stressful environments, meaning that by eating foods that are of a familiar comfort can decrease the activity of the HPA, leading to decrease in any feelings of stress. This finding makes my observation that after eating American food that is familiar to me, I feel more relaxed, makes biological sense as I am impacting the activity of my HPA axis.

Outline of the HPA axis and how it acts in regards to stress.

Back home in Alabama, I am rarely inclined to stop at a McDonald’s for lunch and only during exam weeks do I ever crave a 10-piece McNugget. So why would I choose to eat at one of the most popular fast food chains in the U.S. while spending only six weeks in Paris, France, surrounded by local restaurants that may only be experienced here? While eating this fast food isn’t necessarily an overly pleasurable memory back home, it certainly evokes familiar emotions that remind me of late night runs with friends to get food on the way back from studying in the library or to take back dinner for a movie night in my apartment. According to a study by B. Ford and M. Tamir, if there is any quality to a familiar emotion that makes it desirable, then the familiarity of those emotions would be positively associated with wanting to experience those emotions (2014). So looking back at me and my craving for familiar food, it now seems that one of the reasons I indulged in American food abroad is to elicit familiar emotions that would ease the stress of being in a new environment. Moral of the story: enjoy the food that Paris has to offer, but don’t feel guilty for eating foods that are still found at home, it’s just one way to have familiarity in an unfamiliar environment.

The multiple McDonald’s locations in Paris, France.

Works Cited:

Ford, B. Q., & Tamir, M. (2014). Preferring familiar emotions: as you want (and like) it?. Cognition & emotion28(2), 311–324. doi:10.1080/02699931.2013.823381

McEwen, B. S. (2012). Brain on stress: how the social environment gets under the skin. Proceedings of the National Academy of Sciences109(Supplement 2), 17180-17185.

Stephens, M. A., & Wand, G. (2012). Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol research : current reviews34(4), 468–483.

Tomiyama, A. J., Dallman, M. F., & Epel, E. S. (2011). Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology36(10), 1513-1519.

Image 1 – Le Fils de Boulanger, taken from tripadvisor.com

Image 2 – HPA axis (2017), taken from https://everfit.co.nz/articles/hpa-axis-dysfunction

Image 3 – screenshot of google maps

The Real Art Connoisseurs

Coming to Paris the first thing I noticed was the architecture. As an architectural studies minor, I love seeing new styles of building and the effects they have on how we perceive a city. Just from the buildings, Paris is already classier than any city I’ve been to in the U.S. I was even told that the reason most apartment buildings don’t have air conditioning is because Parisians don’t want to mar the beautiful façade of the buildings with ugly air conditioning units (I don’t disagree with this decision).

Classy Parisian apartment building

Not only is the architecture beautiful in Paris but also the artwork in the plethora of museums. Just in this first week I’ve visited three museums: the Musée de l’Orangerie, Musée d’Orsay and the Louvre. Each one is always filled with people admiring the artwork. The interesting aspect about art is that its beauty is subjective and intangible, and yet, it is relatable to many. After all, there is a reason that 10.2 million people visited the Louvre in 2018 (taking into account the fact that some people go just to say they’ve gone). This absurd number of people has me thinking, is there a way to detect the real art connoisseurs from the charlatans who only go to the museums for the Instagram post?

Entrance to the Louvre, designed by I.M. Pei

One way to answer this question is to find evidence that there is a difference in brain activity between art experts and non-experts when viewing a piece of art. Such a study was done by Kirk et al. in which the authors asked architects and non-architects to rate the aesthetic value of building images while fMRI studies tracked neural activity (Kirk et al., 2009). Before this study, it was already

The ACC and OFC are involved in processing reward

known that brain areas that are active in processing reward such as the striatum, orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC) are also active when perceiving visual aesthetics such as paintings (Vartanian and Goel, 2004). Because of this, Kirk et al. focused on fMRI studies of these brain locations in architects and non-architects to see if there was a difference in neural activity. It should be noted though that other areas such as the parahippocampal gyrus are activated during visual perception and judgement of value, but are not explicitly studied in this experiment (Chatterjee and Vartanian, 2016).

