Tag Archives: art

A Symphony of Birds

Paris is a city of lights, but also a city of sound. The peacefulness of the gardens surrounding the cityscape is no match to the hustle and bustle of everyday city life. Sometimes the sound is welcomed, such as a talented neighbor’s piano playing or an excellent street musician’s violin performance under the Arc de Triomphe. However, sometimes it is less welcomed, such as a taxi honking or an amateur trumpeter interjecting himself on my metro ride. Despite that, I absolutely love the sounds around the city. An overlooked, but equally important aspect to the music of the city, is the music of the animal residents of Paris. Every morning, I walk outside my apartment and generally hear the sound of some animal within five minutes of stepping foot outside my door. Whether it is two pigeons fighting over food by a bakery or two dogs barking as they pass each other, it is clear that animals have specific abilities to communicate unique to each species.

1 Metro performer during daily ride on line 8

 

One of my favorite sounds to hear in Paris is the tweeting of birds up in the trees while I walk below on the street. During my time here in Paris, I have been exposed to the knowledge of bird songs in my classes and how their songs act as communication to one another. One questioned asked in class was “If some animals can be shown to have language, do they also create art?”. When I first heard this question, I immediately imagined monkeys holding a paintbrush behind a canvas with paint splattered on it and thought how I wasn’t so sure that it could be considered art. Upon further thinking, I thought of how art can be more than drawing, it could be related to dancing or singing. Instantly I started wondering if some birds may actually be singing for aesthetic purposes or just for their own personal entertainment. I knew that songbirds, like canaries or finches, are even known to have neural circuitry that shows that they are selective in what singing they process from other birds in order to rely on their memories for song learning (Phan et al., 2005). I then began to investigate if birds have been shown to exhibit any capacity of artistic expression and found an article by Gupfinger and Kaltenbrunner (2017) that demonstrated the auditory skills and musical preferences of grey parrots in captivity.

2 What I initially thought of as animals creating art

According to Gupfinger and Kaltenbrunner (2017), grey parrots are quite intelligent and have high audible skills and musical talents. Male parrots are even known to have songs that are specific to only themselves and are able to provide highly trained song learning to their offspring (Berg et al., 2011). The aim of their study was to determine how music and the use of musical instruments would influence the activity of grey parrots and add to their audible enrichment.  A central experiment of the study focused on how the parrots would interact and manipulate a music-producing joystick test device. The parrots’ beaks and legs were able to freely manipulate two joy sticks in two different experimental set ups. The first set up gave one joystick that produced sound and another joystick that remained silent. The preference for the grey parrots to activate the joystick that produced sound over silence demonstrates how parrots are more inclined to have auditory stimulation than to be without it (Gupfinger and Kaltenbrunner, 2017). In the second set up, there were two active joysticks, one set to 90 beats per minute and the other set to 120 beats per minute. This setup was used in order to gain a better understanding of musical and auditory preferences of individual grey parrots. The results from the second setup demonstrate that the parrots preferred to play beats at 90 beats per minute over 120 beats per minute. The spontaneous interaction of the parrots with the joystick device demonstrates that they have a potential capacity to exhibit musical expression.

3 Joystick Test Device used by Gupfinger and Kaltenbrunner (2017)

The real world application of the Gupfinger and Kaltenbrunner (2017) study implies that musical instruments can significantly benefit grey parrots in captivity by giving them a creative outlet for expression. The strength of this experiment was the use of these two different set ups. By being able to compare sound to silence and then strengthen that result (birds prefer auditory stimuli to silence) by specific was measure of beat the grey parrots prefer, it really helps those curious (including me) to agree with their conclusion that grey parrots can not only have vocal singing capabilities, but that they can  consciously process music and have the capability to manipulate a simple form of a musical instrument. While I believe that their experiment, for the most part, was strongly thought through, there is one aspect of their experimental design that I find questionable. Gupfinger and Kaltenbrunner (2017) state that their method to ensure that the birds acknowledged and used the musical joystick was to have a person stay present with the parrots and motivate them to engage with it. This alarms me as a possible confounding variable as they do not go in depth describing what their specific methods were to motivate the birds. The idea to measure grey parrot beat preference and frequency preference proved insightful and begs me to ask the further question of could birds, songbirds and non-songbirds, be shown to have the capability to synthesize the beats that they prefer and make a music all their own?

 

Works Cited

Berg, K. S., Delgado, S., Cortopassi, K. A., Beissinger, S. R., & Bradbury, J. W. (2011). Vertical transmission of learned signatures in a wild parrot. Proceedings of the Royal Society B: Biological Sciences279(1728), 585-591.

Gupfinger, R., & Kaltenbrunner, M. (2017, November). Sonic experiments with grey parrots: A report on testing the auditory skills and musical preferences of grey parrots in captivity. In Proceedings of the Fourth International Conference on Animal-Computer Interaction (p. 3). ACM.

Phan, M. L., Pytte, C. L., & Vicario, D. S. (2006). Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences103(4), 1088-1093.

 

Image 1: taken by me

Image 2: taken from: https://www.google.com/search?q=monkeys+painting&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjzk8a914zjAhVJWBoKHVw0BJcQ_AUIECgB&biw=1366&bih=665#imgrc=CjN9G5sHYDmNFM:

 

Image 3 taken from: Gupfinger, R., & Kaltenbrunner, M. (2017, November).

A Glimpse Through Monet’s Eyes

Standing in Monet’s Garden in Giverny, I donned a pair of scratched, plastic-covered, yellowed glasses and watched the once-breathtaking view in front of me melt into a muddied and obscured version of its former beauty. As a class, we had taken a day-trip to explore the place that Monet painted his famous water lilies. Monet is thought to have had worsening cataracts as he aged, which

Monet’s garden (Personal image)

impacted his vision and therefore his artwork. To simulate his experience, in class we had made “cataract glasses” by altering a pair of safety glasses, and we wore them for part of our time in the garden. I sketched the scene, noting how the vibrant, defined foliage lost its form and beauty. Certainly, this distortion altered my perception and gave me a unique perspective. However, at the time, I did not consider my final product a very appealing result.

My Monet-inspired glasses, meant to imitate vision with cataracts (Personal image)

But, this representation of the scene wasn’t inherently bad, and being impaired didn’t necessarily make my depiction worse for its lack of accuracy! It may even be that “impairments” enhance creative ability: even with the failing functionality of his own vision, Monet was able to transform any scene into a masterpiece.

My sketch of the same scene without (left) and with (right) the glasses (Personal Image)

In other realms as well, what may be deemed an impairment may turn out to be neutral or even beneficial to an individual’s creativity or artistry! Perhaps surprisingly, recent research suggests that this may be the case for some dementia patients.

One study by Midorikawa et al. (2016) involved analyzing new or increased positive abilities that appeared in patients with behavior-variant frontotemporal lobe dementia (bvFTD) or Alzheimer’s Disease (AD). These types of dementia are the ones in which enhanced abilities—such as new or improved drawing, singing, or painting skills—are most commonly reported after disease onset, leading to an apparent boost in creativity or artistry.

