Research in the Dyer group spans a broad range of problems in biophysical and bioinorganic chemistry. Links to the three main focus areas are included below: mapping protein folding energy landscapes, exploring the role of protein dynamics in enzymatic catalysis, and developing photocatalysts for solar water splitting and hydrogen production. We have also undertaken a collaboration with the Salaita lab, funded by DARPA, to exploit coupled enzymatic reactions for induced mechanical work.

Two unifying themes of this work are exploring the role of dynamics in protein structure and function and the development and application of new laser and spectroscopic tools for the study of protein dynamics. Our work effectively cuts across traditional disciplines with an emphasis on using quantitative physical methods to address biological problems. For example, our study of fast events in protein folding integrates efforts in mechanical engineering (microfluidics for ultrafast mixing), physical chemistry (spectroscopy, fast kinetics, physical models), molecular biology (mutants, protein folding models) and theoretical chemistry (MD simulations of folding). We emphasize the use of spectroscopic techniques with high structural specificity and time resolution, such as isotope edited infrared spectroscopy to elucidate the functional dynamics of proteins on all relevant timescales.

Enzyme Dynamics Protein Folding Solar Fuels DARPA Collaboration