Eleven architects/grad or postgrad architecture students and 13 undergrad/grad students with no formal art-related education were asked to rate the level of aesthetic appeal for 168 building images by pressing buttons 1 (lowest appeal) to 5 (highest appeal) while in the fMRI scanner. Results showed that there was a significant increase in ACC and OFC activity in architects compared to non-architects when asked to make an aesthetic judgement of the building (Kirk et al., 2009). These results are controlled by data that show no significant difference in neural activity when architect and non-architect were asked to make an aesthetic judgement on a neutral stimulus such as a face (Kirk et al., 2009). Thus we know that the difference in neural activity in the ACC and OFC is due to the judgement of buildings specifically. Interestingly enough, other areas of the brain active during reward that are predicted to also be active during aesthetic judgement such as the nucleus accumbens show no significant difference in activation between architect and non-architect during building aesthetic evaluation (Kirk et al., 2009). Overall, we can conclude that the anterior cingulate cortex and orbitofrontal cortex have different neural activities in art experts vs non-experts when asked to judge the beauty of an artwork.

So what does this mean in terms of differentiating the connoisseurs from the charlatans? Essentially there is no real way to tell the difference without access to fMRI scans of everyone’s brains, since behavior in making aesthetic judgements (such as reaction time in aesthetic judgement) is not significantly different between experts and non-experts when viewing a piece of art (Kirk et al., 2009). So good news for us charlatans, no one will be exposing us anytime soon during our next museum visit!

References

Chatterjee, A., & Vartanian, O. (2016). Neuroscience of aesthetics. Annals of the New York Academy of Sciences, 172-194.

Kirk, U., Skov, M., Christensen, M. S., & Nygaard, N. (2009). Brain correlates of aesthetic expertise: A parametric fMRI study. Brain and Cognition, 69, 306-315.

10.2 million visitors to the Louvre in 2018. (2019, January 3). Retrieved from https://presse.louvre.fr/10-2-million-visitors-to-the-louvre-in-2018/

Vartanian, O., & Goel, V. (2004). Neuroscience correlates of aesthetic preference for paintings. NeuroReport, 15(5), 893-897.

https://www.researchgate.net/profile/Sung-il_Kim/publication/310736855/figure/fig4/AS:585435621380101@1516590137404/The-valuation-pathway-Brain-regions-involved-in-the-value-based-decisionmaking-process.png

 

 

 

What Happens to Olivier Giroud’s Brain after He Broke my Heart?

On Wednesday night, along with some friends, I went to the Mazet bar in the 6th Arrondissement of Paris to watch some soccer.

The Mozet (61 Rue Saint-André des Arts, 75006 Paris)

It was the night of Europa League final and two rivalries from London, Arsenal and Chelsea were facing each other. Being a huge Arsenal fan since middle school, I was very nervous about the game. Olivier Giroud, a French footballer who plays as a forward for Chelsea broke the deadlock after half time by scoring a header that ultimately led to Chelsea winning the Europa League this season. At the end of the game, I felt disappointed and miserable looking at the scoreboard, Chelsea 4 – 1 Arsenal.

Embed from Getty Images

As an amateur soccer player myself, I know in order to score such a header, both power and precision during the impact with the ball are crucial. Though it may seem effortless when a professional footballer heads the ball, it is in fact quite painful for a non-athlete like me who do not know how to control a header well. Being a neuroscience student, this got me thinking that perhaps there are some negative consequences to the brains as these professional soccer players head the ball almost every single day, both on-pitch and off-pitch.

I first heard about Chronic Traumatic Encephalopathy (CTE) in the 2015 movie starring Will Smith as Dr. Bennet Omalu. Dr. Omalu first found CTE in American football players when he performed an autopsy on former Pittsburgh Steelers center Mike Webster in 2002 (Omalu et al., 2005).

This disease has been observed in athletes with a history of repetitive brain trauma and symptoms include memory disturbances, behavioral and personality changes, parkinsonism and speech and gait abnormalities (McKee et al., 2009). Currently, CTE has been associated with several pathological hallmarks. One of them is neurofibrillary tangles of tau deposition, which is as a marker of Alzheimer’s Disease (McKee et al., 2009). In other words, the protein tau becomes abnormal and is now unable to carry out its normal job to facilitate forming microtubules (Kadavath et al., 2015), the “conveyor belt” of nerve cells.

So, does heading in soccer lead to this disease? This is a tough question to answer. The main reason is that CTE does not have a definite diagnosis prior to autopsy. Therefore, there is a very limited study sample to test this question and we have to rely heavily on case studies. One famous case was Brazilian captain and two-times FIFA world cup winner, Hilderaldo Bellini. With no history of concussion, he died at the age of 83 and examination by the doctor revealed widespread CTE (Grinberg et al., 2016).