First, to briefly introduce the diseases of interest: FTD and AD are both types of

The different brain regions affected by FTD and AD. (Image from ElderlyCareAssistance.info)

dementias, diseases in which brain cells begin to die. FTD is a rather rare type of dementia that begins early in life. Cells die in parts of the brain that deal with social skills, decision-making, and emotion—especially the front and the side (What is Frontotemporal Dementia?). The specific type called behavior-variant FTD (bvFTD) is characterized by changes in personality such as disinhibition, inappropriate behavior, and loss of empathy. (Kurz et al., 2014). AD, which is one of the most common types of dementia, usually begins later in life. A lot of the initial cell death happens in the hippocampus, a structure associated with memory, so memory problems are often some of first symptoms (Miller and Hou, 2004).

Some of the items from the questionnaire (Image from Midorikawa et al., 2016)

In this study, caregivers of people with FTD and AD filled out a questionnaire, ranking the patients on a variety of positive behaviors in three different categories: sensory processing, cognitive skills, and social/emotional processing. On a four-point scale, caregivers indicated the frequency of the listed behaviors in each category for their patient “before the illness” and “at the present time.” Prior to the study, each patient was also diagnosed by a neurologist and assigned a clinical dementia rating, or CDR. (Higher CDR numbers indicate a more advanced or severe stage of disease.) This would allow the researchers to see if there were differences in ability between various stages and types of dementia.

Study results: y-axis indicates the average score. X-axis indicates clinical dementia rating (CDR) for Alzheimer’s Disease or frontotemporal dementia. (Image from Midorikawa et al., 2016)

Subtracting the “before” score from the “present” score, the researchers obtained a representative value, where a positive number indicates more of the behavior since diagnosis. Averaging these values for each diagnostic rating, Midorikawa et al. (2016) performed a statistical test to assess the magnitude of change in that behavior. What they found was that some of these positive behaviors significantly increased after disease onset! In particular, they found that (as can be seen in the graphs below) both AD and bvFTD patients actually exhibited more language-related activities–meaning creativity in self-expression through language–in the earliest stages of the disease. Additionally, a small portion of patients of both dementias experienced an increase in visuospatial activities, which includes things like being able to depict scenes through painting or drawing!

Although patients at later stages of the disease experienced decreases in these behaviors, it is a very intriguing finding that patients’ creative expression actually increased after disease onset. Moreover, there have also been many case reports documenting increased artistic output following neurological damage due to other causes, such as traumatic brain injury, Parkinson’s Disease, and semantic dementia (Midorikawa and Kawamura, 2015; Canesi et al., 2016; Hamauchi et al., 2019). Just like with Monet, it appears that what appears to be a deficit may in reality not be quite so detrimental to the creative process!

One strength of this study was how all patients underwent a comprehensive neurological evaluation by the same experienced neurologist. This was effective to confirm the diagnoses of the patients using consistent parameters and to assess disease severity. However, being survey-based, these measures were quite subjective and may not be entirely accurate. What it contributes to the field, though, is that it is one of the first studies to systematically analyze these changes in artistic ability: others have primarily been case studies of individuals. The study also offers a unique perspective: most work on dementia serves to analyze the deficits that occur due to cell death. This study, however, highlights

Painting by one AD patient without previous artistic training or ability before disease onset (Image from Schott, 2012).

some positive aspects of the disease, contributing to a rather new initiative that is working to change the dynamic around mental impairments. Rather than viewing perceptual differences as incorrect or indicative of pathology, maybe we should allow ourselves to appreciate the creativity.

In sum, even though I felt a bit ridiculous in the moment, wearing my cataract glasses in Monet’s garden taught me a powerful lesson: A change in perspective is not necessarily bad, even when the conventionally beautiful scene undergoes some alterations in the process. Perhaps if more people would be willing to look a bit silly and try on some Monet cataract glasses, we could all come to appreciate those with neurological damage and perceptual differences a little bit more, valuing them for the unique perspectives they bring to the world.

 

References:

Canesi, M., Rusconi, M.L., Moroni, F., Ranghetti, A., Cereda, E., Pezzoli, G. (2016). Creative Thinking, Professional Artists, and Parkinson’s Disease. J Parkinsons Dis. 6:239-246. doi: 10.3233/JPD-150681.

Frontotemporal Dementia- Signs and Symptoms. (n.d.). Retrieved from https://www.ucsfhealth.org/conditions/frontotemporal_dementia/signs_and_symptoms.html

Hamauchi, A., Hidaki, Y., Kitamura, I., Yatabe, Y., Hashimoto, M., Yonehara, T., Fukuhara, R., Ikeda, M. (2019). Emergence of artistic talent in progressive nonfluent aphasia: a case report. Psychogeriatrics. 10.1111/psyg.12437.

Kurz, A., Kurz, C., Ellis, K., Lautenschlager, N.T. (2014). What is frontotemporal dementia? Maturitas. 79:216-219. doi: 10.1016/j.maturitas.2014.07.001.

Midorikawa, A., Cristian, L.E., Foxe, D., Landin-Romero, R., Hodges, J. R., Piguet, O. (2016). All is not lost: positive behaviors in Alzheimer’s Disease and Behavioral-Variant Frontotemporal Dementia with disease severity. Journal of Alzheimer’s Disease. 54:549-558. doi: 10.3233/JAD-160440.

Midorikawa, A., Kawamura, M. (2015). The emergence of artistic ability following traumatic brain injury. Neurocase. 21:90-94. doi: 10.1080/13554794.2013.873058.

Miller BL, Hou CE. (2004). Portraits of Artists: Emergence of Visual Creativity in Dementia. Arch Neurol. 61:842–844. doi:10.1001/archneur.61.6.842.

Schott, G. D. (2012). Pictures as a neurological tool: lessons from enhanced and emergent artistry in brain disease. Brain. 135:1947-1963. doi: 10.1093/brain/awr314.

 

Images:

http://www.elderlycareassistance.info/care-for-elderly-own-home/

https://academic.oup.com/brain/article/135/6/1947/327597

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad160440

Hyperlinked videos and sites:

https://www.youtube.com/watch?v=fmaEql66gB0

https://www.google.com/maps/place/Fondation+Monet+in+Giverny/@48.9878008,1.6779037,9.68z/data=!4m5!3m4!1s0x0:0x77c5b6296865dff6!8m2!3d49.0753898!4d1.5337022

https://www.youtube.com/watch?v=yJXTXN4xrI8

https://www.youtube.com/watch?v=QuJFLr5Ib9k

Paul Cézanne, Museum Fatigue Advocate

Have you ever experienced museum fatigue? I thought that I made up this term to describe my own experiences, but upon performing a quick Google search, I discovered that this is actually a phenomenon first described in 1916 (Gilman, 1916).

Interior of the Musée d’Orsay (Image from TripSavy.com)

Going to a museum may seem like a passive process, but to me, it is actually quite a bit of work!

Navigating large crowds and carrying a heavy backpack for several hours is enough to wear me out. But even more so, interpreting piece after piece of artwork—each of which leaves a lot of room for interpretation—is a laborious effort leading to mental exhaustion. Though it is uncomfortable, I think that this is the way it should be. If you don’t experience some fatigue, are you fully engaged with and appreciating the art?

Exterior of Musée d’Orsay (Image from SortiraParis.com)

One particular French artist I have learned about in class is Paul Cézanne, and he seems to have been an especially avid proponent of museum fatigue; although his works were rejected from museums during his lifetime, it seems as if he were intentionally inducing this exhaustion. In the Post-Impressionistic style (abandoning the detailed, picture-perfect landscapes characteristic of Realism), Cézanne produced blurry, unfinished images in order to accentuate the mind’s interpretation process. Leaving blank spots peeking through the blobs of color is a technique called nonfinito, and it’s a bit like trailing off in the middle of a sentence—a visual ellipsis. In this way, the viewer’s interpretation is unique to the way the mind fills in the gaps at that particular moment, influenced by all of the emotions and experiences one brings to the table.

It turns out that this reflects how the brain works when interpreting all visual stimuli: even looking at the same things twice may trigger different responses from neurons dedicated to processing visual information (Jeon et al., 2018).

First, let’s start with some background information about vision and how our

The occipital lobe, shown in yellow (Image from The Science of Pscychotherapy.com)

brains process signals coming from our eyes.

Light enters the eye and reaches the retina at the very back. There, it stimulates light-responsive cells called photoreceptors (rods and cones). Signals from all these cells go through the optic nerve, the optic tract, a structure called the thalamus, and eventually reach the part of the brain that deals with visual information. This area is called the occipital lobe, and the section that is first to receive these signals is called the primary visual cortex, or V1. Here, there are cells that have been shown to respond to basic details of a scene like the width and orientation of lines (Gawne, 2015). Each cell is “tuned” to respond best to a certain width and a certain orientation, and logically, this is called neuronal tuning (Butts and Goldman, 2006). The conditions determining the responsivity of the neurons get more and more complex as the signals are processed (Tsunoda et al., 2001).

The perception of visual information (Image from Slideplayer.com)

As one views the same image, it would make sense that the same neurons respond each time. But, this is not exactly the case: In one experiment by Jeon et al. 2018 in the journal Nature, researchers found that the same neurons aren’t reliably activated by the same stimuli.

In the study, the researchers showed mice lines of different orientations and widths. Using a technique called two-photon calcium imaging, they looked at the activity of neurons in the V1 (Jeon et al., 2018). This technique involves installing an apparatus on the head of a mouse. Based on the movement of fluorescing ions, it lets us see what neurons are active as the mouse is awake and interacting with the world (Mitani and Komiyama, 2018).

Some of the images shown to mice in the Jeon et al. (2018) experiment (Image from the journal Nature)

Tracking around 300 neurons, the researchers determined the qualities of the image (such as the angle and the width of the lines) for which a neuron was most likely to respond. Then, performing the test one week later and again two weeks later, they compared the preferences of the neurons. While the majority of individual qualities were relatively stable over time, the researchers found that fewer than half of the neurons had exactly all of the same preferences as before.

What does this all mean? In the past it has been shown that the visual cortex is highly plastic, or able to rearrange and reorganize its connections based on new information (Hofer et al., 2009).  However, these results provide even more insight into how our visual systems adapt and change: some parts can remain stable while others change their responsivity in order to incorporate new information, altering our perception of the world around us.

So, our perception of static scenes is actually not static at all; it is being altered constantly! That boulangerie we pass on the way to class is not perceived by our brains in exactly the same manner every day.

Portrait of a Woman by Paul Cezanne (Image from the Metropolitan Museum of Art)

That leads me to wonder: especially when looking at one of Cézanne’s paintings—since he left so much for the viewer’s mind to fill in—do we ever experience the same thing twice?  This may very well be the most intriguing thing about his work, making it both timeless and malleable. A perfect excuse to visit the Musée d’Orsay just one more time.  The unfortunate result is only that this “museum fatigue” may become an increasingly common affliction. However, it’s likely already a common experience for all the museum-goers of the world, and I’m not afraid. It certainly won’t deter me from absorbing all of the Post-Impressionism art I can while I’m here!

 

References:

Butts, D.A., Goldman, M.S. (2006). Tuning curves, neuronal variability, and sensory coding. PLOS Biology. 4:92. doi: 10.1371/journal.pbio.0040092.

Gawne, T. (2015). The responses of V1 cortical neurons to flashed presentations of orthogonal single lines and edges. Journal of Neurophysiology. 113:2676-2681. doi: 10.1152/jn.00940.2014

Gilman, B. I. (1916). Museum Fatigue. The Scientific Monthly. 2:62–74.

Hofer, S. B., Mrsic-Flogel, T. D., Bonhoefer, T. & Hubener, M. (2009). Experience leaves a lasting structural trace in cortical circuits. Nature. 457:313–317.

Jeon, B. B., Swain, A.D., Good, J. T., Chase, S. M., Kuhlman, S.J. (2018). Feature selectivity is stable in primary visual cortex across a range of spatial frequencies. Nature. 8:15288. doi:10.1038/s41598-018-33633-2.

Mitani, A., Komiyama, T. (2018). Real-time processing of two-photon calcium imaging data including lateral motion artifact correction. Frontiers in Neuroinformatics. 12:98. doi: 10.3389/fninf.2018.00098

Tsunoda, K., Yamane, Y., Nishizaki, M., Tanifuji, M. (2001). Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience. 4:832-838. doi: 10.1038/90547.

 

Image links:

https://www.tripsavvy.com/thmb/l0SeupBCtJWyVCf7U_I4BGsPql8=/960×0/filters:no_upscale():max_bytes(150000):strip_icc()/8414359797_20e28f27f2_o-56a403d25f9b58b7d0d4f0e6.jpg

https://www.sortiraparis.com/images/55/1467/108625-jeu-de-piste-gratuit-au-musee-d-orsay.jpg

https://www.thescienceofpsychotherapy.com/wp-content/uploads/2018/10/bigstock-Female-Occipital-Lobe-Brain.png

https://slideplayer.com/slide/6900016/23/images/4/Figure+4.1+%28a%29+Side+view+of+the+visual+system%2C+showing+the+three+major+sites+along+the+primary+visual+pathway+where+processing+takes+place%3A+the+eye%2C+the+lateral+geniculate+nucleus%2C+and+the+visual+receiving+area+of+the+cortex..jpg

https://collectionapi.metmuseum.org/api/collection/v1/iiif/656892/1571903/restricted

Hyperlinked videos and sites:

https://www.youtube.com/watch?v=fZDAwXh54is

https://goo.gl/maps/GM2ZURPTLpia3V7b9

https://www.paulcezanne.org/

 

What do Welders and Van Gogh have in common?

(Sounds like a bad joke, but I promise there is an answer.)

Recently in class we talked about the interesting life of Vincent Van Gogh. Van Gogh had many health problems, one of which he is infamous for: cutting off his own ear. Besides that, he was also afflicted with hallucinations, anxiety, mania, and delirium, just to name a few. The ultimate diagnosis regarding his mental state was never made clear but Van Gogh also had other problems not related to mental health. One problem concerned his vision and the yellow tint that is present in most of his work. There are several circulating hypotheses that describe why this is.