Bellini has a statue at the entrance of Maracanã, one of the most important soccer stadiums in the world. Rio de Janeiro, Brazil

One neuroimaging study has identified thinning of the cerebral cortex in former professional soccer players when compared against former non-contact athletes. The cerebral cortex is the outer layer of neural tissue of our brain and is involved heavily in memory, attention, perception, etc. (Penfield & Rasmussen, 1950). The authors have also found that thinning of the cortex was tied to how many times the players have headed the ball in their career. Cortical thinning was also related to a decrease in cognitive performance and hence concluded that maybe these “sub-concussive head impact” of headings in soccer are not so good at all (Koerte et al., 2016). However, one thing to note is that a self-report survey was used to obtain a rough estimate of how many times the players headed the ball in their career. As a result, the exact forces and the exact frequency of heading the ball were not considered (Koerte et al., 2016).

Prof Henrik Zetterberg is a world-leading expert in developing biomarkers for Alzheimer’s disease and whom my lab at Emory had the honor to collaborate in several studies. He did a study to look at the evidence in neurochemical fluctuations immediately after study participants head the balls. Results demonstrate that headings in soccer do not have a short-term biochemical sign of neuronal injury.  They have further suggested that the effect of heading in soccer seems to be quite different from that caused by head punches in boxing (Zetterberg et al., 2007).

After looking at a case study, an imaging study, and a neurochemical study, it seems that both positive and negative findings exist. A review of the current scientific literature demonstrates that the effects of heading the ball and connection to CTE remain inconclusive (Grinberg et al., 2016). Though there is evidence of a relationship between heading and abnormal brain structure, most data is still preliminary (Rodrigues, Lasmar, & Caramelli, 2016). As for now, it is not yet the right time to think about banning heading the ball completely in soccer. It’s a great part of this sport that as soccer fans we all love. However, I think the recommendation by the U.S. Youth Soccer is very valid. Only kids after age 10 should be taught heading and heading in game should be delayed until they have both the skill and physical maturity (Nitrini, 2017). If you are a parent ready to take your child to their soccer game this weekend, maybe consider this advice.

Refernces

Grinberg, L. T., Anghinah, R., Nascimento, C. F., Amaro, E., Leite, R. P., Martin, M. d. G. M., . . . Nitrini, R. (2016). Chronic Traumatic Encephalopathy Presenting as Alzheimer’s Disease in a Retired Soccer Player. Journal of Alzheimer’s disease : JAD, 54(1), 169-174. doi:10.3233/JAD-160312

Kadavath, H., Hofele, R. V., Biernat, J., Kumar, S., Tepper, K., Urlaub, H., . . . Zweckstetter, M. (2015). Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. 112(24), 7501-7506. doi:10.1073/pnas.1504081112 %J Proceedings of the National Academy of Sciences

Koerte, I. K., Mayinger, M., Muehlmann, M., Kaufmann, D., Lin, A. P., Steffinger, D., . . . Behavior. (2016). Cortical thinning in former professional soccer players. 10(3), 792-798. doi:10.1007/s11682-015-9442-0

McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., . . . Stern, R. A. (2009). Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy After Repetitive Head Injury. Journal of Neuropathology & Experimental Neurology, 68(7), 709-735. doi:10.1097/NEN.0b013e3181a9d503 %J Journal of Neuropathology & Experimental Neurology

Nitrini, R. (2017). Soccer (Football Association) and chronic traumatic encephalopathy: A short review and recommendation. Dementia & neuropsychologia, 11(3), 218-220. doi:10.1590/1980-57642016dn11-030002

Omalu, B. I., DeKosky, S. T., Minster, R. L., Kamboh, M. I., Hamilton, R. L., & Wecht, C. H. (2005). Chronic Traumatic Encephalopathy in a National Football League Player. Neurosurgery, 57(1), 128-134. doi:10.1227/01.NEU.0000163407.92769.ED %J Neurosurgery

Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man; a clinical study of localization of function. Oxford, England: Macmillan.

Rodrigues, A. C., Lasmar, R. P., & Caramelli, P. (2016). Effects of Soccer Heading on Brain Structure and Function. 7(38). doi:10.3389/fneur.2016.00038

Zetterberg, H., Jonsson, M., Rasulzada, A., Popa, C., Styrud, E., Hietala, M. A., . . . Blennow, K. (2007). No neurochemical evidence for brain injury caused by heading in soccer. British journal of sports medicine, 41(9), 574-577. doi:10.1136/bjsm.2007.037143

Images Citation

Regan, Michael (2019). Olivier Giroud of Chelsea scores his team’s first goal.    [Photograph], Retrieved 21:08, June 4, 2019, from https://www.gettyimages.com/detail/news-photo/olivier-giroud-of-chelsea-scores-his-teams-first-goal-as-he-news-photo/1152484213

File:Estátua do Bellini2.jpg. (2017, December 31). Wikimedia Commons, the free media repository. Retrieved 21:08, June 4, 2019 from https://commons.wikimedia.org/w/index.php?title=File:Est%C3%A1tua_do_Bellini2.jpg&oldid=275670697.

Image

It Starts with Love

0.15.30.40. Universal scoring vocab to any tennis fan. I grew up watching all types of sports, and tennis was not the exception. I heard names like Federer, Nadal, Djokovic, Sharapova, and Serena Williams(QUEEN!). The main tournaments in the tennis world are the Gland Slams. They happen 4 times a year, and during that time, you can bet that I’m constantly checking my phone for scores or watching it on television. Prior to coming to Paris, I knew that Roland Garros would take place while I was here. Never in a million years did I imagine that I would get the opportunity to attend and be able to sit and watch a match with a couple of friends. It was truly a once-in-a-lifetime experience!

Roland Garros Round 2 Peterson vs. Vekic

I will admit that while I was sitting, watching this tennis match at the Open, I did not wonder how the players were able to accurately hit the ball every single time. But after reflecting on my experience, I decided I wanted to do further research since I was in such awe at how beautiful and graceful they were.

Expertise Brain Regions

Do you ever wonder how a tennis player can return a ball smoothly when it’s coming at them at 92MPH? It’s almost as if they have an instinct for it. One study in particular aimed to test whether or not there was a difference in brain activation depending on the level of expertise (Balser et. al., 2014). For this study, they recruited 15 tennis experts and 16 volleyball experts chosen from a pool of professionals. They acted as the novice participants for whatever sport they were not an expert in. They were then shown videos of both volleyball and tennis players and were asked to predict where the ball would go simply based on early movement from the serve player. While this was going on, they measured the level of activation, through fMRI for three major brain areas: the Supplementary Motor Area commonly involved in the control of movement, the Superior Parietal Lobule reflecting the spatial orientation, and the cerebellum which uses a predictive internal model to solve a task. They found that the tennis player watching the tennis player serve had higher levels of activation in all 3 brain regions. This suggests that the experts will rely more on fine-tuned perceptual-motor representations than non-experts; the information has been made into a reflexive memory. This means that although the tennis players were not actively returning the serve, their brain was activated when watching the videos as if they were!

Another study looked at how people determined when an object reached the target point. Chang and Jazayeri sought to test whether people used mathematical concepts or temporal cues when engaging with dynamic stimuli and deciding the time to contact (2018). They had people look at an object moving across their visual field in 3 categories. In the first, their view of the object was obstructed, and they had the subjects guess when the object would reach a certain point. The other group never lost sight of the object. The third group was shown the object at the fixation point in the middle of the screen. Results show that when people were not able to see the object (Group 1), they based when the object had arrived on just temporal cues such as time, but when they were exposed to the object (Group 2 or 3), they still relied on both mathematical and temporal cues. In the world of tennis, this is significant because not only does the athlete calculate how quick the ball is coming at them, but they also contextualize the ball with their environment as well as listen to when the ball hits the court in order to have the most optimal response. So, it’s not just the arithmetic-side of the brain, there are also sensory inputs that go into decision-making.

I hope that the next time you’re watching a tennis match your brain does not attempt to analyze every single serve, if so, then I apologize. I know that the next time I’m watching Roger Federer (my favorite!) play for his 21st Grand Slam title hopefully here in Paris, I’ll be thinking about his tremendous ability to return a serve partly thanks to the brain. Oh, and I’ll be wearing my newly purchased Panama hat!

my Panama hat!

 

References

Balser N, Lorey B, Pilgramm S, Naumann T, Kindermann S, Stark R, et al. (2014) The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front. Hum. Neurosci. 8:568.