(Yellow) Vase with Fifteen (Yellow) Sunflowers by Van Gogh

Some say this yellow characteristic is attributable to artistic preference. Paul Gauguin, a friend of Van Gogh’s once commented on Van Gogh’s excessive use of the color yellow stating: “Oh yes, he loved yellow, this good Vincent… those glimmers of sunlight rekindled his soul” (Marmor and Ravin, 2009). Other experts attribute this characteristic to possible digitalis intoxication, which causes xanthopsia, a color deficiency (Lee, 1981). What exactly is digitalis? Digitalis purpurea commonly known as foxglove, is a plant with tubular flowers which is now known to be toxic to humans. Today the active ingredient in the plant (digoxin) is used to treat heart rhythm irregularities in small quantities (“Digitalis toxicity”, 2019). However, back in the day, digitalis was used to treat epilepsy, which Van Gogh was diagnosed with by Dr. Gatchet.

Portrait of Dr. Gatchet with a foxglove plant

Xanthopsia is an example of an acquired color vision deficiency. The possibility of acquiring a color vision deficiency is also demonstrated in one study that examines the color vision deficiency prevalence in welders. Welders are usually exposed to a range of light waves including UV rays to infra-red rays, and are also exposed to various gaseous emissions (Heydarian et al., 2017). The authors of this study wondered how this constant exposure to these substances have impacted the vision of the workers. This study was done by comparing the vision of 50 randomly selected male welders from Zahedan city, who had welded for at least 4 years and were around 29 years of age, to 50 randomly selected healthy non-welder men who worked in a hospital and were around 28 years of age.  The color vision of these 100 men were tested with a Farnsworth D-15 test which classifies the type of dyschromatopsia, or color vision disorder, that is being expressed.

Farnsworth D15 Color Test Apparatus

The results show that the prevalence of color vision disorder in welders was significantly higher than that of non-welders (Heydarian et al., 2017). Additionally, there exists a positive relationship between years spent employed as a welder/average working hours and the prevalence of color vision deficiency (Heydarian et al., 2017). Interestingly, blue-yellow impairment is more common (although not significantly) than red-green impairment, which is found to be a common factor in occupation related color vision deficiency overall (Mergler and Blain, 1987). The reason why blue-yellow impairment in occupation related color vision deficiency is more prevalent is not exactly clear but would be a great topic to study further (Gobba and Cavalleri, 2003).

In the end, while we know that Van Gogh did not experience occupation related color vision deficiency, he may have had digitalis induced color vision deficiency. So there you go, both welders and Van Gogh have color vision deficiency in common.

References

Digitalis toxicity. (n.d.). Retrieved June 10, 2019, from MedlinePlus website: https://medlineplus.gov/ency/article/000165.htm

Gobba, F., & Cavalleri, A. (2003). Color vision impairment in workers exposed to neurotoxic chemicals. Neurotoxicology, 24, 693-702.

Heydarian, S., Mahjoob, M., Gholami, A., Veysi, S., & Mohammadi, M. (2017). Prevalence of color vision deficiency among arc welders. Journal of Optometry, 10(2), 130-134.

Lee, T. C. (1981). Van Gogh’s vision: Digitalis intoxication? JAMA, 245(7), 727-729.

Marmor, M., & Ravin, J. (2009). Artist’s eyes. New York, NY: Abrams.

Mergler, D., & Blain, L. (1987). Assessing color vision loss among solvent-exposed workers. American Journal of Industrial Medicine, 12(2), 195-203.

Picture 1: https://www.vangoghgallery.com/catalog/Painting/586/Still-Life:-Vase-with-Fifteen-Sunflowers.html

Picture 2: https://en.wikipedia.org/wiki/Portrait_of_Dr._Gachet

Picture 3: https://www.ophthalmic.com.sg/product/farnsworth-d15-color-test/

Let’s Van Go(gh) to Arles

Narrow streets, old buildings, and small shops were in sight as I walked with a group of my friends towards the renowned Vincent Van Gogh Café. We were in Arles, a city in the south of France where the Dutch painter Van Gogh lived for more than a year and created some of his best work. Once we reached the square, a yellow café was to our right, and in blue writing “Le Café La Nuit” and “Vincent Van Gogh Café” were spelled out.  Red couches and vases of yellow sunflowers lined the walls. People were rushing in and out, and tourists were taking pictures.

The image of Vincent Van Gogh Café in 2019 compared to Van Gogh’s painting in 1888.

This café, once a place where Van Gogh spent his time painting, now differed from the one depicted in his painting. Chairs were replaced by couches, empty stores fronts were changed to buzzing restaurants and hotels, a few circular tables were swapped for large rectangular tables. Intrigued, we did not stop there. Our next stop was the hospital ward courtyard, where Van Gogh was admitted twice, and created three known paintings.

The courtyard of the hospital ward in Arles (2019), with a replica of Van Gogh’s painting in the foreground.

You might be confused right now if you have not heard about Van Gogh’s story. Hospital ward? Twice? Van Gogh left Paris for Arles because of his mental health. However, after a few months in Arles, his mental health deteriorated. A razor covered with blood in hand, Van Gogh had maimed his ear, after arguing with his house guest (Khoshbin and Katz, 2015). At Hotel Dieu Hospital, Dr. Felix Rey treated Van Gogh, bandaged his ear, and diagnosed him with epilepsy. In a letter Dr. Rey wrote, there were times when Van Gogh “loses his train of thought and speaks nothing but disjointed words… he went to lie down in another patient’s bed and would not leave it… he chased the sister on duty… he went to wash in the coal-box” (Van Gogh Museum). He was then transferred to the asylum Saint-Remy-de-Provence, where Dr. Theophile Peyron, recorded Van Gogh’s medical condition as having “suffered an attack of acute mania with visual and auditory hallucinations that led him to mutilate himself by cutting off his ear” (Van Gogh Museum). So, was Van Gogh certainly epileptic? Or did he suffer from another neurological disorder?

Epilepsy is a neurological condition that is defined by recurrent seizures and can affect people of all ages. Van Gogh was described by doctors as having seizures, which is the reason for the primary diagnosis of epilepsy. However, the best method for diagnosis is through the use of an electroencephalography (EEG), a machine that records the electrical activity of the brain (Guerreiro, 2016). Epileptic patients have unusual activity in their brain cells(neurons), which makes an EEG a good tool to detect epilepsy. However, in 1889, when Van Gogh was diagnosed, the EEG had not yet been discovered. Thus, with no scans to look at, this brings to question whether the diagnosis of Van Gogh was accurate.

EEG image of a normal (seizure-free) brain compared to an EEG image of the brain of an epileptic patient (Ebrahimpour et al. 2012).

Another study revealed that auras are important in diagnosing patients as epileptic (Liu et al., 2017). An aura consists of all the sensations that a patient experiences prior to a seizure. The type of aura the patient experiences conveys what part of the cerebral cortex, outermost region of the brain responsible for decision making and speech, is affected (Liu et al., 2017). Epileptic patients could have sensory (related to the senses) or cognitive auras (related to thoughts), as well as unspeakable feelings (Liu et al., 2017). These characteristics were evident in Van Gogh, since he had auditory and visual hallucinations and he was unable to express his thoughts. However, the findings do not explain the depressive symptoms and the urge to commit suicide that Van Gogh experienced.

The more I look at the symptoms described by the doctors, the more I realize that Van Gogh was more likely a schizophrenic. Schizophrenia is a brain disorder that encompasses hallucinations, delusional thinking and cognitive problems (Seidman and Mirsky, 2017). One study examined the effects of depression and cognitive impairment on adults with schizophrenia (Raykeer et al., 2019). Patients who had schizophrenia had increased depression and cognitive impairments, which they measured through “quality of life exams,” a common well-known method. Both depression and cognitive impairments were observed in Van Gogh, according to the medical records written by Dr. Peyron. Further, individuals with schizophrenia lack empathy, are unable to understand what other people are feeling based on gestures, and have poor problem-solving skills (Couture et al., 2006). All of these symptoms were manifested by Van Gogh. Therefore, it is likely that he may have been schizophrenic, although there is no conclusive evidence to determine his neurological condition.

Now, as I continue walking towards the river in Arles, I see a replica painting of Van Gogh’s “Starry Night, 1889,” outside a gallery. This was a painting he made through his window when he was institutionalized at Saint Remy Asylum. Some people say that it was a visual hallucination because Van Gogh’s room did not have a view of the city and the trees were not shaped like flames, nor did the stars whirl as they appear in his painting. So, what was Van Gogh’s medical condition? The question remains unanswered, but if you asked me, I would say all signs point to schizophrenia.

Image of Van Gogh’s Starry Night 1889 painting.

 

References:

Couture, S. M., Penn, D. L., & Roberts, D. L. (2006). The functional significance of social cognition in schizophrenia: a review. Schizophrenia bulletin32(suppl_1), S44-S63.

Ebrahimpour, R., Babakhan, K., Arani, S. A. A. A., & Masoudnia, S. (2012). Epileptic seizure detection using a neural network ensemble method and wavelet transform. Neural Network World22(3), 291.

Guerreiro, C. (2016). Epilepsy: Is there hope? Indian Journal Of Medical Research144(5), 657.

Khoshbin, S., & Katz, J. (2015). Van Gogh’s Physician. Open Forum Infectious Diseases2(3), ofv088.

Liu, Y., Guo, X. M., Wu, X., Li, P., & Wang, W. W. (2017). Clinical Analysis of Partial Epilepsy with Auras. Chinese medical journal130(3), 318.

Pascal de Raykeer R, e. (2019). Effects of depression and cognitive impairment on quality of life in older adults with schizophrenia spectrum disorder: Results from a multicenter study. J Affect Disord. 256, 164-175.

 Seidman, L. J., & Mirsky, A. F. (2017). Evolving notions of schizophrenia as a developmental neurocognitive disorder. Journal of the International Neuropsychological Society23(9-10), 881-892.

Van Gogh Museum. (2009, October). Vincent Van Gogh The Letters. Van Gogh Museum. Retrieved from http://vangoghletters.org/vg/letters.html

 

Paintings from:

Van Gogh V. (1889). The Starry Night. Retrieved from

https://www.vincentvangogh.org/starry-night.jsp

Van Gogh V. (1888). Café at Night. Retrieved from

https://www.vincentvangogh.org/cafe-at-night.jsp

 

vitamin G for green

After getting off of the train in Avignon and feeling the sun hit my un-sunscreened shoulders, my mood undeniably approved. It was a definite upgrade from the cold and drizzly weather we had just escaped from in Paris. Whether it was the sunshine induced drowsiness or the gelato produced lethargy, I seemed to move at a much slower and relaxed pace this weekend. I often find myself hustling to get from departure point to destination during the week, sighing impatiently at the slow walkers leisurely strolling on the sidewalk who have the audacity to slow me down.  In Provence, I didn’t feel the need to obsessively make schedules and instead just enjoyed the new surroundings.

The southern France, creek wading Irena is definitely much more carefree and relaxed than urban Paris, coffee chugging Irena.

I thought back to our journal topics about Van Gogh and his mental health and remembered how the film we watched had portrayed his mood. Van Gogh had written about the countryside in Arles and how it had improved his spirit (up until that whole ear incident). Van Gogh talked about how much time he was spending outside and how productive his work output was during the time he could paint en plein air. I think this is something that we can all relate to; the first day of being outside in the warmth and sunshine after weeks of winter stuck inside avoiding the Atlanta rain can make me feel like I escaped something just shy of seasonal affective disorder. Well besides you and me, it seems that others have been onto this phenomenon for a while now too. In fact, the term “ecotherapy” has been coined as “an umbrella term for a gathering of techniques and practices that lead to circles of mutual healing between the human mind and the natural world from which it evolved”  (Chalquist, 2009).

Courtyard garden in an Arles hospital where Van Gogh stayed briefly and his painting of it

It has been documented that merely looking at nature or natural elements can provide restoration from stress and mental fatigue while reducing feelings of anger, frustration and aggression. This has indicated that the “aesthetic experience of nature” can play a beneficial role in affecting mood (Groenewegen, van den Berg, de Vries, & Verheij, 2006). Some studies utilize the visual sensory system in order to test the effects of nature images on neural processing and well-being; however, the experience of nature cannot be reduced to singular modalities but rather is holistic and encompasses all the sensory systems in the body. Therefore, many of the studies that I looked at examined and quantified aspects of well-being that are harder to measure. A study of 57 people with serious and persistent mental illness was conducted where they participated in an outdoor adventure program involving weekly full day outings for 9 weeks. At the end of the study, there were statistically significant increases on the Generalized Self-Efficacy Scale (a 10-item psychometric scale that assesses optimistic self-beliefs to cope with a variety of difficult demands in life) in the experiment group compared to the control group that did not undergo outdoor exposure. The experimental group also showed significant reductions in scores on the Anxiety and Depression subscales of the Brief Symptom Inventory (BSI), a test that evaluates psychological distress and psychiatric disorders. Patients with affective or schizoaffective disorders, mental health disorders we discussed Van Gogh having the possibility of having, showed an increase in scores on the Trust and Cooperation Scale, and decreased BSI Hostility and Interpersonal Sensitivity (Kelley, Coursey, & Selby, 1997).

General mechanisms to explain relationships between green space and health, well-being, and social safety

In a 2010 meta-analysis (a statistical procedure for combining data from multiple studies) that analyzed 10 UK studies of environment and health that involved over 1252 participants, every green environment improved both self-esteem and mood with the presence of water generating greater effects. Outcomes were identified through a subgroup analyses, and dose-responses were assessed for exercise intensity and exposure duration. Based on this meta-analysis, the mentally ill showed one of the greatest self-esteem improvements based on exposure to green environments and nature (Barton & Pretty, 2010).

The number of participants, activity types, environments, and cohorts from each study from the meta-analysis  

Ecotherapy studies have also begun a foray into a crossover intervention with art therapy, as both approaches have research supporting their success in the reduction of physiological and psychological symptoms associated with a variety of diagnoses in numerous settings. While a statistically significant correlation between ecotherapy and art therapy has not yet been found, there are many qualitative and case-study research designs that demonstrate the effectiveness of art and eco-therapy interventions (Bessone, 2019).