Bilalić, Merim. “Introduction to Research on Expertise (Chapter One) – The Neuroscience of Expertise.” Cambridge Core, Cambridge University Press, 2017, www.cambridge.org/core/books/neuroscience-of-expertise/introduction-to-research-on-expertise/FCA452C4751357765F8A81CA8580834A.

Image 1: taken by me

Image 2: Chang CJ, Jazayeri M (2018) Integration of speed and time for estimating time to contact. PNAS 115 (12) E2879-E2887.

Image 3: taken by me

Name that Painting

Bonjour from France! I am so excited to be posting my first blog here in Paris. I have had such an amazing first week and a half. This city is so beautiful and has so much to offer. One of the parts of Paris I was so excited for before coming here was the art. Paris is known for its beautiful art and amazing museums. One of my favorite artists is Van Gogh (cliché, I know. But his paintings are beautiful). So you can imagine my excitement when we had the opportunity to go as a group to the L’Atelier des Lumières. This is a beautiful experience where art is projected onto the walls of the room, with background music and movement as opposed to the normal still painting. One of the exhibits is called Van Gogh Starry Night, and it includes many of his different paintings come to life before your eyes.

The Olive Trees by Van Gogh at L’Atelier des Lumières

One of the things that has always fascinated me most about Van Gogh’s paintings, and post-impressionist paintings in general, is the ability for us to recognize the scene even though it is never perfectly clear. I realized this is an amazing task that our mind is able to achieve through object recognition. Object recognition is just what it sounds like, but the mechanisms supporting it are very complicated, interesting, and intricate. Object recognition calls on many regions including the visual cortex as well as many structures in the temporal lobe of the brain (Bar et al., 2001). Object recognition calls on bottom-down processing, which is a process in which we receive visual information and then call on higher processes to understand the full picture. However, it has also been observed that top-down processing is more important than previously realized. Top-down processing is when higher functions, or previously stored information, affects the perception we are creating. For example, our memory can have an effect. Our brain takes information from our memory system to fully fill in the details of the image we are looking at (Bar et al., 2007). This may explain why I could recognize which painting was being displayed in the exhibit even before it was fully in my view.

Only Part of Starry Night shown at L’atelier des Lumières

Along with this, partially analyzed images or incomplete images can be recognized before all of the information is received (Bar, 2003). This is why even when an object in a Van Gogh painting isn’t blurry or not the full picture, we can still recognize the scene in front of us.

Wheatfield with Crows by Van Gogh. The image is blurry and a bit unclear, but you can still tell what it is.

Another fascinating thing about object recognition is the emotion we feel when viewing certain objects. I am sure everyone has an experience with art that has made them feel some sort of emotion, as I did at the L’Ateliers exhibit. Before studying this topic, I would assume that the emotion we feel comes after we are able to detect an object. However, there are multiple studies that now say our emotions can actually affect our final perception of an object. One study says that our prediction of an object includes its relevance and value, before we are consciously aware of the object we are observing (Barret and Bar, 2009). Another study expanded on this, looking at our emotional perception of faces and the way it can be influenced without our knowledge. If a happy or negative face is shown quickly and not entering consciousness, then we will perceive a neutral face shown directly after as having more emotion (Siegel et al., 2018).

This was very interesting to me, because it means the context or environment around us, or even the mood that we are in, may completely change our perception of an object. The feeling that I perceive when looking at Van Gogh’s Starry Night will be different than someone else’s. Also, as stated above, our different memories and experience could change the way in which we perceive the painting as well.

It is amazing what our brain is able to accomplish. Not only are we able to recognize objects before we have the entire picture, but our emotional processing of that object starts very early on in the process as well.  This is just part of the reason Van Gogh’s painting have always amazed me. He has the ability to create a scene that isn’t quite right, but we know what it is showing anyway. He is able to let your mind fill in the rest of the details. Not only this, but each perception of his paintings are completely different based off our own experience. I know my personal experience leads to a beautiful painting with lots of emotion.

Self Portrait by Van Gogh shown at L’Atelier des Lumières

 

 

Works Cited

Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Mendola, J. D., . . . Dale, A. M. (2001). Cortical Mechanisms Specific to Explicit Visual Object Recognition. Neuron,29(2), 529-535. doi:10.1016/s0896-6273(01)00224-0

Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cognitive Neuroscience,15, 600-609.

Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences,11(9), 372. doi:10.1016/j.tics.2007.08.004

Barrett, L. F., & Bar, M. (2009). See it with feeling: affective predictions during object perception. Philosophical transactions of the Royal Society of London. Series B, Biological sciences364(1521), 1325–1334. doi:10.1098/rstb.2008.0312

Siegel, E. H., Wormwood, J. B., Quigley, K. S., & Barrett, L. F. (2018). Seeing What You Feel: Affect Drives Visual Perception of Structurally Neutral Faces. Psychological science29(4), 496–503. doi:10.1177/0956797617741718

Image 1,2 and 4-  my own images

Image 3: Wheatfield with Crows – Van Gogh Museum. (n.d.). Retrieved from https://www.vangoghmuseum.nl/en/collection/s0149V1962

Je t’aime

It didn’t take long to realize why Paris is called the city of love. During our first week here, some of the guys and I enjoyed a romantic evening stroll to the Wall of Love. This wall (pictured below) is a forty square meter canvas covered with the words “I Love You” in over 300 languages. The thought that love is a universal language is portrayed here, not only due to the seemingly infinite phrases, but because of the range of people there too. Couples, friends, and families from all over the world were visiting; a broad range of love could be observed. This got me thinking about Paris. What makes it such a magical place, renowned for love?

A romantic afternoon

First, I wanted to figure out what goes on in the brain during these feelings of love. Research has shown that certain neurotransmitters are involved in love, such as dopamine, oxytocin, and serotonin. Firstly, people in love show low levels of serotonin in the brain, which is also known as the satiation chemical (Zeki, 2007). The obsessive component of new love can thus be attributed to the dissatisfaction one may feel due to the brain’s lowered levels of serotonin. It leaves us always wanting more.

Furthermore, this study also shows that similarity and familiarity with someone at the start of a relationship can counteract the drop in serotonin levels usually observed with love. Thus, this can prevent people from falling in love (Zeki, 2007). However, in later stages of relationships, similarity and familiarity have actually been shown to boost the strength and duration of a relationship. This is linked with increased levels of oxytocin and vasopressin during this stage of a relationship, which are chemicals believed to be involved in attachment (Zeki, 2007).

Studies were also done on dopamine, the neurotransmitter believed to be involved in reward and motivation. People who were intensely in love for 1 to 17 months were first shown a picture of their loved one and then a picture of a familiar individual. When looking at the photo of the loved one, there was higher activation of the right ventral tegmental area, right postero-dorsal body, and the medial caudate nucleus, all of which are areas associated with dopamine (Aron et al., 2005). Thus, when you are in love the increased levels of dopamine may be involved in the rewarding nature of the loved one’s presence.

A 2017 study looked closer into the relationship between love and addiction, as the same chemicals have been shown to be involved in each. This study looked at the future potential to treat love addiction if it were to become a harmful condition (basically, love is a powerful thing). They found, for example, that oxytocin antagonists could be used in an individual to reduce the reward felt from being close to another person (Earp et al., 2017). Could there soon be a way to get rid of your obsessive ex?

The location of the Love Wall

Now that we know the underlying chemicals behind the feeling of love, what is it about Paris that brings them out of us? A 1974 study found that men were more likely to experience feelings of love towards a female interviewer when the interview took place in an anxiety and adrenaline-provoking location, such as a suspension bridge, rather than in calm locations (Dutton and Aron, 1974). Perhaps Paris’ chic people, luminescent nights, quaint cafes, and the feeling of being in a new place create an adrenaline and anxiety-filled environment in which we are more susceptible to these chemical changes in our brains, thus helping Paris to its title as The City of Love.

Sources

Aron A, Fisher H, Mashek DJ, Strong G, Haifang Li H, Brown LL. (2005) Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love, Journal of Neurophysiology 94, 1: 327-337.

Dutton, D.G., & Aron, A.P. (1974). Some Evidence for Heightened Sexual Attraction Under Conditions of High Anxiety, Journal of Personality and Social Psychology, 30 (4), 510-517.

Earp, B., Wudarczyk, O., Foddy, B., Savulescu, J., (2017). Addicted to Love. What is Love Addicton and When Should it be Treated?, Philos. Psychiatr. Psychol., 24(1): 77-92

Zeki, S. (2007). The Neurobiology of Love, FEBS Letters 581, 14: 2575–2579.