This weekend in Arles, we saw the various locations around town that Van Gogh drew inspiration from for his paintings, making it quite evident that he was closely connected with his environment. While eco/art therapy are no substitutes for comprehensive mental health care, I hope that Van Gogh was able to find temporary reprieve in his artistic work and the natural beauty of southern France during his time there.

Landscape picture of Arles, France

 

Bibliography

Barton, J. & Pretty, J. (2010) What is the Best Dose of Nature and Green Exercise for Improving

Mental Health? A Multi-Study Analysis. Environmental Science & Technology, 44, 3947-3955.

Bessone, E. (2019) Implications and Applications of Eco-Therapy on Art Therapy. Expressive Therapies Capstone Theses. 155.

Chalquist, C. (2009) A Look at the Ecotherapy Research Evidence. Ecopsychology, 1, 64-74.

Groenewegen, P.P., van den Berg, A.E., de Vries, S. & Verheij, R.A. (2006) Vitamin G: effects of green space on health, well-being, and social safety. BMC Public Health, 6, 149.

Kelley, M. P., Coursey, R. D., & Selby, P. M. (1997). Therapeutic adventures outdoors: A demonstration of benefits for people with mental illness. Psychiatric Rehabilitation Journal, 20(4), 61-73.

Image 1: my own picture

Image 2: from https://www.marvellous-provence.com/arles/what-to-see/in-the-footsteps-of-van-gogh

Image 3: from Groenewegen, van den Berg, de Vries, & Verheij, 2006.

Image 4: from Barton & Pretty, 2010

Image 5: from https://steemit.com/landscapephotography/@schmidthappens/landscape-photography-the-inspiring-arles-france

 

Lust for Answers

This past weekend, our group went to Provence, a province in southeast France, and visited the city of Arles where Vincent van Gogh lived for two years painting some of his most famous works such as Yellow House, Starry Night Over the Rhone, and Bedroom in Arles.

A map of some of the locations in Arles where van Gogh painted some of his most famous works.

Before going there, we saw in class the movie, Lust for Life, a 1950’s biographical movie about Vincent van Gogh’s life highlighting his interactions with other painters, his family, and his surroundings (Lust for Life – Trailer, n.d.). The movie touches on Van Gogh’s lifelong mental strife showing that while we revere him as an artistic genius now, very few people understood him including himself.

It seemed the depression that Van Gogh experienced subsided according to his letters to his family and friends, but in the movie, they show the manic way he painted constantly covered in paint and obsessed with catching the light to paint landscapes and field laborers. When the fall and winter came around, he could not go outside expressing how he felt trapped. His condition worsened where outside painting did not work anymore leading up to him to cut off his ear with a variety of possible reasons that no one could confirm. He eventually was admitted to a hospital where his hallucinations continued with blocks of time missing from his memory and his alcohol abuse addressed. He still continued to paint famous pieces such as The Courtyard of the Hospital at Arles 1889 that are preserved to this day.

A picture at the hospital courtyard where van Gogh was attempted to after cutting off his ear.

We looked at his doctor’s notes categorizing his condition as epilepsy because of his ongoing non-lucid episodes, so we started looking into different mental conditions that related back to the ones we know today as major depression disorder, bipolar disorder, schizophrenia, and more. This eventually led us to see what type of treatments would be available for the people with dementia praecox: a term coined by Emil Kraepelin to describe lesions in the cerebral cortex that mild dementia (Adityanjee et al., 1999). I couldn’t find much in terms of treatment, but it got me thinking about what we have today to help alleviate the effects of mental illnesses such as bipolar disorder, schizophrenia, and depression. As well as my interest being piqued through exploring Van Gogh’s life, there is a high probability I will see these novel practices implemented in the future.

The School of Nursing at Emory does a good job of teaching us the evidence-based practices that we follow for patient safety and comfort, but the patients have the autonomy in most cases to deny treatment, do something different than recommended to treat their ailments , or ask about new upcoming treatments. Because of this, it is important to know recent research about various types of treatment practices to be better support the patients.

van Gogh’s self portrait fading away during the Atelier des Lumieres of all of his works.

One that was really interesting to find out was the possible implementation of brain-derived neurotrophic factor (BDNF) to help treat neurodegenerative diseases as well as mental health disorders. It is a growth factor that is used in neurogenesis or the formation of new neurons which is not common for adults; in most of the brain, there are no new neurons created from the ones at birth, but there are some brain areas that still have new neurons created which is where growth factors like BDNF are used those new neurons (Bathina and Das, 2015). This is also used for synaptic plasticity in which there is a consistently strong or diminished communication between the neurons depending on how strength and importance of the signal is between the two neurons (“What Is Synaptic Plasticity?”). There is also evidence that a depleted amount of the class of factors BNDF belongs to can possibly be an indicator for neurological disorders such as Parkinson’s disorder and Alzheimer’s (Bathina and Das, 2015). While BNDF has the ability for synaptic plasticity, a study done with mice found that inhibition of one of the receptors BNDF can bind to shows a decrease in long term depressive behaviors without affecting its synaptic plasticity function in other brain areas (Woo et al., 2005). Researchers also theorize that people with reduced BDNF levels might have a decreased synaptic plasticity in the hippocampus which prevents the body from going back to homeostasis taking them out of their stress related depressive states (Phillips, 2017). The second type of receptors that BDNF does the opposite effect by producing synaptic plasticity; this receptors’ activation and an BDNF increase is seen in the presence of certain antidepressive pharmacologic therapies (Phillips, 2017).This is now being used as an indicator for future drug therapies as a measure of effectiveness.

A watercolor painting I did in class depicting the sensory neurons in the eye.

Going away from the pharmacological side, I started to think about Van Gogh and how his art was a source of peace and strife for him. At some point, painting couldn’t help in him in the way it did before. This is not to discredit the effects that art and other alternative therapies have on supporting those with symptoms similar to his; a study had 58 patients diagnosed with schizophrenia do art therapy twice a week for twelve weeks (Montag et al., 2014). They found that those who had committed to the program had less negative symptoms which include a loss of interest and a lower affect as well as less positive symptoms of schizophrenia such as auditory hallucinations compared to the control group who did not receive the art therapy (Montag et al., 2014)  (“Symptoms,” 2017). This support the idea that Van Gogh’s art was a therapeutic event for him up until everything became too much. It’s fascinating to how we reverie Van Gogh’s coping mechanism after his death with his few family and friends supporting his ability to paint. It makes you think about those that we have forgotten about who are tucked away in our society creating the next artistic masterpiece of our time.

 

 

References

Adityanjee, Aderibigbe, Y. A., Theodoridis, D., & Vieweg, W. V. R. (1999). Dementia praecox to schizophrenia: The first 100 years. Psychiatry and Clinical Neurosciences, 53(4), 437–448. https://doi.org/10.1046/j.1440-1819.1999.00584.x

Bathina, S., & Das, U. N. (2015). Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science: AMS, 11(6), 1164–1178. https://doi.org/10.5114/aoms.2015.56342

Lust for Life – Trailer. (n.d.). Lust for Life – Trailer. Retrieved from https://www.youtube.com/watch?v=WUHL0h_kQ6s

Montag, C., Haase, L., Seidel, D., Bayerl, M., Gallinat, J., Herrmann, U., & Dannecker, K. (2014). A Pilot RCT of Psychodynamic Group Art Therapy for Patients in Acute Psychotic Episodes: Feasibility, Impact on Symptoms and Mentalising Capacity. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0112348

Phillips, C. (2017). Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plasticity, 2017.https://doi.org/10.1155/2017/7260130

Symptoms. (2017, October 23). Retrieved June 10, 2019, from nhs.uk website: https://www.nhs.uk/conditions/schizophrenia/symptoms/

What is synaptic plasticity? (2016, November 22). Retrieved June 9, 2019, from https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/what-synaptic-plasticity

Woo, N. H., Teng, H. K., Siao, C.-J., Chiaruttini, C., Pang, P. T., Milner, T. A., … Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8(8), 1069–1077. https://doi.org/10.1038/nn1510

Picture #1: [Screenshot of the walking tour of Van Gogh’s art in Arles]. Retrieved from https://www.google.com/maps/d/u/0/viewer?mid=1014-AkOjbBzXEQQLcxz8NGxa10Oo1bGN

Picture #2 and #3: Taken by me

Picture #4: Painted and picture taken by me

Therapeutic Days in Paris

While walking through the halls of Musée d’Orsay looking at the masterpieces on the walls, I felt at peace. A calmness washed over me as I carefully studied each brush stroke of Monet and Cezanne. I tested my knowledge of Impressionism and Post-Impressionism and tried to understand the feelings being conveyed by Monet and Cezanne with each detail they added. Even though there was chattering around me, the museum seemed still. I sat on one of the benches amongst the artwork and wrote a journal entry about the difference between Monet and Cezanne. There was something therapeutic about being in this museum and reflecting on the styles of different artists. Throughout my time at the Musée d’Orsay, I felt a type of serenity that I had yet to experience in the bustle of Parisian streets. As I left the museum, and entered the real world, all my emotions rushed back. I was making lists of what work I had to do, and the peace of mind vanished. There was something about being in that space and the artwork surrounding me that served as a therapy and I wanted to know how I could recreate it. Lucky for me, when we were painting our neurons, I felt that same calmness and I wondered what it was about art and painting that helped me relax.

Cezanne’s Le Joueur de cartes

Monet’s Japanese Bridge

 

 

 

 

 

 

Art therapy is a form of treatment used to help patients express emotion, relieve stress, and cope with illnesses through mediums like painting, photography, drawing, and modeling. The goal of art therapy is to help the patient grow and better understand themselves in order to progress and reach a level of acceptance of who they are and how they feel (Psychology Today, 2019). It serves as a method for allowing the patient to express themselves creatively while the therapist tries to decode messages and nonverbal cues throughout the artwork (Psychology Today, 2019). Using the visual imagery and other sensory networks, we are able to use artwork to understand the relationship between mind and body (Hass-Cohen and Findlay, 2015). Walking through Musée d’Orsay and painting our photoreceptors felt a lot like art therapy to me, even though they weren’t exactly the same. Certain pieces at the museum spoke more to me because of my emotional connection and while painting, I was expressing my feelings through the choice of color and style.

My interpretation of photoreceptors

In neuroscience, studies have shown the use of art therapy in helping people undestand more nonverbal cues and vocalize those cues into a narrative (Hass-Cohen and Findlay, 2015) For example,  in treating post traumatic symptoms, researchers used art therapy as a mechanism of bridging the gap between the unspoken and emotion (Tinnin, 1990). Traumatic moments are often nonverbal because talking about them and the feelings attached is painful and therefore, a nonverbal treatment like art therapy may be more effective with patients (Gantt and Tinnin, 2008). Patients suffering from PTSD were treated with art therapy as a form of vocalizing the unspoken feeling and expressing part of the memories that have been burried to effectively heal the patient internally (Gantt and Tinni, 2008). Additionally, studies done on female textile creators have shown that making these beautiful handcrafts have increased their moods, helped them feel grounded, and eased their ability to cope with stressors (Collier, 2011). These women used textile making to change their moods and reported the frequency and well-being after creating this artwork. The reseracher found that those women who crafted more frequently were more rejuvenated and successful compared to women who did not craft (Collier, 2011).

After understanding these studies, I found that many of the reasons I felt so calm after the museum and painting was because I was engaging in art therapy. Using my emotions and expressing them outwardly helped bring peace and quiet internally!

References

  1. Art Therapy. (2019). Retrieved June 6, 2019, from https://www.psychologytoday.com/us/therapy-types/art-therapy
  2. Collier, A. F. (2011) The Well-Being of Women Who Create With Textiles: Implications for Art Therapy, Art Therapy, 28:3, 104-112, DOI: 1080/07421656.2011.597025
  3. Gantt, L., & Tinnin, L. W. (2008, December 27). Support for a neurobiological view of trauma with implications for art therapy. Retrieved from https://www.sciencedirect.com/science/article/pii/S0197455608001081
  4. Hass-Cohen, N., & Findlay, J. C. (2015). Art Therapy et the Neuroscience of Relationships, Creativity, et Resiliency: Skills and practices. Retrieved from https://books.google.fr/books?hl=en&lr=&id=9gudBAAAQBAJ&oi=fnd&pg=PT11&dq=clinical neuroscience art therapy&ots=Xz_U8ZYZBS&sig=URDlxg8jTGwekMjmWt4MJpFFUlQ#v=onepage&q=clinical neuroscience art therapy&f=false
  5. Tinnin, L.W. (1990). Biological processes in nonverbal communication and their role in the making and interpretation of art. The American Journal of Art Therapy, 29, pp. 9-13

The Real Art Connoisseurs

Coming to Paris the first thing I noticed was the architecture. As an architectural studies minor, I love seeing new styles of building and the effects they have on how we perceive a city. Just from the buildings, Paris is already classier than any city I’ve been to in the U.S. I was even told that the reason most apartment buildings don’t have air conditioning is because Parisians don’t want to mar the beautiful façade of the buildings with ugly air conditioning units (I don’t disagree with this decision).

Classy Parisian apartment building

Not only is the architecture beautiful in Paris but also the artwork in the plethora of museums. Just in this first week I’ve visited three museums: the Musée de l’Orangerie, Musée d’Orsay and the Louvre. Each one is always filled with people admiring the artwork. The interesting aspect about art is that its beauty is subjective and intangible, and yet, it is relatable to many. After all, there is a reason that 10.2 million people visited the Louvre in 2018 (taking into account the fact that some people go just to say they’ve gone). This absurd number of people has me thinking, is there a way to detect the real art connoisseurs from the charlatans who only go to the museums for the Instagram post?

Entrance to the Louvre, designed by I.M. Pei

One way to answer this question is to find evidence that there is a difference in brain activity between art experts and non-experts when viewing a piece of art. Such a study was done by Kirk et al. in which the authors asked architects and non-architects to rate the aesthetic value of building images while fMRI studies tracked neural activity (Kirk et al., 2009). Before this study, it was already

The ACC and OFC are involved in processing reward

known that brain areas that are active in processing reward such as the striatum, orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC) are also active when perceiving visual aesthetics such as paintings (Vartanian and Goel, 2004). Because of this, Kirk et al. focused on fMRI studies of these brain locations in architects and non-architects to see if there was a difference in neural activity. It should be noted though that other areas such as the parahippocampal gyrus are activated during visual perception and judgement of value, but are not explicitly studied in this experiment (Chatterjee and Vartanian, 2016).

Eleven architects/grad or postgrad architecture students and 13 undergrad/grad students with no formal art-related education were asked to rate the level of aesthetic appeal for 168 building images by pressing buttons 1 (lowest appeal) to 5 (highest appeal) while in the fMRI scanner. Results showed that there was a significant increase in ACC and OFC activity in architects compared to non-architects when asked to make an aesthetic judgement of the building (Kirk et al., 2009). These results are controlled by data that show no significant difference in neural activity when architect and non-architect were asked to make an aesthetic judgement on a neutral stimulus such as a face (Kirk et al., 2009). Thus we know that the difference in neural activity in the ACC and OFC is due to the judgement of buildings specifically. Interestingly enough, other areas of the brain active during reward that are predicted to also be active during aesthetic judgement such as the nucleus accumbens show no significant difference in activation between architect and non-architect during building aesthetic evaluation (Kirk et al., 2009). Overall, we can conclude that the anterior cingulate cortex and orbitofrontal cortex have different neural activities in art experts vs non-experts when asked to judge the beauty of an artwork.

So what does this mean in terms of differentiating the connoisseurs from the charlatans? Essentially there is no real way to tell the difference without access to fMRI scans of everyone’s brains, since behavior in making aesthetic judgements (such as reaction time in aesthetic judgement) is not significantly different between experts and non-experts when viewing a piece of art (Kirk et al., 2009). So good news for us charlatans, no one will be exposing us anytime soon during our next museum visit!

References

Chatterjee, A., & Vartanian, O. (2016). Neuroscience of aesthetics. Annals of the New York Academy of Sciences, 172-194.

Kirk, U., Skov, M., Christensen, M. S., & Nygaard, N. (2009). Brain correlates of aesthetic expertise: A parametric fMRI study. Brain and Cognition, 69, 306-315.

10.2 million visitors to the Louvre in 2018. (2019, January 3). Retrieved from https://presse.louvre.fr/10-2-million-visitors-to-the-louvre-in-2018/

Vartanian, O., & Goel, V. (2004). Neuroscience correlates of aesthetic preference for paintings. NeuroReport, 15(5), 893-897.

https://www.researchgate.net/profile/Sung-il_Kim/publication/310736855/figure/fig4/AS:585435621380101@1516590137404/The-valuation-pathway-Brain-regions-involved-in-the-value-based-decisionmaking-process.png

 

 

 

Name that Painting

Bonjour from France! I am so excited to be posting my first blog here in Paris. I have had such an amazing first week and a half. This city is so beautiful and has so much to offer. One of the parts of Paris I was so excited for before coming here was the art. Paris is known for its beautiful art and amazing museums. One of my favorite artists is Van Gogh (cliché, I know. But his paintings are beautiful). So you can imagine my excitement when we had the opportunity to go as a group to the L’Atelier des Lumières. This is a beautiful experience where art is projected onto the walls of the room, with background music and movement as opposed to the normal still painting. One of the exhibits is called Van Gogh Starry Night, and it includes many of his different paintings come to life before your eyes.

The Olive Trees by Van Gogh at L’Atelier des Lumières

One of the things that has always fascinated me most about Van Gogh’s paintings, and post-impressionist paintings in general, is the ability for us to recognize the scene even though it is never perfectly clear. I realized this is an amazing task that our mind is able to achieve through object recognition. Object recognition is just what it sounds like, but the mechanisms supporting it are very complicated, interesting, and intricate. Object recognition calls on many regions including the visual cortex as well as many structures in the temporal lobe of the brain (Bar et al., 2001). Object recognition calls on bottom-down processing, which is a process in which we receive visual information and then call on higher processes to understand the full picture. However, it has also been observed that top-down processing is more important than previously realized. Top-down processing is when higher functions, or previously stored information, affects the perception we are creating. For example, our memory can have an effect. Our brain takes information from our memory system to fully fill in the details of the image we are looking at (Bar et al., 2007). This may explain why I could recognize which painting was being displayed in the exhibit even before it was fully in my view.

Only Part of Starry Night shown at L’atelier des Lumières

Along with this, partially analyzed images or incomplete images can be recognized before all of the information is received (Bar, 2003). This is why even when an object in a Van Gogh painting isn’t blurry or not the full picture, we can still recognize the scene in front of us.

Wheatfield with Crows by Van Gogh. The image is blurry and a bit unclear, but you can still tell what it is.

Another fascinating thing about object recognition is the emotion we feel when viewing certain objects. I am sure everyone has an experience with art that has made them feel some sort of emotion, as I did at the L’Ateliers exhibit. Before studying this topic, I would assume that the emotion we feel comes after we are able to detect an object. However, there are multiple studies that now say our emotions can actually affect our final perception of an object. One study says that our prediction of an object includes its relevance and value, before we are consciously aware of the object we are observing (Barret and Bar, 2009). Another study expanded on this, looking at our emotional perception of faces and the way it can be influenced without our knowledge. If a happy or negative face is shown quickly and not entering consciousness, then we will perceive a neutral face shown directly after as having more emotion (Siegel et al., 2018).

This was very interesting to me, because it means the context or environment around us, or even the mood that we are in, may completely change our perception of an object. The feeling that I perceive when looking at Van Gogh’s Starry Night will be different than someone else’s. Also, as stated above, our different memories and experience could change the way in which we perceive the painting as well.

It is amazing what our brain is able to accomplish. Not only are we able to recognize objects before we have the entire picture, but our emotional processing of that object starts very early on in the process as well.  This is just part of the reason Van Gogh’s painting have always amazed me. He has the ability to create a scene that isn’t quite right, but we know what it is showing anyway. He is able to let your mind fill in the rest of the details. Not only this, but each perception of his paintings are completely different based off our own experience. I know my personal experience leads to a beautiful painting with lots of emotion.

Self Portrait by Van Gogh shown at L’Atelier des Lumières

 

 

Works Cited

Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Mendola, J. D., . . . Dale, A. M. (2001). Cortical Mechanisms Specific to Explicit Visual Object Recognition. Neuron,29(2), 529-535. doi:10.1016/s0896-6273(01)00224-0

Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cognitive Neuroscience,15, 600-609.

Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences,11(9), 372. doi:10.1016/j.tics.2007.08.004

Barrett, L. F., & Bar, M. (2009). See it with feeling: affective predictions during object perception. Philosophical transactions of the Royal Society of London. Series B, Biological sciences364(1521), 1325–1334. doi:10.1098/rstb.2008.0312

Siegel, E. H., Wormwood, J. B., Quigley, K. S., & Barrett, L. F. (2018). Seeing What You Feel: Affect Drives Visual Perception of Structurally Neutral Faces. Psychological science29(4), 496–503. doi:10.1177/0956797617741718

Image 1,2 and 4-  my own images

Image 3: Wheatfield with Crows – Van Gogh Museum. (n.d.). Retrieved from https://www.vangoghmuseum.nl/en/collection/s0149V1962